Search results for: movement pattern
113 Human Behavioral Assessment to Derive Land-Use for Sustenance of River in India
Authors: Juhi Sah
Abstract:
Habitat is characterized by the inter-dependency of environmental elements. Anthropocentric development approach is increasing our vulnerability towards natural hazards. Hence, manmade interventions should have a higher level of sensitivity towards the natural settings. Sensitivity towards the environment can be assessed by the behavior of the stakeholders involved. This led to the establishment of a hypothesis: there exists a legitimate relationship between the behavioral sciences, land use evolution and environment conservation, in the planning process. An attempt has been made to establish this relationship by reviewing the existing set of knowledge and case examples pertaining to the three disciplines under inquiry. Understanding the scarce & deteriorating nature of fresh-water reserves of earth and experimenting the above concept, a case study of a growing urban center's river flood plain is selected, in a developing economy, India. Cases of urban flooding in Chennai, Delhi and other mega cities of India, imposes a high risk on the unauthorized settlement, on the floodplains of the rivers. The issue addressed here is the encroachment of floodplains, through psychological enlightenment and modification through knowledge building. The reaction of an individual or society can be compared to a cognitive process. This study documents all the stakeholders' behavior and perception for their immediate natural environment (water body), and produce various land uses suitable along a river in an urban settlement as per different stakeholder's perceptions. To assess and induce morally responsible behavior in a community (small scale or large scale), tools of psychological inquiry is used for qualitative analysis. The analysis will deal with varied data sets from two sectors namely: River and its geology, Land use planning and regulation. Identification of a distinctive pattern in the built up growth, river ecology degradation, and human behavior, by handling large quantum of data from the diverse sector and comments on the availability of relevant data and its implications, has been done. Along the whole river stretch, condition and usage of its bank vary, hence stakeholder specific survey questionnaires have been prepared to accurately map the responses and habits of the rational inhabitants. A conceptual framework has been designed to move forward with the empirical analysis. The classical principle of virtues says "virtue of a human depends on its character" but another concept defines that the behavior or response is a derivative of situations and to bring about a behavioral change one needs to introduce a disruption in the situation/environment. Owing to the present trends, blindly following the results of data analytics and using it to construct policy, is not proving to be in favor of planned development and natural resource conservation. Thus behavioral assessment of the rational inhabitants of the planet is also required, as their activities and interests have a large impact on the earth's pre-set systems and its sustenance.Keywords: behavioral assessment, flood plain encroachment, land use planning, river sustenance
Procedia PDF Downloads 119112 Implementing Equitable Learning Experiences to Increase Environmental Awareness and Science Proficiency in Alabama’s Schools and Communities
Authors: Carly Cummings, Maria Soledad Peresin
Abstract:
Alabama has a long history of racial injustice and unsatisfactory educational performance. In the 1870s Jim Crow laws segregated public schools and disproportionally allocated funding and resources to white institutions across the South. Despite the Supreme Court ruling to integrate schools following Brown vs. the Board of Education in 1954, Alabama’s school system continued to exhibit signs of segregation, compounded by “white flight” and the establishment of exclusive private schools, which still exist today. This discriminatory history has had a lasting impact of the state’s education system, reflected in modern school demographics and achievement data. It is well known that Alabama struggles with education performance, especially in science education. On average, minority groups scored the lowest in science proficiency. In Alabama, minority populations are concentrated in a region known as the Black Belt, which was once home to countless slave plantations and was the epicenter of the Civil Rights Movement. Today the Black Belt is characterized by a high density of woodlands and plays a significant role in Alabama’s leading economic industry-forest products. Given the economic importance of forestry and agriculture to the state, environmental science proficiency is essential to its stability; however, it is neglected in areas where it is needed most. To better understand the inequity of science education within Alabama, our study first investigates how geographic location, demographics and school funding relate to science achievement scores using ArcGIS and Pearson’s correlation coefficient. Additionally, our study explores the implementation of a relevant, problem-based, active learning lesson in schools. Relevant learning engages students by connecting material to their personal experiences. Problem-based active learning involves real-world problem-solving through hands-on experiences. Given Alabama’s significant woodland coverage, educational materials on forest products were developed with consideration of its relevance to students, especially those located in the Black Belt. Furthermore, to incorporate problem solving and active learning, the lesson centered around students using forest products to solve environmental challenges, such as water pollution- an increasing challenge within the state due to climate change. Pre and post assessment surveys were provided to teachers to measure the effectiveness of the lesson. In addition to pedagogical practices, community and mentorship programs are known to positively impact educational achievements. To this end, our work examines the results of surveys measuring educational professionals’ attitudes toward a local mentorship group within the Black Belt and its potential to address environmental and science literacy. Additionally, our study presents survey results from participants who attended an educational community event, gauging its effectiveness in increasing environmental and science proficiency. Our results demonstrate positive improvements in environmental awareness and science literacy with relevant pedagogy, mentorship, and community involvement. Implementing these practices can help provide equitable and inclusive learning environments and can better equip students with the skills and knowledge needed to bridge this historic educational gap within Alabama.Keywords: equitable education, environmental science, environmental education, science education, racial injustice, sustainability, rural education
Procedia PDF Downloads 71111 Effects of Hydrogen Bonding and Vinylcarbazole Derivatives on 3-Cyanovinylcarbazole Mediated Photo-Cross-Linking Induced Cytosine Deamination
Authors: Siddhant Sethi, Yasuharu Takashima, Shigetaka Nakamura, Kenzo Fujimoto
Abstract:
Site-directed mutagenesis is a renowned technique to introduce specific mutations in the genome. To achieve site-directed mutagenesis, many chemical and enzymatic approaches have been reported in the past like disulphite induced genome editing, CRISPR-Cas9, TALEN etc. The chemical methods are invasive whereas the enzymatic approaches are time-consuming and expensive. Most of these techniques are unusable in the cellular application due to their toxicity and other limitations. Photo-chemical cytosine deamination, introduced in 2010, is one of the major technique for enzyme-free single-point mutation of cytosine to uracil in DNA and RNA, wherein, 3-cyanovinylcarbazole nucleoside (CNVK) containing oligodeoxyribonucleotide (ODN) having CNVK at -1 position to that of target cytosine is reversibly crosslinked to target DNA strand using 366 nm and then incubated at 90ºC to accommodate deamination. This technique is superior to enzymatic methods of site-directed mutagenesis but has a disadvantage that it requires the use of high temperature for the deamination step which restricts its applicability in the in vivo applications. This study has been focused on improving the technique by reducing the temperature required for deamination. Firstly, the photo-cross-linker, CNVK has been modified by replacing cyano group attached to vinyl group with methyl ester (OMeVK), amide (NH2VK), and carboxylic acid (OHVK) to observe the acceleration in the deamination of target cytosine cross-linked to vinylcarbazole derivative. Among the derivatives, OHVK has shown 2 times acceleration in deamination reaction as compared to CNVK, while the other two derivatives have shown deceleration towards deamination reaction. The trend of rate of deamination reaction follows the same order as that of hydrophilicity of the vinylcarbazole derivatives. OHVK being most hydrophilic has shown highest acceleration while OMeVK is least hydrophilic has proven to be least active for deamination. Secondly, in the related study, the counter-base of the target cytosine, guanine has been replaced by inosine, 2-aminopurine, nebularine, and 5-nitroindole having distinct hydrogen bonding patterns with target cytosine. Among the ODNs with these counter bases, ODN with inosine has shown 12 fold acceleration towards deamination of cytosine cross-linked to CNVK at physiological conditions as compared to guanosine. Whereas, when 2-aminopurine, nebularine, and 5-nitroindole were used, no deamination reaction took place. It can be concluded that inosine has potential to be used as the counter base of target cytosine for the CNVK mediated photo-cross-linking induced deamination of cytosine. The increase in rate of deamination reaction has been attributed to pattern and number of hydrogen bonding between the cytosine and counter base. One of the important factor is presence of hydrogen bond between exo-cyclic amino group of cytosine and the counter base. These results will be useful for development of more efficient technique for site-directed mutagenesis for C → U transformations in the DNA/RNA which might be used in the living system for treatment of various genetic disorders and genome engineering for making designer and non-native proteins.Keywords: C to U transformation, DNA editing, genome engineering, ultra-fast photo-cross-linking
Procedia PDF Downloads 240110 Biophysical and Structural Characterization of Transcription Factor Rv0047c of Mycobacterium Tuberculosis H37Rv
Authors: Md. Samsuddin Ansari, Ashish Arora
Abstract:
Every year 10 million people fall ill with one of the oldest diseases known as tuberculosis, caused by Mycobacterium tuberculosis. The success of M. tuberculosis as a pathogen is because of its ability to persist in host tissues. Multidrug resistance (MDR) mycobacteria cases increase every day, which is associated with efflux pumps controlled at the level of transcription. The transcription regulators of MDR transporters in bacteria belong to one of the following four regulatory protein families: AraC, MarR, MerR, and TetR. Phenolic acid decarboxylase repressor (PadR), like a family of transcription regulators, is closely related to the MarR family. Phenolic acid decarboxylase repressor (PadR) was first identified as a transcription factor involved in the regulation of phenolic acid stress response in various microorganisms (including Mycobacterium tuberculosis H37Rv). Recently research has shown that the PadR family transcription factors are global, multifunction transcription regulators. Rv0047c is a PadR subfamily-1 protein. We are exploring the biophysical and structural characterization of Rv0047c. The Rv0047 gene was amplified by PCR using the primers containing EcoRI and HindIII restriction enzyme sites cloned in pET-NH6 vector and overexpressed in DH5α and BL21 (λDE3) cells of E. coli following purification with Ni2+-NTA column and size exclusion chromatography. We did DSC to know the thermal stability; the Tm (transition temperature) of protein is 55.29ºC, and ΔH (enthalpy change) of 6.92 kcal/mol. Circular dichroism to know the secondary structure and conformation and fluorescence spectroscopy for tertiary structure study of protein. To understand the effect of pH on the structure, function, and stability of Rv0047c we employed spectroscopy techniques such as circular dichroism, fluorescence, and absorbance measurements in a wide range of pH (from pH-2.0 to pH-12). At low and high pH, it shows drastic changes in the secondary and tertiary structure of the protein. EMSA studies showed the specific binding of Rv0047c with its own 30-bp promoter region. To determine the effect of complex formation on the secondary structure of Rv0047c, we examined the CD spectra of the complex of Rv0047c with promoter DNA of rv0047. The functional role of Rv0047c was characterized by over-expressing the Rv0047c gene under the control of hsp60 promoter in Mycobacterium tuberculosis H37Rv. We have predicted the three-dimensional structure of Rv0047c using the Swiss Model and Modeller, with validity checked by the Ramachandra plot. We did molecular docking of Rv0047c with dnaA, through PatchDock following refinement through FireDock. Through this, it is possible to easily identify the binding hot-stop of the receptor molecule with that of the ligand, the nature of the interface itself, and the conformational change undergone by the protein pattern. We are using X-crystallography to unravel the structure of Rv0047c. Overall the studies show that Rv0047c may have transcription regulation along with providing an insight into the activity of Rv0047c in the pH range of subcellular environment and helps to understand the protein-protein interaction, a novel target to kill dormant bacteria and potential strategy for tuberculosis control.Keywords: mycobacterium tuberculosis, phenolic acid decarboxylase repressor, Rv0047c, Circular dichroism, fluorescence spectroscopy, docking, protein-protein interaction
