Search results for: functional domain
392 Investigation of the Function of Chemotaxonomy of White Tea on the Regulatory Function of Genes in Pathway of Colon Cancer
Authors: Fereydoon Bondarian, Samira Shaygan
Abstract:
Today, many nutritionists recommend the consumption of plants, fruits, and vegetables to provide the antioxidants needed by the body because the use of plant antioxidants usually causes fewer side effects and better treatment. Natural antioxidants increase the power of plasma antioxidants and reduce the incidence of some diseases, such as cancer. Bad lifestyles and environmental factors play an important role in increasing the incidence of cancer. In this study, different extracts of white teas taken from two types of tea available in Iran (clone 100 and Chinese hybrid) due to the presence of a hydroxyl functional group in their structure to inhibit free radicals and anticancer properties, using 3 aqueous, methanolic and aqueous-methanolic methods were used. The total polyphenolic content was calculated using the Folin-Ciocalcu method, and the percentage of inhibition and trapping of free radicals in each of the extracts was calculated using the DPPH method. With the help of high-performance liquid chromatography, a small amount of each catechin in the tea samples was obtained. Clone 100 white tea was found to be the best sample of tea in terms of all the examined attributes (total polyphenol content, antioxidant properties, and individual amount of each catechin). The results showed that aqueous and aqueous-methanolic extracts of Clone 100 white tea have the highest total polyphenol content with 27.59±0.08 and 36.67±0.54 (equivalent gallic acid per gram dry weight of leaves), respectively. Due to having the highest level of different groups of catechin compounds, these extracts have the highest property of inhibiting and trapping free radicals with 66.61±0.27 and 71.74±0.27% (mg/l) of the extracted sample against ascorbic acid). Using the MTT test, the inhibitory effect of clone 100 white tea extract in inhibiting the growth of HCT-116 colon cancer cells was investigated and the best time and concentration treatments were 500, 150 and 1000 micrograms in 8, 16 and 24 hours, respectively. To investigate gene expression changes, selected genes, including tumorigenic genes, proto-oncogenes, tumor suppressors, and genes involved in apoptosis, were selected and analyzed using the real-time PCR method and in the presence of concentrations obtained for white tea. White tea extract at a concentration of 1000 μg/ml 3 times 16, 8, and 24 hours showed the highest growth inhibition in cancer cells with 53.27, 55.8, and 86.06%. The concentration of 1000 μg/ml aqueous extract of white tea under 24-hour treatment increased the expression of tumor suppressor genes compared to the normal sample.Keywords: catechin, gene expression, suppressor genes, colon cell line
Procedia PDF Downloads 58391 Well-Defined Polypeptides: Synthesis and Selective Attachment of Poly(ethylene glycol) Functionalities
Authors: Cristina Lavilla, Andreas Heise
Abstract:
The synthesis of sequence-controlled polymers has received increasing attention in the last years. Well-defined polyacrylates, polyacrylamides and styrene-maleimide copolymers have been synthesized by sequential or kinetic addition of comonomers. However this approach has not yet been introduced to the synthesis of polypeptides, which are in fact polymers developed by nature in a sequence-controlled way. Polypeptides are natural materials that possess the ability to self-assemble into complex and highly ordered structures. Their folding and properties arise from precisely controlled sequences and compositions in their constituent amino acid monomers. So far, solid-phase peptide synthesis is the only technique that allows preparing short peptide sequences with excellent sequence control, but also requires extensive protection/deprotection steps and it is a difficult technique to scale-up. A new strategy towards sequence control in the synthesis of polypeptides is introduced, based on the sequential addition of α-amino acid-N-carboxyanhydrides (NCAs). The living ring-opening process is conducted to full conversion and no purification or deprotection is needed before addition of a new amino acid. The length of every block is predefined by the NCA:initiator ratio in every step. This method yields polypeptides with a specific sequence and controlled molecular weights. A series of polypeptides with varying block sequences have been synthesized with the aim to identify structure-property relationships. All of them are able to adopt secondary structures similar to natural polypeptides, and display properties in the solid state and in solution that are characteristic of the primary structure. By design the prepared polypeptides allow selective modification of individual block sequences, which has been exploited to introduce functionalities in defined positions along the polypeptide chain. Poly(ethylene glycol)(PEG) was the functionality chosen, as it is known to favor hydrophilicity and also yield thermoresponsive materials. After PEGylation, hydrophilicity of the polypeptides is enhanced, and their thermal response in H2O has been studied. Noteworthy differences in the behavior of the polypeptides having different sequences have been found. Circular dichroism measurements confirmed that the α-helical conformation is stable over the examined temperature range (5-90 °C). It is concluded that PEG units are the main responsible of the changes in H-bonding interactions with H2O upon variation of temperature, and the position of these functional units along the backbone is a factor of utmost importance in the resulting properties of the α-helical polypeptides.Keywords: α-amino acid N-carboxyanhydrides, multiblock copolymers, poly(ethylene glycol), polypeptides, ring-opening polymerization, sequence control
Procedia PDF Downloads 199390 Catalytic Pyrolysis of Sewage Sludge for Upgrading Bio-Oil Quality Using Sludge-Based Activated Char as an Alternative to HZSM5
Abstract:
Due to the concerns about the depletion of fossil fuel sources and the deteriorating environment, the attempt to investigate the production of renewable energy will play a crucial role as a potential to alleviate the dependency on mineral fuels. One particular area of interest is the generation of bio-oil through sewage sludge (SS) pyrolysis. SS can be a potential candidate in contrast to other types of biomasses due to its availability and low cost. However, the presence of high molecular weight hydrocarbons and oxygenated compounds in the SS bio-oil hinders some of its fuel applications. In this context, catalytic pyrolysis is another attainable route to upgrade bio-oil quality. Among different catalysts (i.e., zeolites) studied for SS pyrolysis, activated chars (AC) are eco-friendly alternatives. The beneficial features of AC derived from SS comprise the comparatively large surface area, porosity, enriched surface functional groups, and presence of a high amount of metal species that can improve the catalytic activity. Hence, a sludge-based AC catalyst was fabricated in a single-step pyrolysis reaction with NaOH as the activation agent and was compared with HZSM5 zeolite in this study. The thermal decomposition and kinetics were invested via thermogravimetric analysis (TGA) for guidance and control of pyrolysis and catalytic pyrolysis and the design of the pyrolysis setup. The results indicated that the pyrolysis and catalytic pyrolysis contains four obvious stages, and the main decomposition reaction occurred in the range of 200-600°C. The Coats-Redfern method was applied in the 2nd and 3rd devolatilization stages to estimate the reaction order and activation energy (E) from the mass loss data. The average activation energy (Em) values for the reaction orders n = 1, 2, and 3 were in the range of 6.67-20.37 kJ for SS; 1.51-6.87 kJ for HZSM5; and 2.29-9.17 kJ for AC, respectively. According to the results, AC and HZSM5 both were able to improve the reaction rate of SS pyrolysis by abridging the Em value. Moreover, to generate and examine the effect of the catalysts on the quality of bio-oil, a fixed-bed pyrolysis system was designed and implemented. The composition analysis of the produced bio-oil was carried out via gas chromatography/mass spectrometry (GC/MS). The selected SS to catalyst ratios were 1:1, 2:1, and 4:1. The optimum ratio in terms of cracking the long-chain hydrocarbons and removing oxygen-containing compounds was 1:1 for both catalysts. The upgraded bio-oils with AC and HZSM5 were in the total range of C4-C17, with around 72% in the range of C4-C9. The bio-oil from pyrolysis of SS contained 49.27% oxygenated compounds, while with the presence of AC and HZSM5 dropped to 13.02% and 7.3%, respectively. Meanwhile, the generation of benzene, toluene, and xylene (BTX) compounds was significantly improved in the catalytic process. Furthermore, the fabricated AC catalyst was characterized by BET, SEM-EDX, FT-IR, and TGA techniques. Overall, this research demonstrated AC is an efficient catalyst in the pyrolysis of SS and can be used as a cost-competitive catalyst in contrast to HZSM5.Keywords: catalytic pyrolysis, sewage sludge, activated char, HZSM5, bio-oil
Procedia PDF Downloads 178389 Evaluation of Prehabilitation Prior to Surgery for an Orthopaedic Pathway
Authors: Stephen McCarthy, Joanne Gray, Esther Carr, Gerard Danjoux, Paul Baker, Rhiannon Hackett
Abstract:
Background: The Go Well Health (GWH) platform is a web-based programme that allows patients to access personalised care plans and resources, aimed at prehabilitation prior to surgery. The online digital platform delivers essential patient education and support for patients prior to undergoing total hip replacements (THR) and total knee replacements (TKR). This study evaluated the impact of an online digital platform (ODP) in terms of functional health outcomes, health related quality of life and hospital length of stay following surgery. Methods: A retrospective cohort study comparing a cohort of patients who used the online digital platform (ODP) to deliver patient education and support (PES) prior to undergoing THR and TKR surgery relative to a cohort of patients who did not access the ODP and received usual care. Routinely collected Patient Reported Outcome Measures (PROMs) data was obtained on 2,406 patients who underwent a knee replacement (n=1,160) or a hip replacement (n=1,246) between 2018 and 2019 in a single surgical centre in the United Kingdom. The Oxford Hip and Knee Score and the European Quality of Life Five-Dimensional tool (EQ5D-5L) was obtained both pre-and post-surgery (at 6 months) along with hospital LOS. Linear regression was used to compare the estimate the impact of GWH on both health outcomes and negative binomial regressions were used to impact on LOS. All analyses adjusted for age, sex, Charlson Comorbidity Score and either pre-operative Oxford Hip/Knee scores or pre-operative EQ-5D scores. Fractional polynomials were used to represent potential non-linear relationships between the factors included in the regression model. Findings: For patients who underwent a knee replacement, GWH had a statistically significant impact on Oxford Knee Scores and EQ5D-5L utility post-surgery (p=0.039 and p=0.002 respectively). GWH did not have a statistically significant impact on the hospital length of stay. For those patients who underwent a hip replacement, GWH had a statistically significant impact on Oxford Hip Scores and EQ5D-5L utility post (p=0.000 and p=0.009 respectively). GWH also had a statistically significant reduction in the hospital length of stay (p=0.000). Conclusion: Health Outcomes were higher for patients who used the GWH platform and underwent THR and TKR relative to those who received usual care prior to surgery. Patients who underwent a hip replacement and used GWH also had a reduced hospital LOS. These findings are important for health policy and or decision makers as they suggest that prehabilitation via an ODP can maximise health outcomes for patients following surgery whilst potentially making efficiency savings with reductions in LOS.Keywords: digital prehabilitation, online digital platform, orthopaedics, surgery
