Search results for: heat transfer and pressure drop
4654 Numerical Simulation of the Production of Ceramic Pigments Using Microwave Radiation: An Energy Efficiency Study Towards the Decarbonization of the Pigment Sector
Authors: Pedro A. V. Ramos, Duarte M. S. Albuquerque, José C. F. Pereira
Abstract:
Global warming mitigation is one of the main challenges of this century, having the net balance of greenhouse gas (GHG) emissions to be null or negative in 2050. Industry electrification is one of the main paths to achieving carbon neutrality within the goals of the Paris Agreement. Microwave heating is becoming a popular industrial heating mechanism due to the absence of direct GHG emissions, but also the rapid, volumetric, and efficient heating. In the present study, a mathematical model is used to simulate the production using microwave heating of two ceramic pigments, at high temperatures (above 1200 Celsius degrees). The two pigments studied were the yellow (Pr, Zr)SiO₂ and the brown (Ti, Sb, Cr)O₂. The chemical conversion of reactants into products was included in the model by using the kinetic triplet obtained with the model-fitting method and experimental data present in the Literature. The coupling between the electromagnetic, thermal, and chemical interfaces was also included. The simulations were computed in COMSOL Multiphysics. The geometry includes a moving plunger to allow for the cavity impedance matching and thus maximize the electromagnetic efficiency. To accomplish this goal, a MATLAB controller was developed to automatically search the position of the moving plunger that guarantees the maximum efficiency. The power is automatically and permanently adjusted during the transient simulation to impose stationary regime and total conversion, the two requisites of every converged solution. Both 2D and 3D geometries were used and a parametric study regarding the axial bed velocity and the heat transfer coefficient at the boundaries was performed. Moreover, a Verification and Validation study was carried out by comparing the conversion profiles obtained numerically with the experimental data available in the Literature; the numerical uncertainty was also estimated to attest to the result's reliability. The results show that the model-fitting method employed in this work is a suitable tool to predict the chemical conversion of reactants into the pigment, showing excellent agreement between the numerical results and the experimental data. Moreover, it was demonstrated that higher velocities lead to higher thermal efficiencies and thus lower energy consumption during the process. This work concludes that the electromagnetic heating of materials having high loss tangent and low thermal conductivity, like ceramic materials, maybe a challenge due to the presence of hot spots, which may jeopardize the product quality or even the experimental apparatus. The MATLAB controller increased the electromagnetic efficiency by 25% and global efficiency of 54% was obtained for the titanate brown pigment. This work shows that electromagnetic heating will be a key technology in the decarbonization of the ceramic sector as reductions up to 98% in the specific GHG emissions were obtained when compared to the conventional process. Furthermore, numerical simulations appear as a suitable technique to be used in the design and optimization of microwave applicators, showing high agreement with experimental data.Keywords: automatic impedance matching, ceramic pigments, efficiency maximization, high-temperature microwave heating, input power control, numerical simulation
Procedia PDF Downloads 1414653 Multi-Scale Modelling of the Cerebral Lymphatic System and Its Failure
Authors: Alexandra K. Diem, Giles Richardson, Roxana O. Carare, Neil W. Bressloff
Abstract:
Alzheimer's disease (AD) is the most common form of dementia and although it has been researched for over 100 years, there is still no cure or preventive medication. Its onset and progression is closely related to the accumulation of the neuronal metabolite Aβ. This raises the question of how metabolites and waste products are eliminated from the brain as the brain does not have a traditional lymphatic system. In recent years the rapid uptake of Aβ into cerebral artery walls and its clearance along those arteries towards the lymph nodes in the neck has been suggested and confirmed in mice studies, which has led to the hypothesis that interstitial fluid (ISF), in the basement membranes in the walls of cerebral arteries, provides the pathways for the lymphatic drainage of Aβ. This mechanism, however, requires a net reverse flow of ISF inside the blood vessel wall compared to the blood flow and the driving forces for such a mechanism remain unknown. While possible driving mechanisms have been studied using mathematical models in the past, a mechanism for net reverse flow has not been discovered yet. Here, we aim to address the question of the driving force of this reverse lymphatic drainage of Aβ (also called perivascular drainage) by using multi-scale numerical and analytical modelling. The numerical simulation software COMSOL Multiphysics 4.4 is used to develop a fluid-structure interaction model of a cerebral artery, which models blood flow and displacements in the artery wall due to blood pressure changes. An analytical model of a layer of basement membrane inside the wall governs the flow of ISF and, therefore, solute drainage based on the pressure changes and wall displacements obtained from the cerebral artery model. The findings suggest that an active role in facilitating a reverse flow is played by the components of the basement membrane and that stiffening of the artery wall during age is a major risk factor for the impairment of brain lymphatics. Additionally, our model supports the hypothesis of a close association between cerebrovascular diseases and the failure of perivascular drainage.Keywords: Alzheimer's disease, artery wall mechanics, cerebral blood flow, cerebral lymphatics
Procedia PDF Downloads 5324652 Investigations on the Application of Avalanche Simulations: A Survey Conducted among Avalanche Experts
Authors: Korbinian Schmidtner, Rudolf Sailer, Perry Bartelt, Wolfgang Fellin, Jan-Thomas Fischer, Matthias Granig
Abstract:
This study focuses on the evaluation of snow avalanche simulations, based on a survey that has been carried out among avalanche experts. In the last decades, the application of avalanche simulation tools has gained recognition within the realm of hazard management. Traditionally, avalanche runout models were used to predict extreme avalanche runout and prepare avalanche maps. This has changed rather dramatically with the application of numerical models. For safety regulations such as road safety simulation tools are now being coupled with real-time meteorological measurements to predict frequent avalanche hazard. That places new demands on model accuracy and requires the simulation of physical processes that previously could be ignored. These simulation tools are based on a deterministic description of the avalanche movement allowing to predict certain quantities (e.g. pressure, velocities, flow heights, runout lengths etc.) of the avalanche flow. Because of the highly variable regimes of the flowing snow, no uniform rheological law describing the motion of an avalanche is known. Therefore, analogies to fluid