Procedia PDF Downloads 124109 The Effect of Photochemical Smog on Respiratory Health Patients in Abuja Nigeria
Authors: Christabel Ihedike, John Mooney, Monica Price
Abstract:
Summary: This study aims to critically evaluate effect of photochemical smog on respiratory health in Nigeria. Cohort of chronic obstructive pulmonary disease (COPD) patients was recruited from two large hospitals in Abuja Nigeria. Respiratory health questionnaires, daily diaries, dyspnoea scale and lung function measurement were used to obtain health data and investigate the relationship with air quality data (principally ozone, NOx and particulate pollution). Concentrations of air pollutants were higher than WHO and Nigerian air quality standard. The result suggests a correlation between measured air quality and exacerbation of respiratory illness. Introduction: Photochemical smog is a significant health challenge in most cities and its effect on respiratory health is well acknowledged. This type of pollution is most harmful to the elderly, children and those with underlying respiratory disease. This study aims to investigate impact of increasing temperature and photo-chemically generated secondary air pollutants on respiratory health in Abuja Nigeria. Method and Result: Health data was collected using spirometry to measure lung function on routine attendance at the clinic, daily diaries kept by patients and information obtained using respiratory questionnaire. Questionnaire responses (obtained using an adapted and internally validated version of St George’s Hospital Respiratory Questionnaire), shows that ‘time of wheeze’ showed an association with participants activities: 30% had worse wheeze in the morning: 10% cannot shop, 15% take long-time to get washed, 25% walk slower, 15% if hurry have to stop and 5% cannot take-bath. There was also a decrease in Forced expiratory volume in the first second and Forced Vital Capacity, and daily change in the afternoon–morning may be associated with the concentration level of pollutants. Also, dyspnoea symptoms recorded that 60% of patients were on grade 3, 25% grade 2 and 15% grade 1. Daily frequency of the number of patients in the cohort that cough /brought sputum is 78%. Air pollution in the city is higher than Nigerian and WHO standards with NOx and PM10 concentrations of 693.59ug/m-3 and 748ugm-3 being measured respectively. The result shows that air pollution may increase occurrence and exacerbation of respiratory disease. Conclusion: High temperature and local climatic conditions in urban Nigeria encourages formation of Ozone, the major constituent of photochemical smog, resulting also in the formation of secondary air pollutants associated with health challenges. In this study we confirm the likely potency of the pattern of secondary air pollution in exacerbating COPD symptoms in vulnerable patient group in urban Nigeria. There is need for better regulation and measures to reduce ozone, particularly when local climatic conditions favour development of photochemical smog in such settings. Climate change and likely increasing temperatures add impetus and urgency for better air quality standards and measures (traffic-restrictions and emissions standards) in developing world settings such as Nigeria.Keywords: Abuja-Nigeria, effect, photochemical smog, respiratory health
Procedia PDF Downloads 231108 Sustainable Urban Growth of Neighborhoods: A Case Study of Alryad-Khartoum
Authors: Zuhal Eltayeb Awad
Abstract:
Alryad neighborhood is located in Khartoum town– the administrative center of the Capital of Sudan. The neighborhood is one of the high-income residential areas with villa type development of low-density. It was planned and developed in 1972 with large plots (600-875m²), wide crossing roads and balanced environment. Recently the area transformed into more compact urban form of high density, mixed-use integrated development with more intensive use of land; multi-storied apartments. The most important socio-economic process in the neighborhood has been the commercialization and deinitialization of the area in connect with the displacement of the residential function. This transformation affected the quality of the neighborhood and the inter-related features of the built environment. A case study approach was chosen to gather the necessary qualitative and quantitative data. A detailed survey on existing development pattern was carried out over the whole area of Alryad. Data on the built and social environment of the neighborhoods were collected through observations, interviews and secondary data sources. The paper reflected a theoretical and empirical interest in the particular characteristics of compact neighborhood with high density, and mixed land uses and their effect on social wellbeing of the residents all in the context of the sustainable development. The research problem is focused on the challenges of transformation that associated with compact neighborhood that created multiple urban problems, e.g., stress of essential services (water supply, electricity, and drainage), congestion of streets and demand for parking. The main objective of the study is to analyze the transformation of this area from residential use to commercial and administrative use. The study analyzed the current situation of the neighborhood compared to the five principles of sustainable neighborhood prepared by UN Habitat. The study found that the neighborhood is experienced changes that occur to inner-city residential areas and the process of change of the neighborhood was originated by external forces due to the declining economic situation of the whole country. It is evident that non-residential uses have taken place uncontrolled, unregulated and haphazardly that led to damage the residential environment and deficiency in infrastructure. The quality of urban life and in particular on levels of privacy was reduced, the neighborhood changed gradually to be a central business district that provides services to the whole Khartoum town. The change of house type may be attributed to a demand-led housing market and absence of policy. The results showed that Alryad is not fully sustainable and self-contained, street network characteristics and mixed land-uses development are compatible with the principles of sustainability. The area of streets represents 27.4% of the total area of the neighborhood. Residential density is 4,620 people/ km², that is lower than the recommendations, and the limited block land-use specialization is higher than 10% of the blocks. Most inhabitants have a high income so that there is no social mix in the neighborhood. The study recommended revision of the current zoning regulations in order to control and regulate undesirable development in the neighborhood and provide new solutions which allow promoting the neighborhood sustainable development.Keywords: compact neighborhood, land uses, mixed use, residential area, transformation
Procedia PDF Downloads 134107 Disposal Behavior of Extreme Poor People Living in Guatemala at the Base of the Pyramid
Authors: Katharina Raab, Ralf Wagner
Abstract:
With the decrease of poverty, the focus on the solid waste challenge shifts away from affluent, mostly Westernized consumers to the base of the pyramid. The relevance of considering the disposal behavior of impoverished people arises from improved welfare, leading to an increase in consumption opportunities and, consequently, of waste production. In combination with the world’s growing population the relevance of the topic increases, because solid waste management has global impacts on consumers’ welfare. The current annual municipal solid waste generation is estimated to 1.9 billion tonnes, 30% remains uncollected. As for the collected 70% is landfilling and dumping, 19% is recycled or recovered, 11% is led to energy recovery facilities. Therefore, aim is to contribute by adding first insights about poor people's disposal behaviors, including the framing of their rationalities, emotions and cognitions. The study provides novel empirical results obtained from qualitative semi-structured in-depth interviews near Guatemala City. In the study’s framework consumers have to choose from three options when deciding what to do with their obsolete possessions: Keeping the product: The main reason for this is the respondent´s emotional attachment to a product. Further, there is a willingness to use the same product under a different scope when it loses its functionality–they recycle their belongings in a customized and sustainable way. Permanently disposing of the product: The study reveals two dominant disposal methods: burning in front of their homes and throwing away in the physical environment. Respondents clearly recognized the disadvantages of burning toxic durables, like electronics. Giving a product away as a gift supports the integration of individuals in their peer networks of family and friends. Temporarily disposing of the product: Was not mentioned–to be specific, rent or lend a product to someone else was out of question. Contrasting the background to which extend poor people are aware of the consequences of their disposal decisions and how they feel about and rationalize their actions were quite unexpected. Respondents reported that they are worried about future consequences with impacts they cannot anticipate now–they are aware that their behaviors harm their health and the environment. Additionally, they expressed concern about the impact this disposal behavior would have on others’ well-being and are therefore sensitive to the waste that surrounds them. Concluding, the BoP-framed life and Westernized consumption, both fit in a circular economy pattern, but the nature of how to recycle and dispose separates these two societal groups. Both systems own a solid waste management system, but people living in slum-type districts and rural areas of poor countries are less interested in connecting to the system–they are primarily afraid of the costs. Further, it can be said that a consumer’s perceived effectiveness is distinct from environmental concerns, but contributes to forecasting certain pro-ecological behaviors. Considering the rationales underlying disposal decisions, thoughtfulness is a well-established determinant of disposition behavior. The precipitating events, emotions and decisions associated with the act of disposing of products are important because these decisions can trigger different results for the disposal process.Keywords: base of the pyramid, disposal behavior, poor consumers, solid waste
Procedia PDF Downloads 175106 A Patient-Centered Approach to Clinical Trial Development: Real-World Evidence from a Canadian Medical Cannabis Clinic
Authors: Lucile Rapin, Cynthia El Hage, Rihab Gamaoun, Maria-Fernanda Arboleda, Erin Prosk
Abstract:
Introduction: Sante Cannabis (SC), a Canadian group of clinics dedicated to medical cannabis, based in Montreal and in the province of Quebec, has served more than 8000 patients seeking cannabis-based treatment over the past five years. As randomized clinical trials with natural medical cannabis are scarce, real-world evidence offers the opportunity to fill research gaps between scientific evidence and clinical practice. Data on the use of medical cannabis products from SC patients were prospectively collected, leading to a large real-world database on the use of medical cannabis. The aim of this study was to report information on the profiles of both patients and prescribed medical cannabis products at SC clinics, and to assess the safety of medical cannabis among Canadian patients. Methods: This is an observational retrospective study of 1342 adult patients who were authorized with medical cannabis products between October 2017 and September 2019. Information regarding demographic characteristics, therapeutic indications for medical cannabis use, patterns in dosing and dosage form of medical cannabis and adverse effects over one-year follow-up (initial and 4 follow-up (FUP) visits) were collected. Results: 59% of SC patients were female, with a mean age of 56.7 (SD= 15.6, range= (19-97)). Cannabis products were authorized mainly for patients with a diagnosis of chronic pain (68.8% of patients), cancer (6.7%), neurological disorders (5.6%), and mood disorders (5.4 %). At initial visit, a large majority (70%) of patients were authorized exclusively medical cannabis products, 27% were authorized a combination of pharmaceutical cannabinoids and medical cannabis and 3% were prescribed only pharmaceutical cannabinoids. This pattern was recurrent over the one-year follow-up. Overall, oil was the preferred formulation (average over visits 72.5%) followed by a combination of oil and dry (average 19%), other routes of administration accounted for less than 4%. Patients were predominantly prescribed products with a balanced THC:CBD ratio (59%-75% across visits). 28% of patients reported at least one adverse effect (AE) at the 3-month follow-up visit and 12% at the six-month FUP visit. 84.8% of total AEs were mild and transient. No serious AE was reported. Overall, the most common side effects reported were dizziness (11.95% of total AEs), drowsiness (11.4%), dry mouth (5.5%), nausea (4.8%), headaches (4.6%), cough (4.4%), anxiety (4.1%) and euphoria (3.5%). Other adverse effects accounted for less than 3% of total AE. Conclusion: Our results confirm that the primary area of clinical use for medical cannabis is in pain management. Patients in this cohort are largely utilizing plant-based cannabis oil products with a balanced ratio of THC:CBD. Reported adverse effects were mild and included dizziness and drowsiness. This real-world data confirms the tolerable safety profile of medical cannabis and suggests medical indications not yet validated in controlled clinical trials. Such data offers an important opportunity for the investigation of the long-term effects of cannabinoid exposure in real-life conditions. Real-world evidence can be used to direct clinical trial research efforts on specific indications and dosing patterns for product development.Keywords: medical cannabis, safety, real-world data, Canada
Procedia PDF Downloads 137105 Improving a Stagnant River Reach Water Quality by Combining Jet Water Flow and Ultrasonic Irradiation
Authors: A. K. Tekile, I. L. Kim, J. Y. Lee
Abstract:
Human activities put freshwater quality under risk, mainly due to expansion of agriculture and industries, damming, diversion and discharge of inadequately treated wastewaters. The rapid human population growth and climate change escalated the problem. External controlling actions on point and non-point pollution sources are long-term solution to manage water quality. To have a holistic approach, these mechanisms should be coupled with the in-water control strategies. The available in-lake or river methods are either costly or they have some adverse effect on the ecological system that the search for an alternative and effective solution with a reasonable balance is still going on. This study aimed at the physical and chemical water quality improvement in a stagnant Yeo-cheon River reach (Korea), which has recently shown sign of water quality problems such as scum formation and fish death. The river water quality was monitored, for the duration of three months by operating only water flow generator in the first two weeks and then ultrasonic irradiation device was coupled to the flow unit for the remaining duration of the experiment. In addition to assessing the water quality improvement, the correlation among the parameters was analyzed to explain the contribution of the ultra-sonication. Generally, the combined strategy showed localized improvement of water quality in terms of dissolved oxygen, Chlorophyll-a and dissolved reactive phosphate. At locations under limited influence of the system operation, chlorophyll-a was highly increased, but within 25 m of operation the low initial value was maintained. The inverse correlation coefficient between dissolved oxygen and chlorophyll-a decreased from 0.51 to 0.37 when ultrasonic irradiation unit was used with the flow, showing that ultrasonic treatment reduced chlorophyll-a concentration and it inhibited photosynthesis. The relationship between dissolved oxygen and reactive phosphate also indicated that influence of ultra-sonication was higher than flow on the reactive phosphate concentration. Even though flow increased turbidity by suspending sediments, ultrasonic waves canceled out the effect due to the agglomeration of suspended particles and the follow-up settling out. There has also been variation of interaction in the water column as the decrease of pH and dissolved oxygen from surface to the bottom played a role in phosphorus release into the water column. The variation of nitrogen and dissolved organic carbon concentrations showed mixed trend probably due to the complex chemical reactions subsequent to the operation. Besides, the intensive rainfall and strong wind around the end of the field trial had apparent impact on the result. The combined effect of water flow and ultrasonic irradiation was a cumulative water quality improvement and it maintained the dissolved oxygen and chlorophyll-a requirement of the river for healthy ecological interaction. However, the overall improvement of water quality is not guaranteed as effectiveness of ultrasonic technology requires long-term monitoring of water quality before, during and after treatment. Even though, the short duration of the study conducted here has limited nutrient pattern realization, the use of ultrasound at field scale to improve water quality is promising.Keywords: stagnant, ultrasonic irradiation, water flow, water quality
Procedia PDF Downloads 195104 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry
Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard
Abstract:
Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.Keywords: wetting, acoustic reflectometry, gigahertz, semiconductor
Procedia PDF Downloads 329103 Evaluating Forecasting Strategies for Day-Ahead Electricity Prices: Insights From the Russia-Ukraine Crisis
Authors: Alexandra Papagianni, George Filis, Panagiotis Papadopoulos
Abstract:
The liberalization of the energy market and the increasing penetration of fluctuating renewables (e.g., wind and solar power) have heightened the importance of the spot market for ensuring efficient electricity supply. This is further emphasized by the EU’s goal of achieving net-zero emissions by 2050. The day-ahead market (DAM) plays a key role in European energy trading, accounting for 80-90% of spot transactions and providing critical insights for next-day pricing. Therefore, short-term electricity price forecasting (EPF) within the DAM is crucial for market participants to make informed decisions and improve their market positioning. Existing literature highlights out-of-sample performance as a key factor in assessing EPF accuracy, with influencing factors such as predictors, forecast horizon, model selection, and strategy. Several studies indicate that electricity demand is a primary price determinant, while renewable energy sources (RES) like wind and solar significantly impact price dynamics, often lowering prices. Additionally, incorporating data from neighboring countries, due to market coupling, further improves forecast accuracy. Most studies predict up to 24 steps ahead using hourly data, while some extend forecasts using higher-frequency data (e.g., half-hourly or quarter-hourly). Short-term EPF methods fall into two main categories: statistical and computational intelligence (CI) methods, with hybrid models combining both. While many studies use advanced statistical methods, particularly through different versions of traditional AR-type models, others apply computational techniques such as artificial neural networks (ANNs) and support vector machines (SVMs). Recent research combines multiple methods to enhance forecasting performance. Despite extensive research on EPF accuracy, a gap remains in understanding how forecasting strategy affects prediction outcomes. While iterated strategies are commonly used, they are often chosen without justification. This paper contributes by examining whether the choice of forecasting strategy impacts the quality of day-ahead price predictions, especially for multi-step forecasts. We evaluate both iterated and direct methods, exploring alternative ways of conducting iterated forecasts on benchmark and state-of-the-art forecasting frameworks. The goal is to assess whether these factors should be considered by end-users to improve forecast quality. We focus on the Greek DAM using data from July 1, 2021, to March 31, 2022. This period is chosen due to significant price volatility in Greece, driven by its dependence on natural gas and limited interconnection capacity with larger European grids. The analysis covers two phases: pre-conflict (January 1, 2022, to February 23, 2022) and post-conflict (February 24, 2022, to March 31, 2022), following the Russian-Ukraine conflict that initiated an energy crisis. We use the mean absolute percentage error (MAPE) and symmetric mean absolute percentage error (sMAPE) for evaluation, as well as the Direction of Change (DoC) measure to assess the accuracy of price movement predictions. Our findings suggest that forecasters need to apply all strategies across different horizons and models. Different strategies may be required for different horizons to optimize both accuracy and directional predictions, ensuring more reliable forecasts.Keywords: short-term electricity price forecast, forecast strategies, forecast horizons, recursive strategy, direct strategy
Procedia PDF Downloads 15102 Comparison of Nutritional Status of Asthmatic vs Non-asthmatic Adults
Authors: Ayesha Mushtaq
Abstract:
Asthma is a pulmonary disease in which blockade of the airway takes place due to inflammation as a response to certain allergens. Breathing troubles, cough, and dyspnea are one of the few symptoms. Several studies have indicated a significant effect on asthma due to changes in dietary routines. Certain food items, such as oily foods and other materials, are known to cause an increase in the symptoms of asthma. Low dietary intake of fruits and vegetables may be important in relation to asthma prevalence. The objective of this study is to assess and compare the nutritional status of asthmatic and non-asthmatic patients. The significance of this study lies in the factor that it will help nutritionists to arrange a feasible dietary routine for asthmatic patients. This research was conducted at the Pulmonology Department of the Pakistan Institute of Medical Science Islamabad. About thirty hundred thirty-four million people are affected by asthma worldwide. Pakistan is on the verge of being an uplifted urban population and asthma cases are increasingly high these days. Several studies suggest an increase in the Asthmatic patient population due to improper diet. Other studies conducted at different institutions have conducted research on similar topics. These studies have suggested that there is a substantial alteration in the nutritional status of asthmatic and non-Asthmatic patients. This is a cross-sectional study aimed at assessing the nutritious standing of Asthmatic and non-asthmatic patients. This research took place at the Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan. The research included asthmatic and non-asthmatic patients coming to the pulmonology department clinic at the Pakistan Institute of Medical Sciences (PIMS). These patients were aged between 20-60 years. A questionnaire was developed for these patients to estimate their dietary plans in these patients. The methodology included four sections. The first section was the Socio-Demographic profile, which included age, gender, monthly income and occupation. The next section was anthropometric measurements which included the weight, height and body mass index (BMI) of the individual. The next section, section three, was about the biochemical attributes, such as for biochemical profiling, pulmonary function testing (PFT) was performed. In the next section, Dietary habits, which were assessed by using a food frequency questionnaire (FFQ) through food habits and consumption pattern, was assessed. The next section life style data, in which the person's level of physical activity, sleep and smoking habits were assessed. The next section was statistical analysis. All the data obtained from the study were statistically analyzed and assessed. Most of the asthma Patients were females, with weight more than normal or even obese. Body Mass Index (BMI) was higher in asthma Patients than those in non-Asthmatic ones. When the nutritional Values were assessed, we came to know that these patients were low on certain nutrients and their diet included more junk and oily food than healthy vegetables and fruits. Beverages intake was also included in the same assessment. It is evident from this study that nutritional status has a contributory effect on asthma. So, patients on the verge of developing asthma or those who have developed asthma should focus on their diet, maintain good eating habits and take healthy diets, including fruits and vegetables rather than oily foods. Proper sleep may also contribute to the control of asthma.Keywords: NUTRI, BMI, asthma, food