Procedia PDF Downloads 188388 The Effect of Extruded Full-Fat Rapeseed on Productivity and Eggs Quality of Isa Brown Laying Hens
Authors: Vilma Sasyte, Vilma Viliene, Agila Dauksiene, Asta Raceviciute-Stupeliene, Romas Gruzauskas, Saulius Alijosius
Abstract:
The eight-week feeding trial was conducted involving 27-wk-old Isa brown laying hens to study the effect of dry extrusion processing on partial reduction in total glucosinolates content of locally produced rapeseed and on productivity and eggs quality parameters of laying hens. Thirty-six hens were randomly assigned one of three treatments (CONTR, AERS and HERS), each comprising 12, individual caged layers. The main composition of the diets was the same, but extruded soya bean seed were replaced with 2.5% of the extruded rapeseed in the AERS group and 4.5 % in the HERS group. Rapeseed was extruded together with faba beans. Due to extrusion process the glucosinolates content was reduced by 7.83 µmol/g of rapeseed. The results of conducted trial shows, that during all experimental period egg production parameters, such as the average feed intake (6529.17 vs. 6257 g/hen/14 day; P < 0.05) and laying intensity (94.35% vs. 89.29; P < 0.05) were statistically different for HERS and CONTR laying hens respectively. Only the feed conversion ratio to produce 1 kg of eggs, kg in AERS group was by 11 % lower compared to CONTR group (P < 0.05). By analysing the effect of extruded rapeseed on egg mass, the statistical differences between treatments were no determined. The dietary treatments did not affect egg weight, albumen height, haugh units, albumen and yolk pH. However, in the HERS group were get eggs with the more intensive yolk color, higher redness (a) and yellowness (b) values. The inclusion of full-fat extruded rapeseed had no effect on egg shell quality parameters, i.e. shell breaking strength, shell weight with and without coat and shell index, but in the experimental groups were get eggs with the thinner shell (P < 0.05). The internal egg quality analysis showed that with higher content of extruded rapeseed (4.5 %) level in the diet, the total cholesterol in the eggs yolk decreased by 1.92 mg/g in comparison with CONTR group (P < 0.05). Eggs laid by hens fed the diet containing 2.5% and 4.5% had increasing ∑PNRR/∑SRR ratio and decreasing ∑(n-6)/∑(n-3) ratio values of eggs yolk fatty acids than in CONTR group. Eggs of hens fed different amount of extruded rapeseed presented an n-6 : n-3 ratio changed from 5.17 to 4.71. The analysis of the relationship between hypocholesteremia/ hypercholesterolemia fatty acids (H/H), which is based on the functional properties of fatty acids, found that the value of it ratio is significant higher in laying hens fed diets supplemented with 4.5% extruded rapeseed than the CONTR group, demonstrating the positive effects of extruded rapeseed on egg quality. The results of trial confirmed that extruded full fat rapeseed to the 4.5% are suitable to replace soyabean in the compound feed of laying hens.Keywords: egg quality, extruded full-fat rapeseed, laying hens, productivity
Procedia PDF Downloads 214387 Extraction and Electrochemical Behaviors of Au(III) using Phosphonium-Based Ionic Liquids
Authors: Kyohei Yoshino, Masahiko Matsumiya, Yuji Sasaki
Abstract:
Recently, studies have been conducted on Au(III) extraction using ionic liquids (ILs) as extractants or diluents. ILs such as piperidinium, pyrrolidinium, and pyridinium have been studied as extractants for noble metal extractions. Furthermore, the polarity, hydrophobicity, and solvent miscibility of these ILs can be adjusted depending on their intended use. Therefore, the unique properties of ILs make them functional extraction media. The extraction mechanism of Au(III) using phosphonium-based ILs and relevant thermodynamic studies are yet to be reported. In the present work, we focused on the mechanism of Au(III) extraction and related thermodynamic analyses using phosphonium-based ILs. Triethyl-n-pentyl, triethyl-n-octyl, and triethyl-n-dodecyl phosphonium bis(trifluoromethyl-sulfonyl)amide, [P₂₂₂ₓ][NTf₂], (X = 5, 8, and 12) were investigated for Au(III) extraction. The IL–Au complex was identified as [P₂₂₂₅][AuCl₄] using UV–Vis–NIR and Raman spectroscopic analyses. The extraction behavior of Au(III) was investigated with a change in the [P₂₂₂ₓ][NTf₂]IL concentration from 1.0 × 10–4 to 1.0 × 10–1 mol dm−3. The results indicate that Au(III) can be easily extracted by the anion-exchange reaction in the [P₂₂₂ₓ][NTf₂]IL. The slope range 0.96–1.01 on the plot of log D vs log[P₂₂₂ₓ][NTf2]IL indicates the association of one mole of IL with one mole of [AuCl4−] during extraction. Consequently, [P₂₂₂ₓ][NTf₂] is an anion-exchange extractant for the extraction of Au(III) in the form of anions from chloride media. Thus, this type of phosphonium-based IL proceeds via an anion exchange reaction with Au(III). In order to evaluate the thermodynamic parameters on the Au(III) extraction, the equilibrium constant (logKₑₓ’) was determined from the temperature dependence. The plot of the natural logarithm of Kₑₓ’ vs the inverse of the absolute temperature (T–1) yields a slope proportional to the enthalpy (ΔH). By plotting T–1 vs lnKₑₓ’, a line with a slope range 1.129–1.421 was obtained. Thus, the result indicated that the extraction reaction of Au(III) using the [P₂₂₂ₓ][NTf₂]IL (X=5, 8, and 12) was exothermic (ΔH=-9.39〜-11.81 kJ mol-1). The negative value of TΔS (-4.20〜-5.27 kJ mol-1) indicates that microscopic randomness is preferred in the [P₂₂₂₅][NTf₂]IL extraction system over [P₂₂₂₁₂][NTf₂]IL. The total negative alternation in Gibbs energy (-5.19〜-6.55 kJ mol-1) for the extraction reaction would thus be relatively influenced by the TΔS value on the number of carbon atoms in the alkyl side length, even if the efficiency of ΔH is significantly influenced by the total negative alternations in Gibbs energy. Electrochemical analysis revealed that extracted Au(III) can be reduced in two steps: (i) Au(III)/Au(I) and (ii) Au(I)/Au(0). The diffusion coefficients of the extracted Au(III) species in [P₂₂₂ₓ][NTf₂] (X = 5, 8, and 12) were evaluated from 323 to 373 K using semi-integral and semi-differential analyses. Because of the viscosity of the IL medium, the diffusion coefficient of the extracted Au(III) increases with increasing alkyl chain length. The 4f7/2 spectrum based on X-ray photoelectron spectroscopy revealed that the Au electrodeposits obtained after 10 cycles of continuous extraction and electrodeposition were in the metallic state.Keywords: au(III), electrodeposition, phosphonium-based ionic liquids, solvent extraction
Procedia PDF Downloads 103386 Ecofriendly Synthesis of Au-Ag@AgCl Nanocomposites and Their Catalytic Activity on Multicomponent Domino Annulation-Aromatization for Quinoline Synthesis
Authors: Kanti Sapkota, Do Hyun Lee, Sung Soo Han
Abstract:
Nanocomposites have been widely used in various fields such as electronics, catalysis, and in chemical, biological, biomedical and optical fields. They display broad biomedical properties like antidiabetic, anticancer, antioxidant, antimicrobial and antibacterial activities. Moreover, nanomaterials have been used for wastewater treatment. Particularly, bimetallic hybrid nanocomposites exhibit unique features as compared to their monometallic components. Hybrid nanomaterials not only afford the multifunctionality endowed by their constituents but can also show synergistic properties. In addition, these hybrid nanomaterials have noteworthy catalytic and optical properties. Notably, Au−Ag based nanoparticles can be employed in sensor and catalysis due to their characteristic composition-tunable plasmonic properties. Due to their importance and usefulness, various efforts were developed for their preparation. Generally, chemical methods have been described to synthesize such bimetallic nanocomposites. In such chemical synthesis, harmful and hazardous chemicals cause environmental contamination and increase toxicity levels. Therefore, ecologically benevolent processes for the synthesis of nanomaterials are highly desirable to diminish such environmental and safety concerns. In this regard, here we disclose a simple, cost-effective, external additive free and eco-friendly method for the synthesis of Au-Ag@AgCl nanocomposites using Nephrolepis cordifolia root extract. Au-Ag@AgCl NCs were obtained by the simultaneous reduction of cationic Ag and Au into AgCl in the presence of plant extract. The particle size of 10 to 50 nm was observed with the average diameter of 30 nm. The synthesized nanocomposite was characterized by various modern characterization techniques. For example, UV−visible spectroscopy was used to determine the optical activity of the synthesized NCs, and Fourier transform infrared (FT-IR) spectroscopy was employed to investigate the functional groups present in the biomolecules that were responsible for both reducing and capping agents during the formation of nanocomposites. Similarly, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and energy-dispersive X-ray (EDX) spectroscopy were used to determine crystallinity, size, oxidation states, thermal stability and weight loss of the synthesized nanocomposites. As a synthetic application, the synthesized nanocomposite exhibited excellent catalytic activity for the multicomponent synthesis of biologically interesting quinoline molecules via domino annulation-aromatization reaction of aniline, arylaldehyde, and phenyl acetylene derivatives. Interestingly, the nanocatalyst was efficiently recycled for five times without substantial loss of catalytic properties.Keywords: nanoparticles, catalysis, multicomponent, quinoline
Procedia PDF Downloads 126385 Empirical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;
Procedia PDF Downloads 80384 Analysis of Flow Dynamics of Heated and Cooled Pylon Upstream to the Cavity past Supersonic Flow with Wall Heating and Cooling
Authors: Vishnu Asokan, Zaid M. Paloba
Abstract:
Flow over cavities is an important area of research due to the significant change in flow physics caused by cavity aspect ratio, free stream Mach number and the nature of upstream boundary layer approaching the cavity leading edge. Cavity flow finds application in aircraft wheel well, weapons bay, combustion chamber of scramjet engines, etc. These flows are highly unsteady, compressible and turbulent and it involves mass entrainment coupled with acoustics phenomenon. Variation of flow dynamics in an angled cavity with a heated and cooled pylon upstream to the cavity with spatial combinations of heat flux addition and removal to the wall studied numerically. The goal of study is to investigate the effect of energy addition, removal to the cavity walls and pylon cavity flow dynamics. Preliminary steady state numerical simulations on inclined cavities with heat addition have shown that wall pressure profiles, as well as the recirculation, are influenced by heat transfer to the compressible fluid medium. Such a hybrid control of cavity flow dynamics in the form of heat transfer and pylon geometry can open out greater opportunities in enhancement of mixing and flame holding requirements of supersonic combustors. Addition of pylon upstream to the cavity reduces the acoustic oscillations emanating from the geometry. A numerical unsteady analysis of supersonic flow past cavities exposed to cavity wall heating and cooling with heated and cooled pylon helps to get a clear idea about the oscillation suppression in the cavity. A Cavity of L/D 4 and aft wall angle 22 degree with an upstream pylon of h/D=1.5 mm with a wall angle 29 degree exposed to supersonic flow of Mach number 2 and heat flux of 40 W/cm² and -40 W/cm² modeled for the above study. In the preliminary study, the domain is modeled and validated numerically with a turbulence model of SST k-ω using an HLLC implicit scheme. Both qualitative and quantitative flow data extracted and analyzed using advanced CFD tools. Flow visualization is done using numerical Schlieren method as the fluid medium gives the density variation. The heat flux addition to the wall increases the secondary vortex size of the cavity and removal of energy leads to the reduction in vortex size. The flow field turbulence seems to be increasing at higher heat flux. The shear layer thickness increases as heat flux increases. The steady state analysis of wall pressure shows that there is variation on wall pressure as heat flux increases. Shift in frequency of unsteady wall pressure analysis is an interesting observation for the above study. The time averaged skin friction seems to be reducing at higher heat flux due to the variation in viscosity of fluid inside the cavity.Keywords: energy addition, frequency shift, Numerical Schlieren, shear layer, vortex evolution
Procedia PDF Downloads 142383 Influence of Non-Formal Physical Education Curriculum, Based on Olympic Pedagogy, for 11-13 Years Old Children Physical Development
Authors: Asta Sarkauskiene
Abstract:
The pedagogy of Olympic education is based upon the main idea of P. de Coubertin, that physical education can and has to support the education of the perfect person, the one who was an aspiration in archaic Greece, when it was looking towards human as a one whole, which is composed of three interconnected functions: physical, psychical and spiritual. The following research question was formulated in the present study: What curriculum of non-formal physical education in school can positively influence physical development of 11-13 years old children? The aim of this study was to formulate and implement curriculum of non-formal physical education, based on Olympic pedagogy, and assess its effectiveness for physical development of 11-13 years old children. The research was conducted in two stages. In the first stage 51 fifth grade children (Mage = 11.3 years) participated in a quasi-experiment for two years. Children were organized into 2 groups: E and C. Both groups shared the duration (1 hour) and frequency (twice a week) but were different in their education curriculum. Experimental group (E) worked under the program developed by us. Priorities of the E group were: training of physical powers in unity with psychical and spiritual powers; integral growth of physical development, physical activity, physical health, and physical fitness; integration of children with lower health and physical fitness level; content that corresponds children needs, abilities, physical and functional powers. Control group (C) worked according to NFPE programs prepared by teachers and approved by school principal and school methodical group. Priorities of the C group were: motion actions teaching and development; physical qualities training; training of the most physically capable children. In the second stage (after four years) 72 sixth graders (Mage = 13.00) attended in the research from the same comprehensive schools. Children were organized into first and second groups. The curriculum of the first group was modified and the second - the same as group C. The focus groups conducted anthropometric (height, weight, BMI) and physiometric (VC, right and left handgrip strength) measurements. Dependent t test indicated that over two years E and C group girls and boys height, weight, right and left handgrip strength indices increased significantly, p < 0.05. E group girls and boys BMI indices did not change significantly, p > 0.05, i.e. height and weight ratio of girls, who participated in NFPE in school, became more proportional. C group girls VC indices did not differ significantly, p > 0.05. Independent t test indicated that in the first and second research stage differences of anthropometric and physiometric measurements of the groups are not significant, p > 0.05. Formulated and implemented curriculum of non-formal education in school, based on olympic pedagogy, had the biggest positive influence on decreasing 11-13 years old children level of BMI and increasing level of VC.Keywords: non – formal physical education, olympic pedagogy, physical development, health sciences
Procedia PDF Downloads 562382 Carbon Capture and Storage Using Porous-Based Aerogel Materials
Authors: Rima Alfaraj, Abeer Alarawi, Murtadha AlTammar
Abstract:
The global energy landscape heavily relies on the oil and gas industry, which faces the critical challenge of reducing its carbon footprint. To address this issue, the integration of advanced materials like aerogels has emerged as a promising solution to enhance sustainability and environmental performance within the industry. This study thoroughly examines the application of aerogel-based technologies in the oil and gas sector, focusing particularly on their role in carbon capture and storage (CCS) initiatives. Aerogels, known for their exceptional properties, such as high surface area, low density, and customizable pore structure, have garnered attention for their potential in various CCS strategies. The review delves into various fabrication techniques utilized in producing aerogel materials, including sol-gel, supercritical drying, and freeze-drying methods, to assess their suitability for specific industry applications. Beyond fabrication, the practicality of aerogel materials in critical areas such as flow assurance, enhanced oil recovery, and thermal insulation is explored. The analysis spans a wide range of applications, from potential use in pipelines and equipment to subsea installations, offering valuable insights into the real-world implementation of aerogels in the oil and gas sector. The paper also investigates the adsorption and storage capabilities of aerogel-based sorbents, showcasing their effectiveness in capturing and storing carbon dioxide (CO₂) molecules. Optimization of pore size distribution and surface chemistry is examined to enhance the affinity and selectivity of aerogels towards CO₂, thereby improving the efficiency and capacity of CCS systems. Additionally, the study explores the potential of aerogel-based membranes for separating and purifying CO₂ from oil and gas streams, emphasizing their role in the carbon capture and utilization (CCU) value chain in the industry. Emerging trends and future perspectives in integrating aerogel-based technologies within the oil and gas sector are also discussed, including the development of hybrid aerogel composites and advanced functional components to further enhance material performance and versatility. By synthesizing the latest advancements and future directions in aerogel used for CCS applications in the oil and gas industry, this review offers a comprehensive understanding of how these innovative materials can aid in transitioning towards a more sustainable and environmentally conscious energy landscape. The insights provided can assist in strategic decision-making, drive technology development, and foster collaborations among academia, industry, and policymakers to promote the widespread adoption of aerogel-based solutions in the oil and gas sector.Keywords: CCS, porous, carbon capture, oil and gas, sustainability
Procedia PDF Downloads 38381 Marketization of Higher Education in the UK and Its Impacts on Teaching Practitioners
Authors: Hossein Rezaie
Abstract:
Academic institutions, esp. universities, have been known as cradles of learning and teaching great thinkers while creating the type of knowledge that is supposed to be bereft of utilitarian motives. Nonetheless, it seems that such intellectual centers have entered into a competition with each other for attracting the attention of potential clients. The traditional values of (higher) education such as nurturing criticality and fostering intellectuality in students have been replaced with strategic planning, quality assurance, performance assessment, and academic audits. Not being immune from the whims and wishes of marketization, the system of higher education in the UK has been recalibrated by policy makers to address the demand and supply of student education, academic research and other university activities on the basis of monetary factors. As an immediate example in this vein, the Russell Group in the UK, which is comprised of 24 leading UK research universities, has explicitly expressed it policy on its official website as follows: ‘Russell Group universities are global businesses competing for staff, students and funding with the best in the world’. Furthermore, certain attempts have been made to corporatize the system of HE which have been manifested in remodeling of university governing bodies on corporate lines and developing measurement scales for indicating the performance of teaching practitioners. Nevertheless, it seems that such structural changes in policies toward the system of HE have bearing on the practices of practitioners and educators as well as the identity of students who are the customers of educational services. The effects of marketization have been examined mainly in terms of students’ perceptions and motivation, institutional policies and university management. However, the teaching practitioner side seems to be an under-studied area with regard to any changes in its expectations, satisfaction and perception of professional identity in the aftermath of introducing market-wise values into HE of the UK. As a result, this research aims to investigate the possible outcomes of market-driven values on the practitioner side of HE in the UK and finally seeks to address the following research questions: 1-How is the change in the mission of HE in the UK reflected in institutional documents? 1-A- How is the change of mission represented in job adverts? 1-B- How is the change of mission represented in university prospectuses? 2-How are teaching practitioners represented regarding their roles and obligations in the prospectuses and job ads published by UK HE institutions? In order to address these questions, the researcher will analyze 30 prospectuses and job ads published by Russel Group universities by taking Critical Discourse Analysis as his point of departure and the analytical methods of genre analysis and Systemic Functional Linguistics to probe into the generic features and representation of participants, in this case teaching practitioners, in the selected corpus.Keywords: higher education, job advertisements, marketization of higher education, prospectuses