dynamical laws of other materials are stated. To transfer these constitutional laws to snow flows, certain assumptions and adjustments have to be imposed. Besides these limitations, there exist high uncertainties regarding the initial and boundary conditions. Further challenges arise when implementing the underlying flow model equations into an algorithm executable by a computer. This implementation is constrained by the choice of adequate numerical methods and their computational feasibility. Hence, the model development is compelled to introduce further simplifications and the related uncertainties. In the light of these issues many questions arise on avalanche simulations, on their assets and drawbacks, on potentials for improvements as well as their application in practice. To address these questions a survey among experts in the field of avalanche science (e.g. researchers, practitioners, engineers) from various countries has been conducted. In the questionnaire, special attention is drawn on the expert’s opinion regarding the influence of certain variables on the simulation result, their uncertainty and the reliability of the results. Furthermore, it was tested to which degree a simulation result influences the decision making for a hazard assessment. A discrepancy could be found between a large uncertainty of the simulation input parameters as compared to a relatively high reliability of the results. This contradiction can be explained taking into account how the experts employ the simulations. The credibility of the simulations is the result of a rather thoroughly simulation study, where different assumptions are tested, comparing the results of different flow models along with the use of supplemental data such as chronicles, field observation, silent witnesses i.a. which are regarded as essential for the hazard assessment and for sanctioning simulation results. As the importance of avalanche simulations grows within the hazard management along with their further development studies focusing on the modeling fashion could contribute to a better understanding how knowledge of the avalanche process can be gained by running simulations.Keywords: expert interview, hazard management, modeling, simulation, snow avalanche
Procedia PDF Downloads 3304651 Effect of Iron Ore Tailings on the Properties of Fly-ash Cement Concrete
Authors: Sikiru F. Oritola, Abd Latif Saleh, Abd Rahman Mohd Sam, Rozana Zakaria, Mushairry Mustaffar
Abstract:
The strength of concrete varies with the types of material used; the material used within concrete can also result in different strength due to improper selection of the component. Each material brings a different aspect to the concrete. This work studied the effect of using Iron ore Tailings (IOTs) as partial replacement for sand on some properties of concrete using Fly ash Cement as the binder. The sieve analysis and some other basic properties of the materials used in producing concrete samples were first determined. Two brands of Fly ash Cement were studied. For each brand of Fly ash Cement, five different types of concrete samples denoted as HCT0, HCT10, HCT20, HCT30 and HCT40, for the first brand and PCT0, PCT10, PCT20, PCT30 and PCT40, for the second brand were produced. The percentage of Tailings as partial replacement for sand in the sample was varied from 0% to 40% at 10% interval. For each concrete sample, the average of three cubes, three cylinders and three prism specimen results was used for the determination of the compressive strength, splitting tensile strength and the flexural strength respectively. Water/cement ratio of 0.54 with fly-ash cement content of 463 Kg/m3 was used in preparing the fresh concrete. The slump values for the HCT brand concrete ranges from 152mm – 75mm while that of PCT brand ranges from 149mm to 70mm. The concrete sample PCT30 recorded the highest 28 days compressive strength of 28.12 N/mm2, the highest splitting tensile strength of 2.99 N/mm2 as well as the highest flexural strength of 4.99 N/mm2. The texture of the iron-ore tailings is rough and angular and was therefore able to improve the strength of the fly ash cement concrete. Also, due to the fineness of the IOTs more void in the concrete can be filled, but this reaches the optimum at 30% replacement level, hence the drop in strength at 40% replacementKeywords: concrete strength, fine aggregate, fly ash cement, iron ore tailings
Procedia PDF Downloads 6734650 Alkali Activated Materials Based on Natural Clay from Raciszyn
Authors: Michal Lach, Maria Hebdowska-Krupa, Justyna Stefanek, Artur Stanek, Anna Stefanska, Janusz Mikula, Marek Hebda
Abstract:
Limited resources of raw materials determine the necessity of obtaining materials from other sources. In this area, the most known and widespread are recycling processes, which are mainly focused on the reuse of material. Another possible solution used in various companies to achieve improvement in sustainable development is waste-free production. It involves the production exclusively from such materials, whose waste is included in the group of renewable raw materials. This means that they can: (i) be recycled directly during the manufacturing process of further products or (ii) be raw material obtained by other companies for the production of alternative products. The article presents the possibility of using post-production clay from the Jurassic limestone deposit "Raciszyn II" as a raw material for the production of alkali activated materials (AAM). Such products are currently increasingly used, mostly in various building applications. However, their final properties depend significantly on many factors; the most important of them are: chemical composition of the raw material, particle size, specific surface area, type and concentration of the activator and the temperature range of the heat treatment. Conducted mineralogical and chemical analyzes of clay from the “Raciszyn II” deposit confirmed that this material, due to its high content of aluminosilicates, can be used as raw material for the production of AAM. In order to obtain the product with the best properties, the optimization of the clay calcining process was also carried out. Based on the obtained results, it was found that this process should occur in the range between 750 oC and 800 oC. The use of a lower temperature causes getting a raw material with low metakaolin content which is the main component of materials suitable for alkaline activation processes. On the other hand, higher heat treatment temperatures cause thermal dissociation of large amounts of calcite, which is associated with the release of large amounts of CO2 and the formation of calcium oxide. This compound significantly accelerates the binding process, which consequently often prevents the correct formation of geopolymer mass. The effect of the use of various activators: (i) NaOH, (ii) KOH and (iii) a mixture of KOH to NaOH in a ratio of 10%, 25% and 50% by volume on the compressive strength of the AAM was also analyzed. Obtained results depending on the activator used were in the range from 25 MPa to 40 MPa. These values are comparable with the results obtained for materials produced on the basis of Portland cement, which is one of the most popular building materials.Keywords: alkaline activation, aluminosilicates, calcination, compressive strength