Procedia PDF Downloads 76101 Social Enterprises over Microfinance Institutions: The Challenges of Governance and Management
Authors: Dean Sinković, Tea Golja, Morena Paulišić
Abstract:
Upon the end of the vicious war in former Yugoslavia in 1995, international development community widely promoted microfinance as the key development framework to eradicate poverty, create jobs, increase income. Widespread claims were made that microfinance institutions would play vital role in creating a bedrock for sustainable ‘bottom-up’ economic development trajectory, thus, helping newly formed states to find proper way from economic post-war depression. This uplifting neoliberal narrative has no empirical support in the Republic of Croatia. Firstly, the type of enterprises created via microfinance sector are small, unskilled, labor intensive, no technology and with huge debt burden. This results in extremely high failure rates of microenterprises and poor individuals plunging into even deeper poverty, acute indebtedness and social marginalization. Secondly, evidence shows that microcredit is exact reflection of dangerous and destructive sub-prime lending model with ‘boom-to-bust’ scenarios in which benefits are solely extracted by the tiny financial and political elite working around the microfinance sector. We argue that microcredit providers are not proper financial structures through which developing countries should look way out of underdevelopment and poverty. In order to achieve sustainable long-term growth goals, public policy needs to focus on creating, supporting and facilitating the small and mid-size enterprises development. These enterprises should be technically sophisticated, capable of creating new capabilities and innovations, with managerial expertise (skills formation) and inter-connected with other organizations (i.e. clusters, networks, supply chains, etc.). Evidence from South-East Europe suggest that such structures are not created via microfinance model but can be fostered through various forms of social enterprises. Various legal entities may operate as social enterprises: limited liability private company, limited liability public company, cooperative, associations, foundations, institutions, Mutual Insurances and Credit union. Our main hypothesis is that cooperatives are potential agents of social and economic transformation and community development in the region. Financial cooperatives are structures that can foster more efficient allocation of financial resources involving deeper democratic arrangements and more socially just outcomes. In Croatia, pioneers of the first social enterprises were civil society organizations whilst forming a separated legal entity. (i.e. cooperatives, associations, commercial companies working on the principles of returning the investment to the founder). Ever since 1995 cooperatives in Croatia have not grown by pursuing their own internal growth but mostly by relying on external financial support. The greater part of today’s registered cooperatives tend to be agricultural (39%), followed by war veterans cooperatives (38%) and others. There are no financial cooperatives in Croatia. Due to the above mentioned we look at the historical developments and the prevailing social enterprises forms and discuss their advantages and disadvantages as potential agents for social and economic transformation and community development in the region. There is an evident lack of understanding of this business model and of its potential for social and economic development followed by an unfavorable institutional environment. Thus, we discuss the role of governance and management in the formation of social enterprises in Croatia, stressing the challenges for the governance of the country’s social enterprise movement.Keywords: financial cooperatives, governance and management models, microfinance institutions, social enterprises
Procedia PDF Downloads 280100 Socio-Economic Insight of the Secondary Housing Market in Colombo Suburbs: Seller’s Point of Views
Authors: R. G. Ariyawansa, M. A. N. R. M. Perera
Abstract:
“House” is a powerful symbol of socio-economic background of individuals and families. In fact, housing provides all types of needs/wants from basic needs to self-actualization needs. This phenomenon can be realized only having analyzed hidden motives of buyers and sellers of the housing market. Hence, the aim of this study is to examine the socio-economic insight of the secondary housing market in Colombo suburbs. This broader aim was achieved via analyzing the general pattern of the secondary housing market, identifying socio-economic motives of sellers of the secondary housing market, and reviewing sellers’ experience of buyer behavior. A purposive sample of 50 sellers from popular residential areas in Colombo such as Maharagama, Kottawa, Piliyandala, Punnipitiya, and Nugegoda was used to collect primary data instead of relevant secondary data from published and unpublished reports. The sample was limited to selling price ranging from Rs15 million to Rs25 million, which apparently falls into middle and upper-middle income houses in the context. Participatory observation and semi-structured interviews were adopted as key data collection tools. Data were descriptively analyzed. This study found that the market is mainly handled by informal agents who are unqualified and unorganized. People such as taxi/tree-wheel drivers, boutique venders, security personals etc. are engaged in housing brokerage as a part time career. Few fulltime and formally organized agents were found but they were also not professionally qualified. As far as housing quality is concerned, it was observed that 90% of houses was poorly maintained and illegally modified. They are situated in poorly maintained neighborhoods as well. Among the observed houses, 2% was moderately maintained and 8% was well maintained and modified. Major socio-economic motives of sellers were “migrating foreign countries for education and employment” (80% and 10% respectively), “family problems” (4%), and “social status” (3%). Other motives were “health” and “environmental/neighborhood problems” (3%). This study further noted that the secondary middle income housing market in the area directly related with the migrants who motivated for education in foreign countries, mainly Australia, UK and USA. As per the literature, families motivated for education tend to migrate Colombo suburbs from remote areas of the country. They are seeking temporary accommodation in lower middle income housing. However, the secondary middle income housing market relates with the migration from Colombo to major global cities. Therefore, final transaction price of this market may depend on migration related dates such as university deadlines, visa and other agreements. Hence, it creates a buyers’ market lowering the selling price. Also it was revealed that the buyers tend to trust more on this market as far as the quality of construction of houses is concerned than brand new houses which are built for selling purpose.Keywords: informal housing market, hidden motives of buyers and sellers, secondary housing market, socio-economic insight
Procedia PDF Downloads 16999 Effects of Live Webcast-Assisted Teaching on Physical Assessment Technique Learning of Young Nursing Majors
Authors: Huey-Yeu Yan, Ching-Ying Lee, Hung-Ru Lin
Abstract:
Background: Physical assessment is a vital clinical nursing competence. The gap between conventional teaching method and the way e-generation students’ preferred could be bridged owing to the support of Internet technology, i.e. interacting with online media to manage learning works. Nursing instructors in the wake of new learning pattern of the e-generation students are challenged to actively adjust and make teaching contents and methods more versatile. Objective: The objective of this research is to explore the effects on teaching and learning with live webcast-assisted on a specific topic, Physical Assessment technique, on a designated group of young nursing majors. It’s hoped that, with a way of nursing instructing, more versatile learning resources may be provided to facilitate self-directed learning. Design: This research adopts a cross-sectional descriptive survey. The instructor demonstrated physical assessment techniques and operation procedures via live webcast broadcasted online to all students. It increased both the off-time interaction between teacher and students concerning teaching materials. Methods: A convenient sampling was used to recruit a total of 52 nursing-majors at a certain university. The nursing majors took two-hour classes of Physical Assessment per week for 18 weeks (36 hrs. in total). The instruction covered four units with live webcasting and then conducted an online anonymous survey of learning outcomes by questionnaire. The research instrument was the online questionnaire, covering three major domains—online media used, learning outcome evaluation and evaluation result. The data analysis was conducted via IBM SPSS Statistics Version 2.0. The descriptive statistics was undertaken to describe the analysis of basic data and learning outcomes. Statistical methods such as descriptive statistics, t-test, ANOVA, and Pearson’s correlation were employed in verification. Results: Results indicated the following five major findings. (1) learning motivation, about four fifth of the participants agreed the online instruction resources are very helpful in improving learning motivation and raising the learning interest. (2) learning needs, about four fifth of participants agreed it was helpful to plan self-directed practice after the instruction, and meet their needs of repetitive learning and/or practice at their leisure time. (3) learning effectiveness, about two third agreed it was helpful to reduce pre-exam anxiety, and improve their test scores. (4) course objects, about three fourth agreed that it was helpful to achieve the goal of ‘executing the complete Physical Assessment procedures with proper skills’. (5) finally, learning reflection, about all of participants agreed this experience of online instructing, learning, and practicing is beneficial to them, they recommend instructor to share with other nursing majors, and they will recommend it to fellow students too. Conclusions: Live webcasting is a low-cost, convenient, efficient and interactive resource to facilitate nursing majors’ motivation of learning, need of self-directed learning and practice, outcome of learning. When live webcasting is integrated into nursing teaching, it provides an opportunity of self-directed learning to promote learning effectiveness, as such to fulfill the teaching objective.Keywords: innovative teaching, learning effectiveness, live webcasting, physical assessment technique
Procedia PDF Downloads 13298 Wind Tunnel Tests on Ground-Mounted and Roof-Mounted Photovoltaic Array Systems
Authors: Chao-Yang Huang, Rwey-Hua Cherng, Chung-Lin Fu, Yuan-Lung Lo
Abstract:
Solar energy is one of the replaceable choices to reduce the CO2 emission produced by conventional power plants in the modern society. As an island which is frequently visited by strong typhoons and earthquakes, it is an urgent issue for Taiwan to make an effort in revising the local regulations to strengthen the safety design of photovoltaic systems. Currently, the Taiwanese code for wind resistant design of structures does not have a clear explanation on photovoltaic systems, especially when the systems are arranged in arrayed format. Furthermore, when the arrayed photovoltaic system is mounted on the rooftop, the approaching flow is significantly altered by the building and led to different pressure pattern in the different area of the photovoltaic system. In this study, L-shape arrayed photovoltaic system is mounted on the ground of the wind tunnel and then mounted on the building rooftop. The system is consisted of 60 PV models. Each panel model is equivalent to a full size of 3.0 m in depth and 10.0 m in length. Six pressure taps are installed on the upper surface of the panel model and the other six are on the bottom surface to measure the net pressures. Wind attack angle is varied from 0° to 360° in a 10° interval for the worst concern due to wind direction. The sampling rate of the pressure scanning system is set as high enough to precisely estimate the peak pressure and at least 20 samples are recorded for good ensemble average stability. Each sample is equivalent to 10-minute time length in full scale. All the scale factors, including timescale, length scale, and velocity scale, are properly verified by similarity rules in low wind speed wind tunnel environment. The purpose of L-shape arrayed system is for the understanding the pressure characteristics at the corner area. Extreme value analysis is applied to obtain the design pressure coefficient for each net pressure. The commonly utilized Cook-and-Mayne coefficient, 78%, is set to the target non-exceedance probability for design pressure coefficients under Gumbel distribution. Best linear unbiased estimator method is utilized for the Gumbel parameter identification. Careful time moving averaging method is also concerned in data processing. Results show that when the arrayed photovoltaic system is mounted on the ground, the first row of the panels reveals stronger positive pressure than that mounted on the rooftop. Due to the flow separation occurring at the building edge, the first row of the panels on the rooftop is most in negative pressures; the last row, on the other hand, shows positive pressures because of the flow reattachment. Different areas also have different pressure patterns, which corresponds well to the regulations in ASCE7-16 describing the area division for design values. Several minor observations are found according to parametric studies, such as rooftop edge effect, parapet effect, building aspect effect, row interval effect, and so on. General comments are then made for the proposal of regulation revision in Taiwanese code.Keywords: aerodynamic force coefficient, ground-mounted, roof-mounted, wind tunnel test, photovoltaic
Procedia PDF Downloads 14497 Contactless Heart Rate Measurement System based on FMCW Radar and LSTM for Automotive Applications
Authors: Asma Omri, Iheb Sifaoui, Sofiane Sayahi, Hichem Besbes
Abstract:
Future vehicle systems demand advanced capabilities, notably in-cabin life detection and driver monitoring systems, with a particular emphasis on drowsiness detection. To meet these requirements, several techniques employ artificial intelligence methods based on real-time vital sign measurements. In parallel, Frequency-Modulated Continuous-Wave (FMCW) radar technology has garnered considerable attention in the domains of healthcare and biomedical engineering for non-invasive vital sign monitoring. FMCW radar offers a multitude of advantages, including its non-intrusive nature, continuous monitoring capacity, and its ability to penetrate through clothing. In this paper, we propose a system utilizing the AWR6843AOP radar from Texas Instruments (TI) to extract precise vital sign information. The radar allows us to estimate Ballistocardiogram (BCG) signals, which capture the mechanical movements of the body, particularly the ballistic forces generated by heartbeats and respiration. These signals are rich sources of information about the cardiac cycle, rendering them suitable for heart rate estimation. The process begins with real-time subject positioning, followed by clutter removal, computation of Doppler phase differences, and the use of various filtering methods to accurately capture subtle physiological movements. To address the challenges associated with FMCW radar-based vital sign monitoring, including motion artifacts due to subjects' movement or radar micro-vibrations, Long Short-Term Memory (LSTM) networks are implemented. LSTM's adaptability to different heart rate patterns and ability to handle real-time data make it suitable for continuous monitoring applications. Several crucial steps were taken, including feature extraction (involving amplitude, time intervals, and signal morphology), sequence modeling, heart rate estimation through the analysis of detected cardiac cycles and their temporal relationships, and performance evaluation using metrics such as Root Mean Square Error (RMSE) and correlation with reference heart rate measurements. For dataset construction and LSTM training, a comprehensive data collection system was established, integrating the AWR6843AOP radar, a Heart Rate Belt, and a smart watch for ground truth measurements. Rigorous synchronization of these devices ensured data accuracy. Twenty participants engaged in various scenarios, encompassing indoor and real-world conditions within a moving vehicle equipped with the radar system. Static and dynamic subject’s conditions were considered. The heart rate estimation through LSTM outperforms traditional signal processing techniques that rely on filtering, Fast Fourier Transform (FFT), and thresholding. It delivers an average accuracy of approximately 91% with an RMSE of 1.01 beat per minute (bpm). In conclusion, this paper underscores the promising potential of FMCW radar technology integrated with artificial intelligence algorithms in the context of automotive applications. This innovation not only enhances road safety but also paves the way for its integration into the automotive ecosystem to improve driver well-being and overall vehicular safety.Keywords: ballistocardiogram, FMCW Radar, vital sign monitoring, LSTM
Procedia PDF Downloads 7796 Increasing Prevalence of Multi-Allergen Sensitivities in Patients with Allergic Rhinitis and Asthma in Eastern India
Authors: Sujoy Khan
Abstract:
There is a rising concern with increasing allergies affecting both adults and children in rural and urban India. Recent report on adults in a densely populated North Indian city showed sensitization rates for house dust mite, parthenium, and cockroach at 60%, 40% and 18.75% that is now comparable to allergy prevalence in cities in the United States. Data from patients residing in the eastern part of India is scarce. A retrospective study (over 2 years) was done on patients with allergic rhinitis and asthma where allergen-specific IgE levels were measured to see the aero-allergen sensitization pattern in a large metropolitan city of East India. Total IgE and allergen-specific IgE levels were measured using ImmunoCAP (Phadia 100, Thermo Fisher Scientific, Sweden) using region-specific aeroallergens: Dermatophagoides pteronyssinus (d1); Dermatophagoides farinae (d2); cockroach (i206); grass pollen mix (gx2) consisted of Cynodon dactylon, Lolium perenne, Phleum pratense, Poa pratensis, Sorghum halepense, Paspalum notatum; tree pollen mix (tx3) consisted of Juniperus sabinoides, Quercus alba, Ulmus americana, Populus deltoides, Prosopis juliflora; food mix 1 (fx1) consisted of Peanut, Hazel nut, Brazil nut, Almond, Coconut; mould mix (mx1) consisted of Penicillium chrysogenum, Cladosporium herbarum, Aspergillus fumigatus, Alternaria alternate; animal dander mix (ex1) consisted of cat, dog, cow and horse dander; and weed mix (wx1) consists of Ambrosia elatior, Artemisia vulgaris, Plantago lanceolata, Chenopodium album, Salsola kali, following manufacturer’s instructions. As the IgE levels were not uniformly distributed, median values were used to represent the data. 92 patients with allergic rhinitis and asthma (united airways disease) were studied over 2 years including 21 children (age < 12 years) who had total IgE and allergen-specific IgE levels measured. The median IgE level was higher in 2016 than in 2015 with 60% of patients (adults and children) being sensitized to house dust mite (dual positivity for Dermatophagoides pteronyssinus and farinae). Of 11 children in 2015, whose total IgE ranged from 16.5 to >5000 kU/L, 36% of children were polysensitized (≥4 allergens), and 55% were sensitized to dust mites. Of 10 children in 2016, total IgE levels ranged from 37.5 to 2628 kU/L, and 20% were polysensitized with 60% sensitized to dust mites. Mould sensitivity was 10% in both of the years in the children studied. A consistent finding was that ragweed sensitization (molecular homology to Parthenium hysterophorus) appeared to be increasing across all age groups, and throughout the year, as reported previously by us where 25% of patients were sensitized. In the study sample overall, sensitizations to dust mite, cockroach, and parthenium were important risks in our patients with moderate to severe asthma that reinforces the importance of controlling indoor exposure to these allergens. Sensitizations to dust mite, cockroach and parthenium allergens are important predictors of asthma morbidity not only among children but also among adults in Eastern India.Keywords: aAeroallergens, asthma, dust mite, parthenium, rhinitis
Procedia PDF Downloads 20295 Biodegradation Effects onto Source Identification of Diesel Fuel Contaminated Soils
Authors: Colin S. Chen, Chien-Jung Tien, Hsin-Jan Huang
Abstract:
For weathering studies, the change of chemical constituents by biodegradation effect in diesel-contaminated soils are important factors to be considered, especially when there is a prolonged period of weathering processes. The objective was to evaluate biodegradation effects onto hydrocarbon fingerprinting and distribution patterns of diesel fuels, fuel source screening and differentiation, source-specific marker compounds, and diagnostic ratios of diesel fuel constituents by laboratory and field studies. Biodegradation processes of diesel contaminated soils were evaluated by experiments lasting for 15 and 12 months, respectively. The degradation of diesel fuel in top soils was affected by organic carbon content and biomass of microorganisms in soils. Higher depletion of total petroleum hydrocarbon (TPH), n-alkanes, and polynuclear aromatic hydrocarbons (PAHs) and their alkyl homologues was observed in soils containing higher organic carbon content and biomass. Decreased ratio of selected isoprenoids (i.e., pristane (Pr) and phytane (Ph)) including n-C17/pristane and n-C18/phytane was observed. The ratio of pristane/phytane was remained consistent for a longer period of time. At the end of the experimental period, a decrease of pristane/phytane was observed. Biomarker compounds of bicyclic sesquiterpanes (BS) were less susceptible to the effects of biodegradation. The ratios of characteristic factors such as C15 sesquiterpane/ 8β(H)-drimane (BS3/BS5), C15 sesquiterpane/ 8β(H)-drimane (BS4/BS5), 8β(H)-drimane/8β(H)-homodrimane (BS5/BS10), and C15 sesquiterpane/8β(H)-homodrimane (BS3/BS10) could be adopted for source identification of diesel fuels in top soil. However, for biodegradation processes lasted for six months but shorter than nine months, only BS3/BS5 and BS3/BS10 could be distinguished in two diesel fuels. In subsoil experiments (contaminated soil located 50 cm below), the ratios of characteristic factors including BS3/BS5, BS4/BS5, and BS5/BS10 were valid for source identification of two diesel fuels for nine month biodegradation. At the early stage of contamination, biomass of soil decreased significantly. However, 6 and 7 dominant species were found in soils in top soil experiments, respectively. With less oxygen and nutrients in subsoil, less biomass of microorganisms was observed in subsoils. Only 2 and 4 diesel-degrading species of microorganisms were identified in two soils, respectively. Parameters of double ratio such as fluorene/C1-fluorene: C2-phenanthrene/C3-phenanthrene (C0F/C1F:C2P/C3P) in both top and subsoil, C2-naphthalene/C2-phenanthrene: C1-phenanthrene/C3-phenanthrene (C2N/C2P:C1P/C3P), and C1-phenanthrene/C1-fluorene: C3-naphthalene/C3-phenanthrene (C1P/C1F:C3N/C3P) in subsoil could serve as forensic indicators in diesel contaminated sites. BS3/BS10:BS4/BS5 could be used in 6 to 9 months of biodegradation processes. Results of principal component analysis (PCA) indicated that source identification of diesel fuels in top soil could only be perofrmed for weathering process less than 6 months. For subsoil, identification can be conducted for weathering process less than 9 months. Ratio of isoprenoids (pristane and phytane) and PAHs might be affected by biodegradation in spilled sites. The ratios of bicyclic sesquiterpanes could serve as forensic indicators in diesel-contaminated soils. Finally, source identification was attemped for samples collected from different fuel contaminated sites by using the unique pattern of sesquiterpanes. It was anticipated that the information generated from this study would be adopted by decision makers to evaluate the liability of cleanup in diesel contaminated sites.Keywords: biodegradation, diagnostic ratio, diesel fuel, environmental forensics
Procedia PDF Downloads 23194 Longitudinal Examination of Depressive Symptoms among U.S. Parents who Gave Birth During the COVID-19 Pandemic
Authors: Amy Claridge, Tishra Beeson