Procedia PDF Downloads 247380 The Impact of Professional Development on Teachers’ Instructional Practice
Authors: Karen Koellner, Nanette Seago, Jennifer Jacobs, Helen Garnier
Abstract:
Although studies of teacher professional development (PD) are prevalent, surprisingly most have only produced incremental shifts in teachers’ learning and their impact on students. There is a critical need to understand what teachers take up and use in their classroom practice after attending PD and why we often do not see greater changes in learning and practice. This paper is based on a mixed methods efficacy study of the Learning and Teaching Geometry (LTG) video-based mathematics professional development materials. The extent to which the materials produce a beneficial impact on teachers’ mathematics knowledge, classroom practices, and their students’ knowledge in the domain of geometry through a group-randomized experimental design are considered. In this study, we examine a small group of teachers to better understand their interpretations of the workshops and their classroom uptake. The participants included 103 secondary mathematics teachers serving grades 6-12 from two states in different regions. Randomization was conducted at the school level, with 23 schools and 49 teachers assigned to the treatment group and 18 schools and 54 teachers assigned to the comparison group. The case study examination included twelve treatment teachers. PD workshops for treatment teachers began in Summer 2016. Nine full days of professional development were offered to teachers, beginning with the one-week institute (Summer 2016) and four days of PD throughout the academic year. The same facilitator-led all of the workshops, after completing a facilitator preparation process that included a multi-faceted assessment of fidelity. The overall impact of the LTG PD program was assessed from multiple sources: two teacher content assessments, two PD embedded assessments, pre-post-post videotaped classroom observations, and student assessments. Additional data was collected from the case study teachers including additional videotaped classroom observations and interviews. Repeated measures ANOVA analyses were used to detect patterns of change in the treatment teachers’ content knowledge before and after completion of the LTG PD, relative to the comparison group. No significant effects were found across the two groups of teachers on the two teacher content assessments. Teachers were rated on the quality of their mathematics instruction captured in videotaped classroom observations using the Math in Common Observation Protocol. On average, teachers who attended the LTG PD intervention improved their ability to engage students in mathematical reasoning and to provide accurate, coherent, and well-justified mathematical content. In addition, the LTG PD intervention and instruction that engaged students in mathematical practices both positively and significantly predicted greater student knowledge gains. Teacher knowledge was not a significant predictor. Twelve treatment teachers were self-selected to serve as case study teachers to provide additional videotapes in which they felt they were using something from the PD they learned and experienced. Project staff analyzed the videos, compared them to previous videos and interviewed the teachers regarding their uptake of the PD related to content knowledge, pedagogical knowledge and resources used.Keywords: teacher learning, professional development, pedagogical content knowledge, geometry
Procedia PDF Downloads 168379 Wind Load Reduction Effect of Exterior Porous Skin on Facade Performance
Authors: Ying-Chang Yu, Yuan-Lung Lo
Abstract:
Building envelope design is one of the most popular design fields of architectural profession in nowadays. The main design trend of such system is to highlight the designer's aesthetic intention from the outlook of building project. Due to the trend of current façade design, the building envelope contains more and more layers of components, such as double skin façade, photovoltaic panels, solar control system, or even ornamental components. These exterior components are designed for various functional purposes. Most researchers focus on how these exterior elements should be structurally sound secured. However, not many researchers consider these elements would help to improve the performance of façade system. When the exterior elements are deployed in large scale, it creates an additional layer outside of original façade system and acts like a porous interface which would interfere with the aerodynamic of façade surface in micro-scale. A standard façade performance consists with 'water penetration, air infiltration rate, operation force, and component deflection ratio', and these key performances are majorly driven by the 'Design Wind Load' coded in local regulation. A design wind load is usually determined by the maximum wind pressure which occurs on the surface due to the geometry or location of building in extreme conditions. This research was designed to identify the air damping phenomenon of micro turbulence caused by porous exterior layer leading to surface wind load reduction for improvement of façade system performance. A series of wind tunnel test on dynamic pressure sensor array covered by various scale of porous exterior skin was conducted to verify the effect of wind pressure reduction. The testing specimens were designed to simulate the typical building with two-meter extension offsetting from building surface. Multiple porous exterior skins were prepared to replicate various opening ratio of surface which may cause different level of damping effect. This research adopted 'Pitot static tube', 'Thermal anemometers', and 'Hot film probe' to collect the data of surface dynamic pressure behind porous skin. Turbulence and distributed resistance are the two main factors of aerodynamic which would reduce the actual wind pressure. From initiative observation, the reading of surface wind pressure was effectively reduced behind porous media. In such case, an actual building envelope system may be benefited by porous skin from the reduction of surface wind pressure, which may improve the performance of envelope system consequently.Keywords: multi-layer facade, porous media, facade performance, turbulence and distributed resistance, wind tunnel test
Procedia PDF Downloads 215378 Reading and Writing of Biscriptal Children with and Without Reading Difficulties in Two Alphabetic Scripts
Authors: Baran Johansson
Abstract:
This PhD dissertation aimed to explore children’s writing and reading in L1 (Persian) and L2 (Swedish). It adds new perspectives to reading and writing studies of bilingual biscriptal children with and without reading and writing difficulties (RWD). The study used standardised tests to examine linguistic and cognitive skills related to word reading and writing fluency in both languages. Furthermore, all participants produced two texts (one descriptive and one narrative) in each language. The writing processes and the writing product of these children were explored using logging methodologies (Eye and Pen) for both languages. Furthermore, this study investigated how two bilingual children with RWD presented themselves through writing across their languages. To my knowledge, studies utilizing standardised tests and logging tools to investigate bilingual children’s word reading and writing fluency across two different alphabetic scripts are scarce. There have been few studies analysing how bilingual children construct meaning in their writing, and none have focused on children who write in two different alphabetic scripts or those with RWD. Therefore, some aspects of the systemic functional linguistics (SFL) perspective were employed to examine how two participants with RWD created meaning in their written texts in each language. The results revealed that children with and without RWD had higher writing fluency in all measures (e.g. text lengths, writing speed) in their L2 compared to their L1. Word reading abilities in both languages were found to influence their writing fluency. The findings also showed that bilingual children without reading difficulties performed 1 standard deviation below the mean when reading words in Persian. However, their reading performance in Swedish aligned with the expected age norms, suggesting greater efficient in reading Swedish than in Persian. Furthermore, the results showed that the level of orthographic depth, consistency between graphemes and phonemes, and orthographic features can probably explain these differences across languages. The analysis of meaning-making indicated that the participants with RWD exhibited varying levels of difficulty, which influenced their knowledge and usage of writing across languages. For example, the participant with poor word recognition (PWR) presented himself similarly across genres, irrespective of the language in which he wrote. He employed the listing technique similarly across his L1 and L2. However, the participant with mixed reading difficulties (MRD) had difficulties with both transcription and text production. He produced spelling errors and frequently paused in both languages. He also struggled with word retrieval and producing coherent texts, consistent with studies of monolingual children with poor comprehension or with developmental language disorder. The results suggest that the mother tongue instruction provided to the participants has not been sufficient for them to become balanced biscriptal readers and writers in both languages. Therefore, increasing the number of hours dedicated to mother tongue instruction and motivating the children to participate in these classes could be potential strategies to address this issue.Keywords: reading, writing, reading and writing difficulties, bilingual children, biscriptal
Procedia PDF Downloads 68377 Unequal Traveling: How School District System and School District Housing Characteristics Shape the Duration of Families Commuting
Authors: Geyang Xia
Abstract:
In many countries, governments have responded to the growing demand for educational resources through school district systems, and there is substantial evidence that school district systems have been effective in promoting inter-district and inter-school equity in educational resources. However, the scarcity of quality educational resources has brought about varying levels of education among different school districts, making it a common choice for many parents to buy a house in the school district where a quality school is located, and they are even willing to bear huge commuting costs for this purpose. Moreover, this is evidenced by the fact that parents of families in school districts with quality education resources have longer average commute lengths and longer average commute distances than parents in average school districts. This "unequal traveling" under the influence of the school district system is more common in school districts at the primary level of education. This further reinforces the differential hierarchy of educational resources and raises issues of inequitable educational public services, education-led residential segregation, and gentrification of school district housing. Against this background, this paper takes Nanjing, a famous educational city in China, as a case study and selects the school districts where the top 10 public elementary schools are located. The study first identifies the spatio-temporal behavioral trajectory dataset of these high-quality school district households by using spatial vector data, decrypted cell phone signaling data, and census data. Then, by constructing a "house-school-work (HSW)" commuting pattern of the population in the school district where the high-quality educational resources are located, and based on the classification of the HSW commuting pattern of the population, school districts with long employment hours were identified. Ultimately, the mechanisms and patterns inherent in this unequal commuting are analyzed in terms of six aspects, including the centrality of school district location, functional diversity, and accessibility. The results reveal that the "unequal commuting" of Nanjing's high-quality school districts under the influence of the school district system occurs mainly in the peripheral areas of the city, and the schools matched with these high-quality school districts are mostly branches of prestigious schools in the built-up areas of the city's core. At the same time, the centrality of school district location and the diversity of functions are the most important influencing factors of unequal commuting in high-quality school districts. Based on the research results, this paper proposes strategies to optimize the spatial layout of high-quality educational resources and corresponding transportation policy measures.Keywords: school-district system, high quality school district, commuting pattern, unequal traveling
Procedia PDF Downloads 97376 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes
Authors: Madushani Rodrigo, Banuka Athuraliya
Abstract:
In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16
Procedia PDF Downloads 115375 A Study of Tactics in the Dissident Urban Form
Authors: Probuddha Mukhopadhyay
Abstract:
The infiltration of key elements to the civil structure is foraying its way to reclaim, what is its own. The reclamation of lives and spaces, once challenged, becomes a consistent process of ingress, disguised as parallels to the moving city, disperses into discourses often unheard of and conveniently forgotten. In this age of 'hyper'-urbanization, there are solutions suggested to a plethora of issues faced by citizens, in improving their standards of living. Problems are ancillary to proposals that emerge out of the underlying disorders of the townscape. These interventions result in the formulation of urban policies, to consolidate and optimize, to regularize and to streamline resources. Policy and practice are processes where the politics in policies define the way in which urban solutions are prescribed. Social constraints, that formulate the various cycles of order and disorders within the urban realm, are the stigmas for such interventions. There is often a direct relation of policy to place, no matter how people-centric it may seem to be projected. How we live our lives depends on where we live our lives - a relative statement for urban problems, varies from city to city. Communal compositions, welfare, crisis, socio-economic balance, need for management are the generic roots for urban policy formulation. However, in reality, the gentry administering its environmentalism is the criterion, that shapes and defines the values and expanse of such policies. In relation to the psycho-spatial characteristic of urban spheres with respect to the other side of this game, there have been instances, where the associational values have been reshaped by interests. The public domain reclaimed for exclusivity, thus creating fortified neighborhoods. Here, the citizen cumulative is often drifted by proposals that would over time deplete such landscapes of the city. It is the organized rebellion that in turn formulates further inward looking enclaves of latent aggression. In recent times, it has been observed that the unbalanced division of power and the implied processes of regulating the weak, stem the rebellion who respond in kits and parts. This is a phenomenon that mimics the guerilla warfare tactics, in order to have systems straightened out, either by manipulations or by force. This is the form of the city determined by the various forms insinuated by the state of city wide decisions. This study is an attempt at understanding the way in which development is interpreted by the state and the civil society and the role that community driven processes undertake to reinstate their claims to the city. This is a charter of consolidated patterns of negotiations that tend to counter policies. The research encompasses a study of various contested settlements in two cities of India- Mumbai and Kolkata, tackling dissent through spatial order. The study has been carried out to identify systems - formal and informal, catering to the most challenged interests of the people with respect to their habitat, a model to counter the top-down authoritative framework challenging the legitimacy of such settlements.Keywords: urban design, insurgence, tactical urbanism, urban governance, civil society, state
Procedia PDF Downloads 144374 Conflict Resolution in Fuzzy Rule Base Systems Using Temporal Modalities Inference
Authors: Nasser S. Shebka
Abstract:
Fuzzy logic is used in complex adaptive systems where classical tools of representing knowledge are unproductive. Nevertheless, the incorporation of fuzzy logic, as it’s the case with all artificial intelligence tools, raised some inconsistencies and limitations in dealing with increased complexity systems and rules that apply to real-life situations and hinders the ability of the inference process of such systems, but it also faces some inconsistencies between inferences generated fuzzy rules of complex or imprecise knowledge-based systems. The use of fuzzy logic enhanced the capability of knowledge representation in such applications that requires fuzzy representation of truth values or similar multi-value constant parameters derived from multi-valued logic, which set the basis for the three t-norms and their based connectives which are actually continuous functions and any other continuous t-norm can be described as an ordinal sum of these three basic ones. However, some of the attempts to solve this dilemma were an alteration to fuzzy logic by means of non-monotonic logic, which is used to deal with the defeasible inference of expert systems reasoning, for example, to allow for inference retraction upon additional data. However, even the introduction of non-monotonic fuzzy reasoning faces a major issue of conflict resolution for which many principles were introduced, such as; the specificity principle and the weakest link principle. The aim of our work is to improve the logical representation and functional modelling of AI systems by presenting a method of resolving existing and potential rule conflicts by representing temporal modalities within defeasible inference rule-based systems. Our paper investigates the possibility of resolving fuzzy rules conflict in a non-monotonic fuzzy reasoning-based system by introducing temporal modalities and Kripke's general weak modal logic operators in order to expand its knowledge representation capabilities by means of flexibility in classifying newly generated rules, and hence, resolving potential conflicts between these fuzzy rules. We were able to address the aforementioned problem of our investigation by restructuring the inference process of the fuzzy rule-based system. This is achieved by using time-branching temporal logic in combination with restricted first-order logic quantifiers, as well as propositional logic to represent classical temporal modality operators. The resulting findings not only enhance the flexibility of complex rule-base systems inference process but contributes to the fundamental methods of building rule bases in such a manner that will allow for a wider range of applicable real-life situations derived from a quantitative and qualitative knowledge representational perspective.Keywords: fuzzy rule-based systems, fuzzy tense inference, intelligent systems, temporal modalities
Procedia PDF Downloads 90373 Designing Agile Product Development Processes by Transferring Mechanisms of Action Used in Agile Software Development
Authors: Guenther Schuh, Michael Riesener, Jan Kantelberg
Abstract:
Due to the fugacity of markets and the reduction of product lifecycles, manufacturing companies from high-wage countries are nowadays faced with the challenge to place more innovative products within even shorter development time on the market. At the same time, volatile customer requirements have to be satisfied in order to successfully differentiate from market competitors. One potential approach to address the explained challenges is provided by agile values and principles. These agile values and principles already proofed their success within software development projects in the form of management frameworks like Scrum or concrete procedure models such as Extreme Programming or Crystal Clear. Those models lead to significant improvements regarding quality, costs and development time and are therefore used within most software development projects. Motivated by the success within the software industry, manufacturing companies have tried to transfer agile mechanisms of action to the development of hardware products ever since. Though first empirical studies show similar effects in the agile development of hardware products, no comprehensive procedure model for the design of development iterations has been developed for hardware development yet due to different constraints of the domains. For this reason, this paper focusses on the design of agile product development processes by transferring mechanisms of action used in agile software development towards product development. This is conducted by decomposing the individual systems 'product development' and 'agile software development' into relevant elements and symbiotically composing the elements of both systems in respect of the design of agile product development processes afterwards. In