Procedia PDF Downloads 1554649 The Relationship Study between Topological Indices in Contrast with Thermodynamic Properties of Amino Acids
Authors: Esmat Mohammadinasab, Mostafa Sadeghi
Abstract:
In this study are computed some thermodynamic properties such as entropy and specific heat capacity, enthalpy, entropy and gibbs free energy in 10 type different Aminoacids using Gaussian software with DFT method and 6-311G basis set. Then some topological indices such as Wiener, shultz are calculated for mentioned molecules. Finaly is showed relationship between thermodynamic peoperties and above topological indices and with different curves is represented that there is a good correlation between some of the quantum properties with topological indices of them. The instructive example is directed to the design of the structure-property model for predicting the thermodynamic properties of the amino acids which are discussed here.Keywords: amino acids, DFT Method, molecular descriptor, thermodynamic properties
Procedia PDF Downloads 4364648 Cross-border Data Transfers to and from South Africa
Authors: Amy Gooden, Meshandren Naidoo
Abstract:
Genetic research and transfers of big data are not confined to a particular jurisdiction, but there is a lack of clarity regarding the legal requirements for importing and exporting such data. Using direct-to-consumer genetic testing (DTC-GT) as an example, this research assesses the status of data sharing into and out of South Africa (SA). While SA laws cover the sending of genetic data out of SA, prohibiting such transfer unless a legal ground exists, the position where genetic data comes into the country depends on the laws of the country from where it is sent – making the legal position less clear.Keywords: cross-border, data, genetic testing, law, regulation, research, sharing, South Africa
Procedia PDF Downloads 1284647 Numerical Study on the Static Characteristics of Novel Aerostatic Thrust Bearings Possessing Elastomer Capillary Restrictor and Bearing Surface
Authors: S. W. Lo, S.-H. Lu, Y. H. Guo, L. C. Hsu
Abstract:
In this paper, a novel design of aerostatic thrust bearing is proposed and is analyzed numerically. The capillary restrictor and bearing disk are made of elastomer like silicone and PU. The viscoelasticity of elastomer helps the capillary expand for more air flux and at the same time, allows conicity of the bearing surface to form when the air pressure is enhanced. Therefore, the bearing has the better ability of passive compensation. In the present example, as compared with the typical model, the new designs can nearly double the load capability and offer four times static stiffness.Keywords: aerostatic, bearing, elastomer, static stiffness
Procedia PDF Downloads 3804646 Electronic, Structure and Magnetic Properties of KXF3(X= Fe, Co, Mn, V) from Ab Initio Calculations
Authors: M. Ibrir, S. Berri, S. Lakel, D. Maouche And Y. Medkour
Abstract:
We have performed first-principle calculations of the structural, electronic and magnetic properties of KFeF3, KCoF3, KMnF3, KVF3, using full-potential linearized augmented plane-wave (FP-LAPW) scheme within GGA. Features such as the lattice constant, bulk modulus and its pressure derivative are reported. Also, we have presented our results of the band structure and the density of states. The magnetic moments of KFeF3, KCoF3, KMnF3, KVF3 compounds are in most came from the exchange-splitting of X-3d orbital.Keywords: Ab initio calculations, electronic structure, magnetic materials
Procedia PDF Downloads 4234645 Flow Transformation: An Investigation on Theoretical Aspects and Numerical Computation
Authors: Abhisek Sarkar, Abhimanyu Gaur
Abstract:
In this report we have discussed the theoretical aspects of the flow transformation, occurring through a series of bifurcations. The parameters and their continuous diversion, the intermittent bursts in the transition zone, variation of velocity and pressure with time, effect of roughness in turbulent zone, and changes in friction factor and head loss coefficient as a function of Reynolds number for a transverse flow across a cylinder have been discussed. An analysis of the variation in the wake length with Reynolds number was done in FORTRAN.Keywords: bifurcation, attractor, intermittence, energy cascade, energy spectra, vortex stretching
Procedia PDF Downloads 4014644 The Pore–Scale Darcy–Brinkman–Stokes Model for the Description of Advection–Diffusion–Precipitation Using Level Set Method
Authors: Jiahui You, Kyung Jae Lee
Abstract:
Hydraulic fracturing fluid (HFF) is widely used in shale reservoir productions. HFF contains diverse chemical additives, which result in the dissolution and precipitation of minerals through multiple chemical reactions. In this study, a new pore-scale Darcy–Brinkman–Stokes (DBS) model coupled with Level Set Method (LSM) is developed to address the microscopic phenomena occurring during the iron–HFF interaction, by numerically describing mass transport, chemical reactions, and pore structure evolution. The new model is developed based on OpenFOAM, which is an open-source platform for computational fluid dynamics. Here, the DBS momentum equation is used to solve for velocity by accounting for the fluid-solid mass transfer; an advection-diffusion equation is used to compute the distribution of injected HFF and iron. The reaction–induced pore evolution is captured by applying the LSM, where the solid-liquid interface is updated by solving the level set distance function and reinitialized to a signed distance function. Then, a smoothened Heaviside function gives a smoothed solid-liquid interface over a narrow band with a fixed thickness. The stated equations are discretized by the finite volume method, while the re-initialized equation is discretized by the central difference method. Gauss linear upwind scheme is used to solve the level set distance function, and the Pressure–Implicit with Splitting of Operators (PISO) method is used to solve the momentum equation. The numerical result is compared with 1–D analytical solution of fluid-solid interface for reaction-diffusion problems. Sensitivity analysis is conducted with various Damkohler number (DaII) and Peclet number (Pe). We categorize the Fe (III) precipitation into three patterns as a function of DaII and Pe: symmetrical smoothed growth, unsymmetrical growth, and dendritic growth. Pe and DaII significantly affect the location of precipitation, which is critical in determining the injection parameters of hydraulic fracturing. When DaII<1, the precipitation uniformly occurs on the solid surface both in upstream and downstream directions. When DaII>1, the precipitation mainly occurs on the solid surface in an upstream direction. When Pe>1, Fe (II) transported deeply into and precipitated inside the pores. When Pe<1, the precipitation of Fe (III) occurs mainly on the solid surface in an upstream direction, and they are easily precipitated inside the small pore structures. The porosity–permeability relationship is subsequently presented. This pore-scale model allows high confidence in the description of Fe (II) dissolution, transport, and Fe (III) precipitation. The model shows fast convergence and requires a low computational load. The results can provide reliable guidance for injecting HFF in shale reservoirs to avoid clogging and wellbore pollution. Understanding Fe (III) precipitation, and Fe (II) release and transport behaviors give rise to a highly efficient hydraulic fracture project.Keywords: reactive-transport , Shale, Kerogen, precipitation