Abstract:
Background: Maternal depression is a serious health concern impacting between 10-16% of birthing persons. It is associated with difficulty in emotional interaction and the formation of attachment bonds between parent and infant. Longitudinally, maternal depression can have severe, lasting impacts on both parent and child, increasing the risk for mental, social, and physical health issues. Rates of prenatal depression have been higher among individuals who were pregnant during the first year of the COVID-19 pandemic. Pregnant persons are considered a high-risk group for poor clinical outcomes from COVID-19 infection and may also have faced or continue to face additional stressors such as financial burdens, loss of income or employment, and the benefits accompanying employment, especially among those in the United States (U.S.). It is less clear whether individuals who gave birth during the pandemic continue to experience high levels of depressive symptoms or whether symptoms have been reduced as a pandemic response has shifted. The current study examined longitudinal reports of depressive symptoms among individuals in the U.S. who gave birth between March 2020 and September 2021. Methods: This mixed-method study involved surveys and interviews with birthing persons (18-45 years old) in their third trimester of pregnancy and at 8 weeks postpartum. Participants also completed a follow-up survey at 12-18 months postpartum. Participants were recruited using convenience methods via an online survey. Survey participants included 242 U.S. women who self-reported depressive symptoms (10-item Edinburgh Postnatal Depression Scale) at each data collection wave. A subset of 23 women participated in semi-structured prenatal and 8-week postpartum qualitative interviews. Follow-up interviews are currently underway and will be integrated into the presentation. Preliminary Results: Prenatal depressive symptoms were significantly positively correlated to 8-week and 12-18-month postpartum depressive symptoms. Participants who reported clinical levels of depression prenatally were 3.29 times (SE = .32, p < .001) more likely to report clinical levels of depression at 18 months postpartum. Those who reported clinical depression at 8-weeks postpartum were 6.52 times (SE = .41, p < .001) more likely to report clinical levels of depression at 18 months postpartum. Participants who gave birth earlier in the pandemic reported significantly higher prenatal (t(103) = 2.84, p < .01) and 8-week postpartum depressive symptoms (t(126) = 3.31, p < .001). Data from qualitative interviews contextualize the findings. Participants reported negative emotions during pregnancy, including sadness, grief, and anxiety. They attributed this in part to their experiences of pregnancy during the pandemic and uncertainty related to the birth experience and postpartum period. Postpartum interviews revealed some stressors specific to childbirth during the COVID-19 pandemic; however, most women reflected on positive experiences of birth and postpartum. Conclusions: Taken together, findings reveal a pattern of persistent depressive symptoms among U.S. parents who gave birth during the pandemic. Depressive symptoms are of significant concern for the health of parents and children, and the findings of this study suggest a need for continued mental health intervention for parents who gave birth during the pandemic. Policy and practice implications will be discussed.Keywords: maternal mental health, perinatal depression, postpartum depression, covid-19 pandemic
Procedia PDF Downloads 8093 Nano-Enabling Technical Carbon Fabrics to Achieve Improved Through Thickness Electrical Conductivity in Carbon Fiber Reinforced Composites
Authors: Angelos Evangelou, Katerina Loizou, Loukas Koutsokeras, Orestes Marangos, Giorgos Constantinides, Stylianos Yiatros, Katerina Sofocleous, Vasileios Drakonakis
Abstract:
Owing to their outstanding strength to weight properties, carbon fiber reinforced polymer (CFRPs) composites have attracted significant attention finding use in various fields (sports, automotive, transportation, etc.). The current momentum indicates that there is an increasing demand for their employment in high value bespoke applications such as avionics and electronic casings, damage sensing structures, EMI (electromagnetic interference) structures that dictate the use of materials with increased electrical conductivity both in-plane and through the thickness. Several efforts by research groups have focused on enhancing the through-thickness electrical conductivity of FRPs, in an attempt to combine the intrinsically high relative strengths exhibited with improved z-axis electrical response as well. However, only a limited number of studies deal with printing of nano-enhanced polymer inks to produce a pattern on dry fabric level that could be used to fabricate CFRPs with improved through thickness electrical conductivity. The present study investigates the employment of screen-printing process on technical dry fabrics using nano-reinforced polymer-based inks to achieve the required through thickness conductivity, opening new pathways for the application of fiber reinforced composites in niche products. Commercially available inks and in-house prepared inks reinforced with electrically conductive nanoparticles are employed, printed in different patterns. The aim of the present study is to investigate both the effect of the nanoparticle concentration as well as the droplet patterns (diameter, inter-droplet distance and coverage) to optimize printing for the desired level of conductivity enhancement in the lamina level. The electrical conductivity is measured initially at ink level to pinpoint the optimum concentrations to be employed using a “four-probe” configuration. Upon printing of the different patterns, the coverage of the dry fabric area is assessed along with the permeability of the resulting dry fabrics, in alignment with the fabrication of CFRPs that requires adequate wetting by the epoxy matrix. Results demonstrated increased electrical conductivities of the printed droplets, with increase of the conductivity from the benchmark value of 0.1 S/M to between 8 and 10 S/m. Printability of dense and dispersed patterns has exhibited promising results in terms of increasing the z-axis conductivity without inhibiting the penetration of the epoxy matrix at the processing stage of fiber reinforced composites. The high value and niche prospect of the resulting applications that can stem from CFRPs with increased through thickness electrical conductivities highlights the potential of the presented endeavor, signifying screen printing as the process to to nano-enable z-axis electrical conductivity in composite laminas. This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation (Project: ENTERPRISES/0618/0013).Keywords: CFRPs, conductivity, nano-reinforcement, screen-printing
Procedia PDF Downloads 15692 Assessment of Biofilm Production Capacity of Industrially Important Bacteria under Electroinductive Conditions
Authors: Omolola Ojetayo, Emmanuel Garuba, Obinna Ajunwa, Abiodun A. Onilude
Abstract:
Introduction: Biofilm is a functional community of microorganisms that are associated with a surface or an interface. These adherent cells become embedded within an extracellular matrix composed of polymeric substances, i.e., biofilms refer to biological deposits consisting of both microbes and their extracellular products on biotic and abiotic surfaces. Despite their detrimental effects in medicine, biofilms as natural cell immobilization have found several applications in biotechnology, such as in the treatment of wastewater, bioremediation and biodegradation, desulfurization of gas, and conversion of agro-derived materials into alcohols and organic acids. The means of enhancing immobilized cells have been chemical-inductive, and this affects the medium composition and final product. Physical factors including electrical, magnetic, and electromagnetic flux have shown potential for enhancing biofilms depending on the bacterial species, nature, and intensity of emitted signals, the duration of exposure, and substratum used. However, the concept of cell immobilisation by electrical and magnetic induction is still underexplored. Methods: To assess the effects of physical factors on biofilm formation, six American typed culture collection (Acetobacter aceti ATCC15973, Pseudomonas aeruginosa ATCC9027, Serratia marcescens ATCC14756, Gluconobacter oxydans ATCC19357, Rhodobacter sphaeroides ATCC17023, and Bacillus subtilis ATCC6633) were used. Standard culture techniques for bacterial cells were adopted. Natural autoimmobilisation potentials of test bacteria were carried out by simple biofilms ring formation on tubes, while crystal violet binding assay techniques were adopted in the characterisation of biofilm quantity. Electroinduction of bacterial cells by direct current (DC) application in cell broth, static magnetic field exposure, and electromagnetic flux were carried out, and autoimmobilisation of cells in a biofilm pattern was determined on various substrata tested, including wood, glass, steel, polyvinylchloride (PVC) and polyethylene terephthalate. Biot Savart law was used in quantifying magnetic field intensity, and statistical analyses of data obtained were carried out using the analyses of variance (ANOVA) as well as other statistical tools. Results: Biofilm formation by the selected test bacteria was enhanced by the physical factors applied. Electromagnetic induction had the greatest effect on biofilm formation, with magnetic induction producing the least effect across all substrata used. Microbial cell-cell communication could be a possible means via which physical signals affected the cells in a polarisable manner. Conclusion: The enhancement of biofilm formation by bacteria using physical factors has shown that their inherent capability as a cell immobilization method can be further optimised for industrial applications. A possible relationship between the presence of voltage-dependent channels, mechanosensitive channels, and bacterial biofilms could shed more light on this phenomenon.Keywords: bacteria, biofilm, cell immobilization, electromagnetic induction, substrata
Procedia PDF Downloads 19391 Growth Mechanism and Sensing Behaviour of Sn Doped ZnO Nanoprisms Prepared by Thermal Evaporation Technique
Authors: Sudip Kumar Sinha, Saptarshi Ghosh
Abstract:
While there’s a perpetual buzz around zinc oxide (ZnO) superstructures for their unique optical features, the versatile material has been constantly utilized to manifest tailored electronic properties through rendition of distinct morphologies. And yet, the unorthodox approach of implementing the novel 1D nanostructures of ZnO (pristine or doped) for volatile sensing applications has ample scope to accommodate new unconventional morphologies. In the last two decades, solid-state sensors have attracted much curiosity for their relevance in identifying pollutant, toxic and other industrial gases. In particular gas sensors based on metal oxide semiconducting (wide Eg) nanomaterials have recently attracted intensive attention owing to their high sensitivity and fast response and recovery time. These materials when exposed to air, the atmospheric O2 dissociates and get absorb on the surface of the sensors by trapping the outermost shell electrons. Finally a depleted zone on the surface of the sensors is formed, that enhances the potential barrier height at grain boundary . Once a target gas is exposed to the sensor, the chemical interaction between the chemisorbed oxygen and the specific gas liberates the trapped electrons. Therefore altering the amount of adsorbate is a considerable approach to improve the sensitivity of any target gas/vapour molecule. Likewise, this study presents a spontaneous but self catalytic creation of Sn-doped ZnO hexagonal nanoprisms on Si (100) substrates through thermal evaporation-condensation method, and their subsequent deployment for volatile sensing. In particular, the sensors were utilized to detect molecules of ethanol, acetone and ammonia below their permissible exposure limits which returned sensitivities of around 85%, 80% and 50% respectively. The influence of Sn concentration on the growth, microstructural and optical properties of the nanoprisms along with its role in augmenting the sensing parameters has been detailed. The single-crystalline nanostructures have a typical diameter ranging from 300 to 500 nm and a length that extends up to few micrometers. HRTEM images confirmed the hexagonal crystallography for the nanoprisms, while SAED pattern asserted the single crystalline nature. The growth habit is along the low index <0001>directions. It has been seen that the growth mechanism of the as-deposited nanostructures are directly influenced by varying supersaturation ratio, fairly high substrate temperatures, and specified surface defects in certain crystallographic planes, all acting cooperatively decide the final product morphology. Room temperature photoluminescence (PL) spectra of this rod like structures exhibits a weak ultraviolet (UV) emission peak at around 380 nm and a broad green emission peak in the 505 nm regime. An estimate of the sensing parameters against dispensed target molecules highlighted the potential for the nanoprisms as an effective volatile sensing material. The Sn-doped ZnO nanostructures with unique prismatic morphology may find important applications in various chemical sensors as well as other potential nanodevices.Keywords: gas sensor, HRTEM, photoluminescence, ultraviolet, zinc oxide