a first step, existing product development processes are described following existing approaches of the system theory. By analyzing existing case studies from industrial companies as well as academic approaches, characteristic objectives, activities and artefacts are identified within a target-, action- and object-system. In partial model two, mechanisms of action are derived from existing procedure models of agile software development. These mechanisms of action are classified in a superior strategy level, in a system level comprising characteristic, domain-independent activities and their cause-effect relationships as well as in an activity-based element level. Within partial model three, the influence of the identified agile mechanism of action towards the characteristic system elements of product development processes is analyzed. For this reason, target-, action- and object-system of the product development are compared with the strategy-, system- and element-level of agile mechanism of action by using the graph theory. Furthermore, the necessity of existence of activities within iteration can be determined by defining activity-specific degrees of freedom. Based on this analysis, agile product development processes are designed in form of different types of iterations within a last step. By defining iteration-differentiating characteristics and their interdependencies, a logic for the configuration of activities, their form of execution as well as relevant artefacts for the specific iteration is developed. Furthermore, characteristic types of iteration for the agile product development are identified.Keywords: activity-based process model, agile mechanisms of action, agile product development, degrees of freedom
Procedia PDF Downloads 206372 An Integrative Review on the Experiences of Integration of Quality Assurance Systems in Universities
Authors: Laura Mion
Abstract:
Concepts of quality assurance and management are now part of the organizational culture of the Universities. Quality Assurance (QA) systems are, in large part, provided for by national regulatory dictates or supranational indications (such as, for example, at European level are, the ESG Guidelines "European Standard Guidelines"), but their specific definition, in terms of guiding principles, requirements and methodologies, are often delegated to the national evaluation agencies or to the autonomy of individual universities. For this reason, the experiences of implementation of QA systems in different countries and in different universities is an interesting source of information to understand how quality in universities is understood, pursued and verified. The literature often deals with the treatment of the experiences of implementation of QA systems in the individual areas in which the University's activity is carried out - teaching, research, third mission - but only rarely considers quality systems with a systemic and integrated approach, which allows to correlate subjects, actions, and performance in a virtuous circuit of continuous improvement. In particular, it is interesting to understand how to relate the results and uses of the QA in the triple distinction of university activities, identifying how one can cause the performance of the other as a function of an integrated whole and not as an exploit of specific activities or processes conceived in an abstractly atomistic way. The aim of the research is, therefore, to investigate which experiences of "integrated" QA systems are present on the international scene: starting from the experience of European countries that have long shared the Bologna Process for the creation of a European space for Higher Education (EHEA), but also considering experiences from emerging countries that use QA processes to develop their higher education systems to keep them up to date with international levels. The concept of "integration", in this research, is understood in a double meaning: i) between the different areas of activity, in particular between the didactic and research areas, and possibly with the so-called "third mission" "ii) the functional integration between those involved in quality assessment and management and the governance of the University. The paper will present the results of a systematic review conducted according with a method of an integrative review aimed at identifying best practices of quality assurance systems, in individual countries or individual universities, with a high level of integration. The analysis of the material thus obtained has made it possible to grasp common and transversal elements of QA system integration practices or particularly interesting elements and strengths of these experiences that can, therefore, be considered as winning aspects in a QA practice. The paper will present the method of analysis carried out, and the characteristics of the experiences identified, of which the structural elements will be highlighted (level of integration, areas considered, organizational levels included, etc.) and the elements for which these experiences can be considered as best practices.Keywords: quality assurance, university, integration, country
Procedia PDF Downloads 86371 Landslide Hazard a Gigantic Problem in Indian Himalayan Region: Needs In-Depth Research to Minimize Disaster
Authors: Varun Joshi, M. S. Rawat
Abstract:
The Indian Himalayan Region (IHR) is inherently fragile and susceptible to landslide hazard due to its extremely weak geology, highly rugged topography and heavy monsoonal rainfall. One of the most common hazards in the IHR is landslide, and this event is particularly frequent in Himalayan states of India i.e. Jammu & Kashmir, Himachal Pradesh, Uttarakhand, Sikkim, Manipur and Arunachal Pradesh. Landslides are mostly triggered by extreme rainfall events but the incidence increases during monsoon months (June to September). Natural slopes which are otherwise stable but they get destabilized due to anthropogenic activities like construction of various developmental activities and deforestation. These activities are required to fulfill the developmental needs and upliftment of societal status in the region. Landslides also trigger during major earthquakes and reported most observable and damaging phenomena. Studies indicate that the landslide phenomenon has increased many folds due to developmental activities in Himalayan region. Gradually increasing and devastating consequences of landslides turned into one of the most important hydro-geological hazards in Himalayan states especially in Uttarakhand and Sikkim states of India. The recent most catastrophic rainfall in June 2013 in Uttarakhand lead to colossal loss of life and property. The societal damage due to this incident is still to be recovered even after three years. Sikkim earthquake of September 2011 is witnessed for triggering of large number of coseismic landslides. The rescue and relief team faced huge problem in helping the trapped villagers in remote locations of the state due to road side blockade by landslides. The recent past incidences of landslides in Uttarakhand, as well as Sikkim states, created a new domain of research in terms of understanding the phenomena of landslide and management of disaster in such situation. Every year at many locations landslides trigger which force dwellers to either evacuate their dwelling or lose their life and property. The communication and transportation networks are also severely affected by landslides at several locations. Many times the drinking water supply disturbed and shortage of daily need household items reported during monsoon months. To minimize the severity of landslide in IHR requires in-depth research and developmental planning. For most of the areas in the present study, landslide hazard zonation is done on 1:50,000 scale. The land use planning maps on extensive basis are not available. Therefore, there is a need of large-scale landslide hazard zonation and land use planning maps. If the scientist conduct research on desired aspects and their outcome of research is utilized by the government in developmental planning then the incidents of landslide could be minimized, subsequent impact on society, life and property would be reduced. Along with the scientific research, there is another need of awareness generation in the region for stake holders and local dwellers to combat with the landslide hazard, if triggered in their location.Keywords: coseismic, Indian Himalayan Region, landslide hazard zonation, Sikkim, societal, Uttarakhand
Procedia PDF Downloads 251370 Modeling, Topology Optimization and Experimental Validation of Glass-Transition-Based 4D-Printed Polymeric Structures
Authors: Sara A. Pakvis, Giulia Scalet, Stefania Marconi, Ferdinando Auricchio, Matthijs Langelaar
Abstract:
In recent developments in the field of multi-material additive manufacturing, differences in material properties are exploited to create printed shape-memory structures, which are referred to as 4D-printed structures. New printing techniques allow for the deliberate introduction of prestresses in the specimen during manufacturing, and, in combination with the right design, this enables new functionalities. This research focuses on bi-polymer 4D-printed structures, where the transformation process is based on a heat-induced glass transition in one material lowering its Young’s modulus, combined with an initial prestress in the other material. Upon the decrease in stiffness, the prestress is released, which results in the realization of an essentially pre-programmed deformation. As the design of such functional multi-material structures is crucial but far from trivial, a systematic methodology to find the design of 4D-printed structures is developed, where a finite element model is combined with a density-based topology optimization method to describe the material layout. This modeling approach is verified by a convergence analysis and validated by comparing its numerical results to analytical and published data. Specific aspects that are addressed include the interplay between the definition of the prestress and the material interpolation function used in the density-based topology description, the inclusion of a temperature-dependent stiffness relationship to simulate the glass transition effect, and the importance of the consideration of geometric nonlinearity in the finite element modeling. The efficacy of topology optimization to design 4D-printed structures is explored by applying the methodology to a variety of design problems, both in 2D and 3D settings. Bi-layer designs composed of thermoplastic polymers are printed by means of the fused deposition modeling (FDM) technology. Acrylonitrile butadiene styrene (ABS) polymer undergoes the glass transition transformation, while polyurethane (TPU) polymer is prestressed by means of the 3D-printing process itself. Tests inducing shape transformation in the printed samples through heating are performed to calibrate the prestress and validate the modeling approach by comparing the numerical results to the experimental findings. Using the experimentally obtained prestress values, more complex designs have been generated through topology optimization, and samples have been printed and tested to evaluate their performance. This study demonstrates that by combining topology optimization and 4D-printing concepts, stimuli-responsive structures with specific properties can be designed and realized.Keywords: 4D-printing, glass transition, shape memory polymer, topology optimization
Procedia PDF Downloads 207369 Developing of Ecological Internal Insulation Composite Boards for Innovative Retrofitting of Heritage Buildings
Authors: J. N. Nackler, K. Saleh Pascha, W. Winter
Abstract:
WHISCERS™ (Whole House In-Situ Carbon and Energy Reduction Solution) is an innovative process for Internal Wall Insulation (IWI) for energy-efficient retrofitting of heritage building, which uses laser measuring to determine the dimensions of a room, off-site insulation board cutting and rapid installation to complete the process. As part of a multinational investigation consortium the Austrian part adapted the WHISCERS system to local conditions of Vienna where most historical buildings have valuable stucco facades, precluding the application of an external insulation. The Austrian project contribution addresses the replacement of commonly used extruded polystyrene foam (XPS) with renewable materials such as wood and wood products to develop a more sustainable IWI system. As the timber industry is a major industry in Austria, a new innovative and more sustainable IWI solution could also open up new markets. The first approach of investigation was the Life Cycle Assessment (LCA) to define the performance of wood fibre board as insulation material in comparison to normally used XPS-boards. As one of the results the global-warming potential (GWP) of wood-fibre-board is 15 times less the equivalent to carbon dioxide while in the case of XPS it´s 72 times more. The hygrothermal simulation program WUFI was used to evaluate and simulate heat and moisture transport in multi-layer building components of the developed IWI solution. The results of the simulations prove in examined boundary conditions of selected representative brickwork constructions to be functional and usable without risk regarding vapour diffusion and liquid transport in proposed IWI. In a further stage three different solutions were developed and tested (1 - glued/mortared, 2 - with soft board, connected to wall with gypsum board as top layer, 3 - with soft board and clay board as top layer). All three solutions presents a flexible insulation layer out of wood fibre towards the existing wall, thus compensating irregularities of the wall surface. From first considerations at the beginning of the development phase, three different systems had been developed and optimized according to assembly technology and tested as small specimen in real object conditions. The built prototypes are monitored to detect performance and building physics problems and to validate the results of the computer simulation model. This paper illustrates the development and application of the Internal Wall Insulation system.Keywords: internal insulation, wood fibre, hygrothermal simulations, monitoring, clay, condensate
Procedia PDF Downloads 217368 Price Control: A Comprehensive Step to Control Corruption in the Society
Authors: Muhammad Zia Ullah Baig, Atiq Uz Zama
Abstract:
The motivation of the project is to facilitate the governance body, as well as the common man in his/her daily life consuming product rates, to easily monitor the expense, to control the budget with the help of single SMS (message), e-mail facility, and to manage governance body by task management system. The system will also be capable of finding irregularities being done by the concerned department in mitigating the complaints generated by the customer and also provide a solution to overcome problems. We are building a system that easily controls the price control system of any country, we will feeling proud to give this system free of cost to Indian Government also. The system is able to easily manage and control the price control department of government all over the country. Price control department run in different cities under City District Government, so the system easily run in different cities with different SMS Code and decentralize Database ensure the non-functional requirement of system (scalability, reliability, availability, security, safety). The customer request for the government official price list with respect to his/her city SMS code (price list of all city available on website or application), the server will forward the price list through a SMS, if the product is not available according to the price list the customer generate a complaint through an SMS or using website/smartphone application, complaint is registered in complaint database and forward to inspection department when the complaint is entertained, the inspection department will forward a message about the complaint to customer. Inspection department physically checks the seller who does not follow the price list, but the major issue of the system is corruption, may be inspection officer will take a bribe and resolve the complaint (complaint is fake) in that case the customer will not use the system. The major issue of the system is to distinguish the fake and real complain and fight for corruption in the department. To counter the corruption, our strategy is to rank the complain if the same type of complaint is generated the complaint is in high rank and the higher authority will also notify about that complain, now the higher authority of department have reviewed the complaint and its history, the officer who resolve that complaint in past and the action against the complaint, these data will help in decision-making process, if the complaint was resolved because the officer takes bribe, the higher authority will take action against that officer. When the price of any good is decided the market/former representative is also there, with the mutual understanding of both party the price is decided, the system facilitate the decision-making process. The system shows the price history of any goods, inflation rate, available supply, demand, and the gap between supply and demand, these data will help to allot for the decision-making process.Keywords: price control, goods, government, inspection, department, customer, employees
Procedia PDF Downloads 410367 The Reliability Analysis of Concrete Chimneys Due to Random Vortex Shedding
Authors: Saba Rahman, Arvind K. Jain, S. D. Bharti, T. K. Datta
Abstract:
Chimneys are generally tall and slender structures with circular cross-sections, due to which they are highly prone to wind forces. Wind exerts pressure on the wall of the chimneys, which produces unwanted forces. Vortex-induced oscillation is one of such excitations which can lead to the failure of the chimneys. Therefore, vortex-induced oscillation of chimneys is of great concern to researchers and practitioners since many failures of chimneys due to vortex shedding have occurred in the past. As a consequence, extensive research has taken place on the subject over decades. Many laboratory experiments have been performed to verify the theoretical models proposed to predict vortex-induced forces, including aero-elastic effects. Comparatively, very few proto-type measurement data have been recorded to verify the proposed theoretical models. Because of this reason, the theoretical models developed with the help of experimental laboratory data are utilized for analyzing the chimneys for vortex-induced forces. This calls for reliability analysis of the predictions of the responses of the chimneys produced due to vortex shedding phenomena. Although several works of literature exist on the vortex-induced oscillation of chimneys, including code provisions, the reliability analysis of chimneys against failure caused due to vortex shedding is scanty. In the present study, the reliability analysis of chimneys against vortex shedding failure is presented, assuming the uncertainty in vortex shedding phenomena to be significantly more than other uncertainties, and hence, the latter is ignored. The vortex shedding is modeled as a stationary random process and is represented by a power spectral density function (PSDF). It is assumed that the vortex shedding forces are perfectly correlated and act over the top one-third height of the chimney. The PSDF of the tip displacement of the chimney is obtained by performing a frequency domain spectral analysis using a matrix approach. For this purpose, both chimney and random wind forces are discretized over a number of points along with the height of the chimney. The method of analysis duly accounts for the aero-elastic effects. The double barrier threshold crossing level, as proposed by Vanmarcke, is used for determining the probability of crossing different threshold levels of the tip displacement of the chimney. Assuming the annual distribution of the mean wind velocity to be a Gumbel type-I distribution, the fragility curve denoting the variation of the annual probability of threshold crossing against different threshold levels of the tip displacement of the chimney is determined. The reliability estimate is derived from the fragility curve. A 210m tall concrete chimney with a base diameter of 35m, top diameter as 21m, and thickness as 0.3m has been taken as an illustrative example. The terrain condition is assumed to be that corresponding to the city center. The expression for the PSDF of the vortex shedding force is taken to be used by Vickery and Basu. The results of the study show that the threshold crossing reliability of the tip displacement of the chimney is significantly influenced by the assumed structural damping and the Gumbel distribution parameters. Further, the aero-elastic effect influences the reliability estimate to a great extent for small structural damping.Keywords: chimney, fragility curve, reliability analysis, vortex-induced vibration
Procedia PDF Downloads 157366 Enhanced Field Emission from Plasma Treated Graphene and 2D Layered Hybrids
Authors: R. Khare, R. V. Gelamo, M. A. More, D. J. Late, Chandra Sekhar Rout
Abstract:
Graphene emerges out as a promising material for various applications ranging from complementary integrated circuits to optically transparent electrode for displays and sensors. The excellent conductivity and atomic sharp edges of unique two-dimensional structure makes graphene a propitious field emitter. Graphene analogues of other 2D layered materials have emerged in material science and nanotechnology due to the enriched physics and novel enhanced properties they present. There are several advantages of using 2D nanomaterials in field emission based devices, including a thickness of only a few atomic layers, high aspect ratio (the ratio of lateral size to sheet thickness), excellent electrical properties, extraordinary mechanical strength and ease of synthesis. Furthermore, the presence of edges can enhance the tunneling probability for the electrons in layered nanomaterials similar to that seen in nanotubes. Here we report electron emission properties of multilayer graphene and effect of plasma (CO2, O2, Ar and N2) treatment. The plasma treated multilayer graphene shows an enhanced field emission behavior with a low turn on field of 0.18 V/μm and high emission current density of 1.89 mA/cm2 at an applied field of 0.35 V/μm. Further, we report the field emission studies of layered WS2/RGO and SnS2/RGO composites. The turn on field required to draw a field emission current density of 1μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2/RGO composite respectively. The enhanced field emission behavior observed for the WS2/RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 µA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2/RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overlap of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap. Similarly, the turn on field required to draw an emission current density of 1µA/cm2 is significantly low (almost half the value) for the SnS2/RGO nanocomposite (2.65 V/µm) compared to pristine SnS2 (4.8 V/µm) nanosheets. The field enhancement factor β (~3200 for SnS2 and ~3700 for SnS2/RGO composite) was calculated from Fowler-Nordheim (FN) plots and indicates emission from the nanometric geometry of the emitter. The field emission current versus time plot shows overall good emission stability for the SnS2/RGO emitter. The DFT calculations reveal that the enhanced field emission properties of SnS2/RGO composites are because of a substantial lowering of work function of SnS2 when supported by graphene, which is in response to p-type doping of the graphene substrate. Graphene and 2D analogue materials emerge as a potential candidate for future field emission applications.Keywords: graphene, layered material, field emission, plasma, doping
Procedia PDF Downloads 359365 Crisis Management and Corporate Political Activism: A Qualitative Analysis of Online Reactions toward Tesla
Authors: Roxana D. Maiorescu-Murphy
Abstract:
In the US, corporations have recently embraced political stances in an attempt to respond to the external pressure exerted by activist groups. To date, research in this area remains in its infancy, and few studies have been conducted on the way stakeholder groups respond to corporate political advocacy in general and in the immediacy of such a corporate announcement in particular. The current study aims to fill in this research void. In addition, the study contributes to an emerging trajectory in the field of crisis management by focusing on the delineation between crises (unexpected events related to products and services) and scandals (crises that spur moral outrage). The present study looked at online reactions in the aftermath of Elon Musk’s endorsement of the Republican party on Twitter. Two data sets were collected from Twitter following two political endorsements made by Elon Musk on May 18, 2022, and June 15, 2022, respectively. The total sample of analysis stemming from the data two sets consisted of N=1,374 user comments written as a response to Musk’s initial tweets. Given the paucity of studies in the preceding research areas, the analysis employed a case study methodology, used in circumstances in which the phenomena to be studied had not been researched before. According to the case study methodology, which answers the questions of how and why a phenomenon occurs, this study responded to the research questions of how online users perceived Tesla and why they did so. The data were analyzed in NVivo by the use of the grounded theory methodology, which implied multiple exposures to the text and the undertaking of an inductive-deductive approach. Through multiple exposures to the data, the researcher ascertained the common themes and subthemes in the online discussion. Each theme and subtheme were later defined and labeled. Additional exposures to the text ensured that these were exhaustive. The results revealed that the CEO’s political endorsements triggered moral outrage, leading to Tesla’s facing a scandal as opposed to a crisis. The moral outrage revolved around the stakeholders’ predominant rejection of a perceived intrusion of an influential figure on a domain reserved for voters. As expected, Musk’s political endorsements led to polarizing opinions, and those who opposed his views engaged in online activism aimed to boycott the Tesla brand. These findings reveal that the moral outrage that characterizes a scandal requires communication practices that differ from those that practitioners currently borrow from the field of crisis management. Specifically, because scandals flourish in online settings, practitioners should regularly monitor stakeholder perceptions and address them in real-time. While promptness is essential when managing crises, it becomes crucial to respond immediately as a scandal is flourishing online. Finally, attempts should be made to distance a brand, its products, and its CEO from the latter’s political views.Keywords: crisis management, communication management, Tesla, corporate political activism, Elon Musk
Procedia PDF Downloads 91364 Application of Nanoparticles on Surface of Commercial Carbon-Based Adsorbent for Removal of Contaminants from Water
Authors: Ahmad Kayvani Fard, Gordon Mckay, Muataz Hussien
Abstract:
Adsorption/sorption is believed to be one of the optimal processes for the removal of heavy metals from water due to its low operational and capital cost as well as its high removal efficiency. Different materials have been reported in literature as adsorbent for heavy metal removal in waste water such as natural sorbents, organic polymers (synthetic) and mineral materials (inorganic). The selection of adsorbents and development of new functional materials that can achieve good removal of heavy metals from water is an important practice and depends on many factors, such as the availability of the material, cost of material, and material safety and etc. In this study we reported the synthesis of doped Activated carbon and Carbon nanotube (CNT) with different loading of metal oxide nanoparticles such as Fe2O3, Fe3O4, Al2O3, TiO2, SiO2 and Ag nanoparticles and their application in removal of heavy metals, hydrocarbon, and organics from waste water. Commercial AC and CNT with different loadings of mentioned nanoparticle were prepared and effect of pH, adsorbent dosage, sorption kinetic, and concentration effects are studied and optimum condition for removal of heavy metals from water is reported. The prepared composite sorbent is characterized using field emission scanning electron microscopy (FE-SEM), high transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), X-ray diffractometer (XRD), the Brunauer, Emmett and Teller (BET) nitrogen adsorption technique, and Zeta potential. The composite materials showed higher removal efficiency and superior adsorption capacity compared to commercially available carbon based adsorbent. The specific surface area of AC increased by 50% reaching up to 2000 m2/g while the CNT specific surface area of CNT increased by more than 8 times reaching value of 890 m2/g. The increased surface area is one of the key parameters along with surface charge of the material determining the removal efficiency and removal efficiency. Moreover, the surface charge density of the impregnated CNT and AC have enhanced significantly where can benefit the adsorption process. The nanoparticles also enhance the catalytic activity of material and reduce the agglomeration and aggregation of material which provides more active site for adsorbing the contaminant from water. Some of the results for treating wastewater includes 100% removal of BTEX, arsenic, strontium, barium, phenolic compounds, and oil from water. The results obtained are promising for the use of AC and CNT loaded with metal oxide nanoparticle in treatment and pretreatment of waste water and produced water before desalination process. Adsorption can be very efficient with low energy consumption and economic feasibility.Keywords: carbon nanotube, activated carbon, adsorption, heavy metal, water treatment
Procedia PDF Downloads 233363 Non-Invasive Characterization of the Mechanical Properties of Arterial Walls
Authors: Bruno RamaëL, GwenaëL Page, Catherine Knopf-Lenoir, Olivier Baledent, Anne-Virginie Salsac
Abstract:
No routine technique currently exists for clinicians to measure the mechanical properties of vascular walls non-invasively. Most of the data available in the literature come from traction or dilatation tests conducted ex vivo on native blood vessels. The objective of the study is to develop a non-invasive characterization technique based on Magnetic Resonance Imaging (MRI) measurements of the deformation of vascular walls under pulsating blood flow conditions. The goal is to determine the mechanical properties of the vessels by inverse analysis, coupling imaging measurements and numerical simulations of the fluid-structure interactions. The hyperelastic properties are identified using Solidworks and Ansys workbench (ANSYS Inc.) solving an optimization technique. The vessel of interest targeted in the study is the common carotid artery. In vivo MRI measurements of the vessel anatomy and inlet velocity profiles was acquired along the facial vascular network on a cohort of 30 healthy volunteers: - The time-evolution of the blood vessel contours and, thus, of the cross-section surface area was measured by 3D imaging angiography sequences of phase-contrast MRI. - The blood flow velocity was measured using a 2D CINE MRI phase contrast (PC-MRI) method. Reference arterial pressure waveforms were simultaneously measured in the brachial artery using a sphygmomanometer. The three-dimensional (3D) geometry of the arterial network was reconstructed by first creating an STL file from the raw MRI data using the open source imaging software ITK-SNAP. The resulting geometry was then transformed with Solidworks into volumes that are compatible with Ansys softwares. Tetrahedral meshes of the wall and fluid domains were built using the ANSYS Meshing software, with a near-wall mesh refinement method in the case of the fluid domain to improve the accuracy of the fluid flow calculations. Ansys Structural was used for the numerical simulation of the vessel deformation and Ansys CFX for the simulation of the blood flow. The fluid structure interaction simulations showed that the systolic and diastolic blood pressures of the common carotid artery could be taken as reference pressures to identify the mechanical properties of the different arteries of the network. The coefficients of the hyperelastic law were identified using Ansys Design model for the common carotid. Under large deformations, a stiffness of 800 kPa is measured, which is of the same order of magnitude as the Young modulus of collagen fibers. Areas of maximum deformations were highlighted near bifurcations. This study is a first step towards patient-specific characterization of the mechanical properties of the facial vessels. The method is currently applied on patients suffering from facial vascular malformations and on patients scheduled for facial reconstruction. Information on the blood flow velocity as well as on the vessel anatomy and deformability will be key to improve surgical planning in the case of such vascular pathologies.Keywords: identification, mechanical properties, arterial walls, MRI measurements, numerical simulations
Procedia PDF Downloads 317