Procedia PDF Downloads 24390 The Study of Adsorption of RuP onto TiO₂ (110) Surface Using Photoemission Deposited by Electrospray
Authors: Tahani Mashikhi
Abstract:
Countries worldwide rely on electric power as a critical economic growth and progress factor. Renewable energy sources, often referred to as alternative energy sources, such as wind, solar energy, geothermal energy, biomass, and hydropower, have garnered significant interest in response to the rising consumption of fossil fuels. Dye-sensitized solar cells (DSSCs) are a highly promising alternative for energy production as they possess numerous advantages compared to traditional silicon solar cells and thin-film solar cells. These include their low cost, high flexibility, straightforward preparation methodology, ease of production, low toxicity, different colors, semi-transparent quality, and high power conversion efficiency. A solar cell, also known as a photovoltaic cell, is a device that converts the energy of light from the sun into electrical energy through the photovoltaic effect. The Gratzel cell is the initial dye-sensitized solar cell made from colloidal titanium dioxide. The operational mechanism of DSSCs relies on various key elements, such as a layer composed of wide band gap semiconducting oxide materials (e.g. titanium dioxide [TiO₂]), as well as a photosensitizer or dye that absorbs sunlight to inject electrons into the conduction band, the electrolyte utilizes the triiodide/iodide redox pair (I− /I₃−) to regenerate dye molecules and a counter electrode made of carbon or platinum facilitates the movement of electrons across the circuit. Electrospray deposition permits the deposition of fragile, non-volatile molecules in a vacuum environment, including dye sensitizers, complex molecules, nanoparticles, and biomolecules. Surface science techniques, particularly X-ray photoelectron spectroscopy, are employed to examine dye-sensitized solar cells. This study investigates the possible application of electrospray deposition to build high-quality layers in situ in a vacuum. Two distinct categories of dyes can be employed as sensitizers in DSSCs: organometallic semiconductor sensitizers and purely organic dyes. Most organometallic dyes, including Ru533, RuC, and RuP, contain a ruthenium atom, which is a rare element. This ruthenium atom enhances the efficiency of dye-sensitized solar cells (DSSCs). These dyes are characterized by their high cost and typically appear as dark purple powders. On the other hand, organic dyes, such as SQ2, RK1, D5, SC4, and R6, exhibit reduced efficacy due to the lack of a ruthenium atom. These dyes appear in green, red, orange, and blue powder-colored. This study will specifically concentrate on metal-organic dyes. The adsorption of dye molecules onto the rutile TiO₂ (110) surface has been deposited in situ under ultra-high vacuum conditions by combining an electrospray deposition method with X-ray photoelectron spectroscopy. The X-ray photoelectron spectroscopy (XPS) technique examines chemical bonds and interactions between molecules and TiO₂ surfaces. The dyes were deposited at varying times, from 5 minutes to 40 minutes, to achieve distinct layers of coverage categorized as sub-monolayer, monolayer, few layers, or multilayer. Based on the O 1s photoelectron spectra data, it can be observed that the monolayer establishes a strong chemical bond with the Ti atoms of the oxide substrate by deprotonating the carboxylic acid groups through 2M-bidentate bridging anchors. The C 1s and N 1s photoelectron spectra indicate that the molecule remains intact at the surface. This can be due to the existence of all functional groups and a ruthenium atom, where the binding energy of Ru 3d is consistent with Ru2+.Keywords: deposit, dye, electrospray, TiO₂, XPS
Procedia PDF Downloads 5289 Soil Wind Erosion, Nutrients, and Crop Yield Response to Conservation Tillage in North China: A Field Study in a Semi-Arid and Wind Erosion Region after 9 Years
Authors: Fahui Jiang, Xinwei Xue, Liyan Zhang, Yanyan Zuo, Hao Zhang, Wei Zheng, Limei Bian, Lingling Hu, Chunlei Hao, Jianghong Du, Yanhua Ci, Ruibao Cheng, Ciren Dawa, Mithun Biswas, Mahbub Ul Islam, Fansheng Meng, Xinhua Peng
Abstract:
Context: Soil erosion is a global issue that poses a significant threat to agricultural sustainability, particular in northern of China, which experiences the most severe wind erosion worldwide. Conservation tillage is vital in arid regions for preserving soil, enhancing water retention, and sustaining agricultural productivity in the face of limited rainfall. However, the long-term impacts of conservation tillage in semi-arid regions, especially its effects on soil health, wind erosion, and crop productivity, are poorly understood. Objective: Assess the impacts of conservation tillage on soil hydrothermal properties, wind erosion rates, nutrient dynamics, and crop yield, as well as elucidating the underlying mechanisms driving these impacts. Methods: A 9-year in-situ study was conducted in Chifeng, Inner Mongolia Province, comparing conventional rotary tillage (CK) with two conservation tillage methods: no-tillage with straw mulching (CT-1) and no-tillage with standing straw (CT-2). Results: Soil bulk density increased significantly under CT-1 and CT-2 in the topsoil layer (0–20 cm) compared with CK. Soil moisture content exhibited a significant increase pattern under CT-1 and CT-2, while soil temperature decreased under CT-1 but increased under CT-2, relative to CK. These variations in soil hydrothermal properties were more pronounced during the early (critical) crop growth stages and higher temperature conditions (afternoon). Soil loss due to wind erosion, accumulated from a height of 0–50 cm on the land surface, was reduced by 31.3 % and 25.5 % under CT-1 and by 51.5 % and 38.2 % under CT-2 in 2021 and 2022, respectively, compared to CK. Furthermore, the proportion of soil finer particles (clay and silt) increased under CT due to reduced wind erosion. Soil organic carbon significantly increased throughout the soil profile (0–60 cm), particularly in the deeper layers (20–40 cm and 40–60 cm), compared to the surface layer (0–20 cm), with corresponding increases of +57.0 % and +0.18 %, +66.2 % and +80.3 %, and +27.1 % and +14.2 % under CT-1 and CT-2, respectively, relative to CK in 2021. The concentrations of soil nutrients such as total nitrogen, available nitrogen, and available phosphorus and potassium, consistently increased under CT-1 and CT-2 compared to CK, with notable enhancements observed in the topsoil layer (0–20 cm) before seedling time, albeit declining after crop harvest. Generally, CT treatments significantly increased dry matter accumulation (+4.8 % to +30.8 %) and grain yield (+2.22 % to +0.44 %) of maize compared to CK in the semi-arid region over the 9-year study period, particularly notable in dry years and with long-term application. Conclusions and implications: Conservation tillage in semi-arid regions enhanced soil properties, reduced soil erosion, and increased soil nutrient dynamics and crop yield, promising sustainable agricultural practices with environmental benefits. Furthermore, our findings suggest that no-tillage with straw mulching is more suitable for dry and wind erosion sensitive regions.Keywords: no tillage, conventional tillage, soil water, soil temperature, soil physics
Procedia PDF Downloads 1888 Malaria Menace in Pregnancy; Hard to Ignore
Authors: Nautiyal Ruchira, Nautiyal Hemant, Chaudhury Devnanda, Bhargava Surbhi, Chauhan Nidhi
Abstract:
Introduction: South East Asian region contributes 2.5 million cases of malaria each year to the global burden of 300 to 500 million of which 76% is reported from India. Government of India launched a national program almost half a century ago, still malaria remains a major public health challenge. Pregnant women are more susceptible to severe malaria and its fetomaternal complications. Inadequate surveillance and under-reporting underestimates the problem. Aim: Present study aimed to analyze the clinical course and pattern of malaria during pregnancy and to study the feto-maternal outcome. Methodology: This is a prospective observational study carried out at Himalayan Institute of Medical Sciences – a tertiary care center in the sub-Himalayan state of Uttarakhand, Northern India. All the pregnant women with malaria and its complications were recruited in the study during 2009 to 2014 which included referred cases from the state of western Uttar Pradesh. A thorough history and clinical examination were carried out to assess maternal and fetal condition. Relevant investigations including haemogram, platelet count, LFT, RFT, and USG was done. Blood slides and rapid diagnostic tests were done to diagnose the type of malaria.The primary outcomes measured were the type of malaria infection, maternal complications associated with malaria, outcome of pregnancy and effect on the fetus. Results: 67 antenatal cases with malaria infection were studied. 71% patients were diagnosed with plasmodium vivax infection, 25% cases were plasmodium falciparum positive and in 3% cases mixed infection was found. 38(56%) patients were primigravida and 29(43%) were multiparous. Most of the patients had already received some treatment from their local doctors and presented with severe malaria with the complications. Thrombocytopenia was the commonest manifestation seen in 35(52%) patients, jaundice in 28%, severe anemia in 18%, and severe oligohydramnios in 10% and renal failure in 6% cases. Regarding pregnancy outcome there were 44 % preterm deliveries, 22% had IUFD and abortions in 6% cases.20% of newborn were low birth weight and 6% were IUGR. There was only one maternal death which occurred due to ARDS in falciparum malaria. Although Plasmodium vivax was the main parasite considering the severity of clinical presentation, all the patients received intensive care. As most of the patients had received chloroquine therapy hence they were treated with IV artesunate followed by oral artemesinin combination therapy. Other therapies in the form of packed RBC’s and platelet transfusions, dialysis and ventilator support were provided when required. Conclusion: Even in areas with annual parasite index (API) less than 2 like ours, malaria in pregnancy could be an alarming problem. Vivax malaria cannot be considered benign in pregnancy because of high incidence of morbidity. Prompt diagnosis and aggressive treatment can reduce morbidity and mortality significantly. Increased community level research, integrating ANC checkups with the distribution of insecticide-treated nets in areas of high endemicity, imparting education and awareness will strengthen the existing control strategies.Keywords: severe malaria, pregnancy, plasmodium vivax, plasmodium falciparum
Procedia PDF Downloads 28387 From Faces to Feelings: Exploring Emotional Contagion and Empathic Accuracy through the Enfacement Illusion
Authors: Ilenia Lanni, Claudia Del Gatto, Allegra Indraccolo, Riccardo Brunetti
Abstract:
Empathy represents a multifaceted construct encompassing affective and cognitive components. Among these, empathic accuracy—defined as the ability to accurately infer another person’s emotions or mental state—plays a pivotal role in fostering empathetic understanding. Emotional contagion, the automatic process through which individuals mimic and synchronize facial expressions, vocalizations, and postures, is considered a foundational mechanism for empathy. This embodied simulation enables shared emotional experiences and facilitates the recognition of others’ emotional states, forming the basis of empathic accuracy. Facial mimicry, an integral part of emotional contagion, creates a physical and emotional resonance with others, underscoring its potential role in enhancing empathic understanding. Building on these findings, the present study explores how manipulating emotional contagion through the enfacement illusion impacts empathic accuracy, particularly in the recognition of complex emotional expressions. The enfacement illusion was implemented as a visuo-tactile multisensory manipulation, during which participants experienced synchronous and spatially congruent tactile stimulation on their own face while observing the same stimulation being applied to another person’s face. This manipulation enhances facial mimicry, which is hypothesized to play a key role in improving empathic accuracy. Following the enfacement illusion, participants completed a modified version of the Diagnostic Analysis of Nonverbal Accuracy–Form 2 (DANVA2-AF). The task included 48 images of adult faces expressing happiness, sadness, or morphed emotions blending neutral with happiness or sadness to increase recognition difficulty. These images featured both familiar and unfamiliar faces, with familiar faces belonging to the actors involved in the prior visuo-tactile stimulation. Participants were required to identify the target’s emotional state as either "happy" or "sad," with response accuracy and reaction times recorded. Results from this study indicate that emotional contagion, as manipulated through the enfacement illusion, significantly enhances empathic accuracy, particularly for the recognition of happiness. Participants demonstrated greater accuracy and faster response times in identifying happiness when viewing familiar faces compared to unfamiliar ones. These findings suggest that the enfacement illusion strengthens emotional resonance and facilitates the processing of positive emotions, which are inherently more likely to be shared and mimicked. Conversely, for the recognition of sadness, an opposite but non-significant trend was observed. Specifically, participants were slightly faster at recognizing sadness in unfamiliar faces compared to familiar ones. This pattern suggests potential differences in how positive and negative emotions are processed within the context of facial mimicry and emotional contagion, warranting further investigation. These results provide insights into the role of facial mimicry in emotional contagion and its selective impact on empathic accuracy. This study highlights how the enfacement illusion can precisely modulate the recognition of specific emotions, offering a deeper understanding of the mechanisms underlying empathy.Keywords: empathy, emotional contagion, enfacement illusion, emotion recognition
Procedia PDF Downloads 1886 Digital Transformation in Fashion System Design: Tools and Opportunities
Authors: Margherita Tufarelli, Leonardo Giliberti, Elena Pucci
Abstract:
The fashion industry's interest in virtuality is linked, on the one hand, to the emotional and immersive possibilities of digital resources and the resulting languages and, on the other, to the greater efficiency that can be achieved throughout the value chain. The interaction between digital innovation and deep-rooted manufacturing traditions today translates into a paradigm shift for the entire fashion industry where, for example, the traditional values of industrial secrecy and know-how give way to experimentation in an open as well as participatory way, and the complete emancipation of virtual reality from actual 'reality'. The contribution aims to investigate the theme of digitisation in the Italian fashion industry, analysing its opportunities and the criticalities that have hindered its diffusion. There are two reasons why the most common approach in the fashion sector is still analogue: (i) the fashion product lives in close contact with the human body, so the sensory perception of materials plays a central role in both the use and the design of the product, but current technology is not able to restore the sense of touch; (ii) volumes are obtained by stitching flat surfaces that once assembled, given the flexibility of the material, can assume almost infinite configurations. Managing the fit and styling of virtual garments involves a wide range of factors, including mechanical simulation, collision detection, and user interface techniques for garment creation. After briefly reviewing some of the salient historical milestones in the resolution of problems related to the digital simulation of deformable materials and the user interface for the procedures for the realisation of the clothing system, the paper will describe the operation and possibilities offered today by the latest generation of specialised software. Parametric avatars and digital sartorial approach; drawing tools optimised for pattern making; materials both from the point of view of simulated physical behaviour and of aesthetic performance, tools for checking wearability, renderings, but also tools and procedures useful to companies both for dialogue with prototyping software and machinery and for managing the archive and the variants to be made. The article demonstrates how developments in technology and digital procedures now make it possible to intervene in different stages of design in the fashion industry. An integrated and additive process in which the constructed 3D models are usable both in the prototyping and communication of physical products and in the possible exclusively digital uses of 3D models in the new generation of virtual spaces. Mastering such tools requires the acquisition of specific digital skills and, at the same time, traditional skills for the design of the clothing system, but the benefits are manifold and applicable to different business dimensions. We are only at the beginning of the global digital transformation: the emergence of new professional figures and design dynamics leaves room for imagination, but in addition to applying digital tools to traditional procedures, traditional fashion know-how needs to be transferred into emerging digital practices to ensure the continuity of the technical-cultural heritage beyond the transformation.Keywords: digital fashion, digital technology and couture, digital fashion communication, 3D garment simulation
Procedia PDF Downloads 7885 ARGO: An Open Designed Unmanned Surface Vehicle Mapping Autonomous Platform
Authors: Papakonstantinou Apostolos, Argyrios Moustakas, Panagiotis Zervos, Dimitrios Stefanakis, Manolis Tsapakis, Nektarios Spyridakis, Mary Paspaliari, Christos Kontos, Antonis Legakis, Sarantis Houzouris, Konstantinos Topouzelis
Abstract:
For years unmanned and remotely operated robots have been used as tools in industry research and education. The rapid development and miniaturization of sensors that can be attached to remotely operated vehicles in recent years allowed industry leaders and researchers to utilize them as an affordable means for data acquisition in air, land, and sea. Despite the recent developments in the ground and unmanned airborne vehicles, a small number of Unmanned Surface Vehicle (USV) platforms are targeted for mapping and monitoring environmental parameters for research and industry purposes. The ARGO project is developed an open-design USV equipped with multi-level control hardware architecture and state-of-the-art sensors and payloads for the autonomous monitoring of environmental parameters in large sea areas. The proposed USV is a catamaran-type USV controlled over a wireless radio link (5G) for long-range mapping capabilities and control for a ground-based control station. The ARGO USV has a propulsion control using 2x fully redundant electric trolling motors with active vector thrust for omnidirectional movement, navigation with opensource autopilot system with high accuracy GNSS device, and communication with the 2.4Ghz digital link able to provide 20km of Line of Sight (Los) range distance. The 3-meter dual hull design and composite structure offer well above 80kg of usable payload capacity. Furthermore, sun and friction energy harvesting methods provide clean energy to the propulsion system. The design is highly modular, where each component or payload can be replaced or modified according to the desired task (industrial or research). The system can be equipped with Multiparameter Sonde, measuring up to 20 water parameters simultaneously, such as conductivity, salinity, turbidity, dissolved oxygen, etc. Furthermore, a high-end multibeam echo sounder can be installed in a specific boat datum for shallow water high-resolution seabed mapping. The system is designed to operate in the Aegean Sea. The developed USV is planned to be utilized as a system for autonomous data acquisition, mapping, and monitoring bathymetry and various environmental parameters. ARGO USV can operate in small or large ports with high maneuverability and endurance to map large geographical extends at sea. The system presents state of the art solutions in the following areas i) the on-board/real-time data processing/analysis capabilities, ii) the energy-independent and environmentally friendly platform entirely made using the latest aeronautical and marine materials, iii) the integration of advanced technology sensors, all in one system (photogrammetric and radiometric footprint, as well as its connection with various environmental and inertial sensors) and iv) the information management application. The ARGO web-based application enables the system to depict the results of the data acquisition process in near real-time. All the recorded environmental variables and indices are presented, allowing users to remotely access all the raw and processed information using the implemented web-based GIS application.Keywords: monitor marine environment, unmanned surface vehicle, mapping bythometry, sea environmental monitoring
Procedia PDF Downloads 14784 Assessing the Clinicians’ Perspectives on Formulation with Minoxidil, Finasteride, and Capixyl™ in Androgenetic Alopecia: A Nationwide Dermatologist Survey
Authors: Sharma Aseem, Dhurat Rachita, Pawar Varsha, Khalse Manisha
Abstract:
Introduction: Androgenetic alopecia (AGA) is a prevalent condition characterized by progressive hair thinning driven by genetic and androgen-related factors. The current FDA-approved treatments include oral finasteride and topical minoxidil, though many patients seek combination therapies to enhance results. This study aims to evaluate the effectiveness of a combination therapy involving Minoxidil, Finasteride, and Capixyl™ based on feedback from dermatologists. Methodology: A survey, validated by experts, was distributed to 29 leading dermatologists across India (in Tier 1 and 2 cities). The survey examined real-world clinical experiences, focusing on patient outcomes and the overall effectiveness of the mentioned formulation. Results: Among the surveyed dermatologists, 41.4% identified women aged 35-40 as the most frequently diagnosed with female pattern hair loss. The combination therapy with Minoxidil, Finasteride, and Capixyl™ was utilized by 34.5% of dermatologists for over 60 patients per month. The majority highlighted the benefits of this combination therapy, which acts via multiple mechanisms, such as vasodilation and dihydrotestosterone (DHT) receptor blockade, resulting in improved hair regrowth. Additionally, patients demonstrated better clinical outcomes, enhanced compliance, and fewer side effects. Demographically, younger patients, particularly those with AGA for less than 10 years, responded more positively to the treatment. Early intervention led to quicker and more significant results. Overall satisfaction among dermatologists was high, with 86.2% expressing positive feedback on the therapy. In terms of treatment outcomes, 51.7% of dermatologists observed visible results within 4-6 months, while 34.5% noticed a significant reduction in hair fall within 8-12 weeks. Improvements in scalp health were reported by 48.3%, and 51.7% saw an increased hair density within 3-4 months. Despite mild side effects such as scalp irritation, dryness, flaking, and occasional issues like folliculitis, headaches, itching, and redness, patient satisfaction remained high. Dermatologists reported that 93.1% of patients experienced faster and better hair regrowth with Capixyl™ compared to Minoxidil alone. Suggestions for improving the formulation included incorporating peptides like Saw Palmetto and enhancing product packaging to better meet patient needs. Discussion: The combination of Minoxidil, Finasteride, and Capixyl™ yielded positive clinical outcomes, especially in improving hair density, scalp health, and overall patient satisfaction. Dermatologists found that Capixyl™ peptides enhanced the therapeutic effect, promoting hair regrowth and improving compliance. While side effects were generally mild, there were suggestions to further improve the formulation by adding additional peptides like Saw Palmetto. Conclusion: The combination of Minoxidil and Finasteride fortified with Capixyl™ presents a promising therapeutic option for managing AGA. Dermatologists reported significant improvements in hair density, scalp health, and patient satisfaction. With its favorable efficacy and manageable side effects, this formulation proves to be a valuable addition to the treatment landscape for AGA.Keywords: androgenetic alopecia, combination therapy, minoxidil, finasteride, capixyl
Procedia PDF Downloads 24