Procedia PDF Downloads 1684643 Simulation Study of a Fault at the Switch on the Operation of the Doubly Fed Induction Generator Based on the Wind Turbine
Authors: N. Zerzouri, N. Benalia, N. Bensiali
Abstract:
This work is devoted to an analysis of the operation of a doubly fed induction generator (DFIG) integrated with a wind system. The power transfer between the stator and the network is carried out by acting on the rotor via a bidirectional signal converter. The analysis is devoted to the study of a fault in the converter due to an interruption of the control of a semiconductor. Simulation results obtained by the MATLAB / Simulink software illustrate the quality of the power generated at the default.Keywords: doubly fed induction generator (DFIG), wind power generation, back to back PWM converter, default switching
Procedia PDF Downloads 4704642 Modification of Electrical and Switching Characteristics of a Non Punch-Through Insulated Gate Bipolar Transistor by Gamma Irradiation
Authors: Hani Baek, Gwang Min Sun, Chansun Shin, Sung Ho Ahn
Abstract:
Fast neutron irradiation using nuclear reactors is an effective method to improve switching loss and short circuit durability of power semiconductor (insulated gate bipolar transistors (IGBT) and insulated gate transistors (IGT), etc.). However, not only fast neutrons but also thermal neutrons, epithermal neutrons and gamma exist in the nuclear reactor. And the electrical properties of the IGBT may be deteriorated by the irradiation of gamma. Gamma irradiation damages are known to be caused by Total Ionizing Dose (TID) effect and Single Event Effect (SEE), Displacement Damage. Especially, the TID effect deteriorated the electrical properties such as leakage current and threshold voltage of a power semiconductor. This work can confirm the effect of the gamma irradiation on the electrical properties of 600 V NPT-IGBT. Irradiation of gamma forms lattice defects in the gate oxide and Si-SiO2 interface of the IGBT. It was confirmed that this lattice defect acts on the center of the trap and affects the threshold voltage, thereby negatively shifted the threshold voltage according to TID. In addition to the change in the carrier mobility, the conductivity modulation decreases in the n-drift region, indicating a negative influence that the forward voltage drop decreases. The turn-off delay time of the device before irradiation was 212 ns. Those of 2.5, 10, 30, 70 and 100 kRad(Si) were 225, 258, 311, 328, and 350 ns, respectively. The gamma irradiation increased the turn-off delay time of the IGBT by approximately 65%, and the switching characteristics deteriorated.Keywords: NPT-IGBT, gamma irradiation, switching, turn-off delay time, recombination, trap center
Procedia PDF Downloads 1604641 Sustainable Composites for Aircraft Cabin Interior Applications
Authors: Fiorenzo Lenzi, Doris Abt, Besnik Bytyqi
Abstract:
Recent developments in composite materials for the interior cabin market provide more sustainable solutions for industrial applications. One contribution comes from epoxy-based prepregs recently developed to substitute phenolic prepregs in order to reduce the environmental impact of their production process and to eliminate health and safety issues related to their handling. Another example is the use of Mica-based products for improving the fire protection of interior cabin parts. Minerals, such as Mica, can be used as reinforcement in composites to reduce the heat release rate or, more traditionally, to improve the burn-through performance of fuselage and cargo lining components.Keywords: prepreg, epoxy, Mica, battery protection
Procedia PDF Downloads 864640 Health Challenges of Unmarried Women over Thirty in Pakistan: A Public Health Perspective on Nutrition and Well-being
Authors: Anum Obaid, Iman Fatima, Wanisha Feroz, Haleema Imran, Hammad Tariq
Abstract:
In Pakistan, the health of unmarried women over thirty is an emerging public health concern due to its increasing prevalence. Achieving the Sustainable Development Goals (SDGs) requires addressing nutrition and public health issues. This research investigates these goals through the lens of nutrition and public health, specifically examining the challenges faced by unmarried women over thirty in Faisalabad, Pakistan. According to a recent United Nations report, there are 10 million unmarried women over the age of 35 in Pakistan. The United Nations defines health as "a state of complete physical, mental, and social well-being, and not merely the absence of disease or infirmity." Being unmarried and under constant societal pressure profoundly influences the dietary behaviors and nutritional status of these women, affecting their overall health, including physical, mental, and social well-being. A qualitative research approach was employed, involving interviews with both unmarried and married women over thirty. This research examines how marital status influences dietary practices, nutritional status, mental and social health, and their subsequent impacts. Factors such as physical health, mental and emotional status, societal pressure, social health, economic independence, and decision-making power were analyzed to understand the effect of singleness on overall wellness. Findings indicated that marital status significantly affects the dietary patterns and nutritional practices among women in Faisalabad. It was also revealed that unmarried women experienced more stress and had a less optimistic mindset compared to married women, due to loneliness or the absence of a spouse in their lives. Nutritional knowledge varied across marital status, impacting the overall health triangle, including physical, mental, and social health. Understanding these dynamics is crucial for developing targeted interventions to improve nutritional outcomes and overall health among unmarried women in Faisalabad. This study highlights the importance of fostering supportive environments and raising awareness about the health needs of unmarried women over thirty to enhance their overall well-being.Keywords: health triangle, unmarried woman over thirty, socio-cultural barriers, women’s health
Procedia PDF Downloads 394639 Laser-Dicing Modeling: Implementation of a High Accuracy Tool for Laser-Grooving and Cutting Application
Authors: Jeff Moussodji, Dominique Drouin
Abstract:
The highly complex technology requirements of today’s integrated circuits (ICs), lead to the increased use of several materials types such as metal structures, brittle and porous low-k materials which are used in both front end of line (FEOL) and back end of line (BEOL) process for wafer manufacturing. In order to singulate chip from wafer, a critical laser-grooving process, prior to blade dicing, is used to remove these layers of materials out of the dicing street. The combination of laser-grooving and blade dicing allows to reduce the potential risk of induced mechanical defects such micro-cracks, chipping, on the wafer top surface where circuitry is located. It seems, therefore, essential to have a fundamental understanding of the physics involving laser-dicing in order to maximize control of these critical process and reduce their undesirable effects on process efficiency, quality, and reliability. In this paper, the study was based on the convergence of two approaches, numerical and experimental studies which allowed us to investigate the interaction of a nanosecond pulsed laser and BEOL wafer materials. To evaluate this interaction, several laser grooved samples were compared with finite element modeling, in which three different aspects; phase change, thermo-mechanical and optic sensitive parameters were considered. The mathematical model makes it possible to highlight a groove profile (depth, width, etc.) of a single pulse or multi-pulses on BEOL wafer material. Moreover, the heat affected zone, and thermo-mechanical stress can be also predicted as a function of laser operating parameters (power, frequency, spot size, defocus, speed, etc.). After modeling validation and calibration, a satisfying correlation between experiment and modeling, results have been observed in terms of groove depth, width and heat affected zone. The study proposed in this work is a first step toward implementing a quick assessment tool for design and debug of multiple laser grooving conditions with limited experiments on hardware in industrial application. More correlations and validation tests are in progress and will be included in the full paper.Keywords: laser-dicing, nano-second pulsed laser, wafer multi-stack, multiphysics modeling
Procedia PDF Downloads 2144638 Managing Organizational Change for a Transformation Project: The Billing and Customer Relationship Management Journey
Authors: Sharifah I. N. A. Syed Azmi, Nazarina Mohd Nasir
Abstract:
The Billing & Customer Relationship Management (BCRM) project is an important enabler towards realizing customer experience transformation. It involves technological shifts for future scalability, revision of multiple business processes and adoption of change by the users and impacted employees. This massive transition, if not managed properly, may result in the decline of business performance due to productivity drop. Organizational change management is an essential element in BCRM project implementation to ensure the system is well understood and embraced by all stakeholders. In order to move impacted employees from unaware state or denial mode to full-acceptance mindset and committing themselves in using the new system, their involvement in the whole change process starting from the initial stage is imperative. Through the BCRM Change Management Plan, a holistic approach was taken whereby the strategy and program for five key components namely executive sponsorship, continuous communication, process change readiness, organizational readiness and individual readiness were all carefully established. Roles of the project sponsor, change agents, change ambassadors and community of practice (CoP) were clearly defined in gaining high commitment and support across the entire organization. Continuous communication and engagement initiatives throughout project implementation have been carried out to reach all stakeholders. The business readiness was constantly monitored and assessed including effectiveness of end-user training, thorough review of process documentation and completion of roles realignment exercise.Keywords: BCRM, change management, organizational change, transformation project
Procedia PDF Downloads 1434637 Improvement of Cardiometabolic after 8 Weeks of Weight Loss Intervention
Authors: Boris Bajer, Andrea Havranova, Miroslav Vlcek, Richard Imrich, Adela Penesova
Abstract:
Lifestyle interventions can prevent the deterioration of impaired glucose tolerance to manifest type 2 diabetes, and also prevent cardiovascular diseases, as it showed many studies (the Finnish Diabetes Prevention Study, Diabetes Prevention Program (DPP), . the China Da Qing Diabetes Prevention Study, etc.) Therefore the aim of our study was to compare the effect of intensified lifestyle intervention on cardiometabolic parameters. Methods: It is an ongoing randomized interventional clinical study (NCT02325804) focused on the reduction of body weight/fat. Intervention: hypocaloric diet (30% restriction of calories) and physical activity 150 minutes/week. Before and after 8 weeks of intervention all patients underwent complete medical examination (measurement of physical fitness, resting metabolic rate (RMR), body composition analysis, oral glucose tolerance test, parameters of lipid metabolism, and other cardiometabolic risk factors. Results: So far 39 patients finished the intervention. The average reduction of body weight was 6,8 + 4,9 kg (0-15 kg; p=0,0006), accompanied with significant reduction of body fat percentage (p ≤ 0,0001), amount of fat mass (p=0,03), waist circumference (p=0.02). Amount of lean mass and RMR remained unchanged. Heart rate (p=0,02), systolic and diastolic blood pressure was reduced (p=0,01 p=0,02 resp.) as well as insulin sensitivity was improved. Lipid parameters also changed - cholesterol, LDL decreased (p=0,05, p=0,04 resp.), while triglycerides showed tendency to decrease (p=0,055). Liver function improved, alanine aminotrasnferase (ALT) were reduced (p=0,01). Physical fitness significantly improved (as measure VO2 max (p=0,02). Conclusion: Results of our study are in line with previous results about the beneficial effect of intensive lifestyle changes on the reduction of cardiometabolic risk factors and improvement of liver function. Supported by grants APVV 15-0228; VEGA 2/0161/16Keywords: obesity, weight loss, diet lipids, blood pressure, liver enzymes
Procedia PDF Downloads 1684636 Application of Sub-health Diagnosis and Reasoning Method for Avionics
Authors: Weiran An, Junyou Shi
Abstract:
Health management has become one of the design goals in the research and development of new generation avionics systems, and is an important complement and development for the testability and fault diagnosis technology. Currently, the research and application for avionics system health dividing and diagnosis technology is still at the starting stage, lack of related technologies and methods reserve. In this paper, based on the health three-state dividing of avionics products, state lateral transfer coupling modeling and diagnosis reasoning method considering sub-health are researched. With the study of typical case application, the feasibility and correctness of the method and the software are verified.Keywords: sub-health, diagnosis reasoning, three-valued coupled logic, extended dependency model, avionics
Procedia PDF Downloads 3374635 Preparation of IPNs and Effect of Swift Heavy Ions Irradiation on their Physico-Chemical Properties
Authors: B. S Kaith, K. Sharma, V. Kumar, S. Kalia
Abstract:
Superabsorbent are three-dimensional networks of linear or branched polymeric chains which can uptake large volume of biological fluids. The ability is due to the presence of functional groups like –NH2, -COOH and –OH. Such cross-linked products based on natural materials, such as cellulose, starch, dextran, gum and chitosan, because of their easy availability, low production cost, non-toxicity and biodegradability have attracted the attention of Scientists and Technologists all over the world. Since natural polymers have better biocompatibility and are non-toxic than most synthetic one, therefore, such materials can be applied in the preparation of controlled drug delivery devices, biosensors, tissue engineering, contact lenses, soil conditioning, removal of heavy metal ions and dyes. Gums are natural potential antioxidants and are used as food additives. They have excellent properties like high solubility, pH stability, non-toxicity and gelling characteristics. Till date lot of methods have been applied for the synthesis and modifications of cross-linked materials with improved properties suitable for different applications. It is well known that ion beam irradiation can play a crucial role to synthesize, modify, crosslink or degrade polymeric materials. High energetic heavy ions irradiation on polymer film induces significant changes like chain scission, cross-linking, structural changes, amorphization and degradation in bulk. Various researchers reported the effects of low and heavy ion irradiation on the properties of polymeric materials and observed significant improvement in optical, electrical, chemical, thermal and dielectric properties. Moreover, modifications induced in the materials mainly depend on the structure, the ion beam parameters like energy, linear energy transfer, fluence, mass, charge and the nature of the target material. Ion-beam irradiation is a useful technique for improving the surface properties of biodegradable polymers without missing the bulk properties. Therefore, a considerable interest has been grown to study the effects of SHIs irradiation on the properties of synthesized semi-IPNs and IPNs. The present work deals with the preparation of semi-IPNs and IPNs and impact of SHI like O7+ and Ni9+ irradiation on optical, chemical, structural, morphological and thermal properties along with impact on different applications. The results have been discussed on the basis of Linear Energy Transfer (LET) of the ions.Keywords: adsorbent, gel, IPNs, semi-IPNs
Procedia PDF Downloads 3754634 Evaluation of Low Temperature as Treatment Tool for Eradication of Mediterranean Fruit Fly (Ceratitis capitata) in Artificial Diet
Authors: Farhan J. M. Al-Behadili, Vineeta Bilgi, Miyuki Taniguchi, Junxi Li, Wei Xu
Abstract:
Mediterranean fruit fly (Ceratitis capitata) is one of the most destructive pests of fruits and vegetables. Medfly originated from Africa and spread in many countries, and is currently an endemic pest in Western Australia. Medfly has been recorded from over 300 plant species including fruits, vegetables, nuts and its main hosts include blueberries, citrus, stone fruit, pome fruits, peppers, tomatoes, and figs. Global trade of fruits and other farm fresh products are suffering from the damages of this pest, which prompted towards the need to develop more effective ways to control these pests. The available quarantine treatment technologies mainly include chemical treatment (e.g., fumigation) and non-chemical treatments (e.g., cold, heat and irradiation). In recent years, with the loss of several chemicals, it has become even more important to rely on non-chemical postharvest control technologies (i.e., heat, cold and irradiation) to control fruit flies. Cold treatment is one of the most potential trends of focus in postharvest treatment because it is free of chemical residues, mitigates or kills the pest population, increases the strength of the fruits, and prolongs storage time. It can also be applied to fruits after packing and ‘in transit’ during lengthy transport by sea during their exports. However, limited systematic study on cold treatment of Medfly stages in artificial diets was reported, which is critical to provide a scientific basis to compare with previous research in plant products and design an effective cold treatment suitable for exported plant products. The overall purpose of this study was to evaluate and understand Medfly responses to cold treatments. Medfly stages were tested. The long-term goal was to optimize current postharvest treatments and develop more environmentally-friendly, cost-effective, and efficient treatments for controlling Medfly. Cold treatment with different exposure times is studied to evaluate cold eradication treatment of Mediterranean fruit fly (Ceratitis capitata), that reared on carrot diet. Mortality is important aspect was studied in this study. On the other hand, study effects of exposure time on mortality means of medfly stages.Keywords: cold treatment, fruit fly, Ceratitis capitata, carrot diet, temperature effects
Procedia PDF Downloads 2274633 A Case Study on an Integrated Analysis of Well Control and Blow out Accident
Authors: Yasir Memon
Abstract:
The complexity and challenges in the offshore industry are increasing more than the past. The oil and gas industry is expanding every day by accomplishing these challenges. More challenging wells such as longer and deeper are being drilled in today’s environment. Blowout prevention phenomena hold a worthy importance in oil and gas biosphere. In recent, so many past years when the oil and gas industry was growing drilling operation were extremely dangerous. There was none technology to determine the pressure of reservoir and drilling hence was blind operation. A blowout arises when an uncontrolled reservoir pressure enters in wellbore. A potential of blowout in the oil industry is the danger for the both environment and the human life. Environmental damage, state/country regulators, and the capital investment causes in loss. There are many cases of blowout in the oil the gas industry caused damage to both human and the environment. A huge capital investment is being in used to stop happening of blowout through all over the biosphere to bring damage at the lowest level. The objective of this study is to promote safety and good resources to assure safety and environmental integrity in all operations during drilling. This study shows that human errors and management failure is the main cause of blowout therefore proper management with the wise use of precautions, prevention methods or controlling techniques can reduce the probability of blowout to a minimum level. It also discusses basic procedures, concepts and equipment involved in well control methods and various steps using at various conditions. Furthermore, another aim of this study work is to highlight management role in oil gas operations. Moreover, this study analyze the causes of Blowout of Macondo well occurred in the Gulf of Mexico on April 20, 2010, and deliver the recommendations and analysis of various aspect of well control methods and also provides the list of mistakes and compromises that British Petroleum and its partner were making during drilling and well completion methods and also the Macondo well disaster happened due to various safety and development rules violation. This case study concludes that Macondo well blowout disaster could be avoided with proper management of their personnel’s and communication between them and by following safety rules/laws it could be brought to minimum environmental damage.Keywords: energy, environment, oil and gas industry, Macondo well accident
Procedia PDF Downloads 1914632 Bacterial Diversity Reports Contamination around the Ichkeul Lake in Tunisia
Authors: Zeina Bourhane, Anders Lanzen, Christine Cagnon, Olfa Ben Said, Cristiana Cravo-Laureau, Robert Duran
Abstract:
The anthropogenic pressure in coastal areas increases dramatically with the exploitation of environmental resources. Biomonitoring coastal areas are crucial to determine the impact of pollutants on bacterial communities in soils and sediments since they provide important ecosystem services. However, relevant biomonitoring tools allowing fast determination of the ecological status are yet to be defined. Microbial ecology approaches provide useful information for developing such microbial monitoring tools reporting on the effect of environmental stressors. Chemical and microbial molecular approaches were combined in order to determine microbial bioindicators for assessing the ecological status of soil and river ecosystems around the Ichkeul Lake (Tunisia), an area highly impacted by human activities. Samples were collected along soil/river/lake continuums in three stations around the Ichkeul Lake influenced by different human activities at two seasons (summer and winter). Contaminant pressure indexes (PI), including PAHs (Polycyclic aromatic hydrocarbons), alkanes, and OCPs (Organochlorine pesticides) contents, showed significant differences in the contamination level between the stations with seasonal variation. Bacterial communities were characterized by 16S ribosomal RNAs (rRNA) gene metabarcoding. Although microgAMBI indexes, determined from the sequencing data, were in accordance with contaminant contents, they were not sufficient to fully explain the PI. Therefore, further microbial indicators are still to be defined. The comparison of bacterial communities revealed the specific microbial assemblage for soil, river, and lake sediments, which were significantly correlated with contaminant contents and PI. Such observation offers the possibility to define a relevant set of bioindicators for reporting the effects of human activities on the microbial community structure. Such bioindicators might constitute useful monitoring tools for the management of microbial communities in coastal areas.Keywords: bacterial communities, biomonitoring, contamination, human impacts, microbial bioindicators
Procedia PDF Downloads 1694631 Predictive Analytics Algorithms: Mitigating Elementary School Drop Out Rates
Authors: Bongs Lainjo
Abstract:
Educational institutions and authorities that are mandated to run education systems in various countries need to implement a curriculum that considers the possibility and existence of elementary school dropouts. This research focuses on elementary school dropout rates and the ability to replicate various predictive models carried out globally on selected Elementary Schools. The study was carried out by comparing the classical case studies in Africa, North America, South America, Asia and Europe. Some of the reasons put forward for children dropping out include the notion of being successful in life without necessarily going through the education process. Such mentality is coupled with a tough curriculum that does not take care of all students. The system has completely led to poor school attendance - truancy which continuously leads to dropouts. In this study, the focus is on developing a model that can systematically be implemented by school administrations to prevent possible dropout scenarios. At the elementary level, especially the lower grades, a child's perception of education can be easily changed so that they focus on the better future that their parents desire. To deal effectively with the elementary school dropout problem, strategies that are put in place need to be studied and predictive models are installed in every educational system with a view to helping prevent an imminent school dropout just before it happens. In a competency-based curriculum that most advanced nations are trying to implement, the education systems have wholesome ideas of learning that reduce the rate of dropout.Keywords: elementary school, predictive models, machine learning, risk factors, data mining, classifiers, dropout rates, education system, competency-based curriculum
Procedia PDF Downloads 1804630 Algorithm for Modelling Land Surface Temperature and Land Cover Classification and Their Interaction
Authors: Jigg Pelayo, Ricardo Villar, Einstine Opiso
Abstract:
The rampant and unintended spread of urban areas resulted in increasing artificial component features in the land cover types of the countryside and bringing forth the urban heat island (UHI). This paved the way to wide range of negative influences on the human health and environment which commonly relates to air pollution, drought, higher energy demand, and water shortage. Land cover type also plays a relevant role in the process of understanding the interaction between ground surfaces with the local temperature. At the moment, the depiction of the land surface temperature (LST) at city/municipality scale particularly in certain areas of Misamis Oriental, Philippines is inadequate as support to efficient mitigations and adaptations of the surface urban heat island (SUHI). Thus, this study purposely attempts to provide application on the Landsat 8 satellite data and low density Light Detection and Ranging (LiDAR) products in mapping out quality automated LST model and crop-level land cover classification in a local scale, through theoretical and algorithm based approach utilizing the principle of data analysis subjected to multi-dimensional image object model. The paper also aims to explore the relationship between the derived LST and land cover classification. The results of the presented model showed the ability of comprehensive data analysis and GIS functionalities with the integration of object-based image analysis (OBIA) approach on automating complex maps production processes with considerable efficiency and high accuracy. The findings may potentially lead to expanded investigation of temporal dynamics of land surface UHI. It is worthwhile to note that the environmental significance of these interactions through combined application of remote sensing, geographic information tools, mathematical morphology and data analysis can provide microclimate perception, awareness and improved decision-making for land use planning and characterization at local and neighborhood scale. As a result, it can aid in facilitating problem identification, support mitigations and adaptations more efficiently.Keywords: LiDAR, OBIA, remote sensing, local scale
Procedia PDF Downloads 2864629 Design and Modeling of Human Middle Ear for Harmonic Response Analysis
Authors: Shende Suraj Balu, A. B. Deoghare, K. M. Pandey
Abstract:
The human middle ear (ME) is a delicate and vital organ. It has a complex structure that performs various functions such as receiving sound pressure and producing vibrations of eardrum and propagating it to inner ear. It consists of Tympanic Membrane (TM), three auditory ossicles, various ligament structures and muscles. Incidents such as traumata, infections, ossification of ossicular structures and other pathologies may damage the ME organs. The conditions can be surgically treated by employing prosthesis. However, the suitability of the prosthesis needs to be examined in advance prior to the surgery. Few decades ago, this issue was addressed and analyzed by developing an equivalent representation either in the form of spring mass system, electrical system using R-L-C circuit or developing an approximated CAD model. But, nowadays a three-dimensional ME model can be constructed using micro X-Ray Computed Tomography (μCT) scan data. Moreover, the concern about patient specific integrity pertaining to the disease can be examined well in advance. The current research work emphasizes to develop the ME model from the stacks of μCT images which are used as input file to MIMICS Research 19.0 (Materialise Interactive Medical Image Control System) software. A stack of CT images is converted into geometrical surface model to build accurate morphology of ME. The work is further extended to understand the dynamic behaviour of Harmonic response of the stapes footplate and umbo for different sound pressure levels applied at lateral side of eardrum using finite element approach. The pathological condition Cholesteatoma of ME is investigated to obtain peak to peak displacement of stapes footplate and umbo. Apart from this condition, other pathologies, mainly, changes in the stiffness of stapedial ligament, TM thickness and ossicular chain separation and fixation are also explored. The developed model of ME for pathologies is validated by comparing the results available in the literatures and also with the results of a normal ME to calculate the percentage loss in hearing capability.Keywords: computed tomography (μCT), human middle ear (ME), harmonic response, pathologies, tympanic membrane (TM)
Procedia PDF Downloads 1794628 Determination of Fatigue Limit in Post Impacted Carbon Fiber Reinforced Epoxy Polymer (CFRP) Specimens Using Self Heating Methodology
Authors: Deepika Sudevan, Patrick Rozycki, Laurent Gornet
Abstract:
This paper presents the experimental identification of the fatigue limit for pristine and impacted Carbon Fiber Reinforced Epoxy polymer (CFRP) woven composites based on the relatively new self-heating methodology for composites. CFRP composites of [0/90]8 and quasi isotropic configurations prepared using hand-layup technique are subjected to low energy impacts (20 J energy) simulating a barely visible impact damage (BVID). Runway debris strike, tool drop or hailstone impact can cause a BVID on an aircraft fuselage made of carbon composites and hence understanding the post-impact fatigue response of CFRP laminates is of immense importance to the aerospace community. The BVID zone on the specimens is characterized using X-ray Tomography technique. Both pristine and impacted specimens are subjected to several blocks of constant amplitude (CA) fatigue loading keeping R-ratio a constant but with increments in the mean loading stress after each block. The number of loading cycles in each block is a subjective parameter and it varies for pristine and impacted CFRP specimens. To monitor the temperature evolution during fatigue loading, thermocouples are pasted on the CFRP specimens at specific locations. The fatigue limit is determined by two strategies, first is by considering the stabilized temperature in every block and second is by considering the change in the temperature slope per block. The results show that both strategies can be adopted to determine the fatigue limit in both pristine and impacted CFRP composites.Keywords: CFRP, fatigue limit, low energy impact, self-heating, WRM
Procedia PDF Downloads 2364627 Type of Dam Construction and It’s Challengings
Authors: Mokhtar Nikgoo
Abstract:
Definition of dam: A dam is one of the most important and widely used engineering structures, which means stopping or changing the course of water on a river. A lake is formed behind the dam, which is called (reservoir). Water is stored in the tank to be used when needed. The dam building industry is a great service to mankind in the use of water and land resources. If they build the dam in a suitable place, they will prevent floods. The water that collects behind the dam and in the dam's lake and reservoir is a valuable reserve for drinking by people and animals. Dry agricultural lands are also irrigated with this water. In addition, in many dams, the pressure caused by the water fall is directed by turbines, and the turbines move the power generation devices and provide power from electricityKeywords: dam, shaft, gallery, spillway, power plant
Procedia PDF Downloads 674626 Relationship Between Insulin Resistance and Some Coagulation and Fibrinolytic Parameters in Subjects With Metabolic Syndrome
Authors: Amany Ragab, Nashwa Khairat Abousamra, Omayma Saleh, Asmaa Higazy
Abstract:
Insulin resistance syndrome has been shown to be associated with many coagulation and fibrinolytic proteins and these associations suggest that some coagulation and fibrinolytic proteins have a role in atherothrombotic disorders. This study was conducted to determine the levels of some of the haemostatic parameters in subjects having metabolic syndrome and to correlate these values with the anthropometric and metabolic variables associated with this syndrome. The study included 46 obese non diabetic subjects of whom 28 subjects(group1) fulfilled the ATP III criteria of the metabolic syndrome and 18 subjects (group2) did not have metabolic syndrome as well as 14 lean subjects (group 3) of matched age and sex as a control group. Clinical and laboratory evaluation of the study groups stressed on anthropometric measurements (weight, height, body mass index, waist circumference, and sagittal abdominal diameter), blood pressure, and laboratory measurements of fasting plasma glucose, fasting insulin, serum lipids, tissue plasminogen activator (t-PA), antithrombin III activity (ATIII), protein C and von Willebrand factor (vWf) antigen. There was significant increase in the concentrations of t-PA and vWf antigens in subjects having metabolic syndrome (group 1) in comparison to the other groups while there were non-significant changes in the levels of protein C antigen and AT III activity. Both t-PA and vWf showed significant correlation with HOMA-IR as a measure of insulin sensitivity. The t-PA showed also significant correlation with most of the variables of metabolic syndrome including waist circumference, BMI, systolic blood pressure, fasting plasma glucose, fasting insulin, and HDL cholesterol. On the other hand, vWf showed significant correlations with fasting plasma glucose, fasting insulin and sagital abdominal diameter, with non-significant correlations with the other variables. Haemostatic and fibrinolytic parameters should be included in the features and characterization of the insulin resistance syndrome. t-PA and vWf antigens concentrations were increased in subjects with metabolic syndrome and correlated with the HOMA-IR measure of insulin sensitivity. Taking into consideration that both t-PA and vWf are mainly released from vascular endothelium, these findings could be an indicator of endothelial dysfunction in that group of subjects.Keywords: insulin resistance, obesity, metabolic syndrome, coagulation
Procedia PDF Downloads 1404625 An Experimental Modeling of Steel Surfaces Wear in Injection of Plastic Materials with SGF
Authors: L. Capitanu, V. Floresci, L. L. Badita
Abstract:
Starting from the idea that the greatest pressure and velocity of composite melted is in the die nozzle, was an experimental nozzle with wear samples of sizes and weights which can be measured with precision as good. For a larger accuracy of measurements, we used a method for radiometric measuring, extremely accurate. Different nitriding steels have been studied as nitriding treatments, as well as some special steels and alloyed steels. Besides these, there have been preliminary attempts made to describe and checking corrosive action of thermoplastics on metals.Keywords: plastics, composites with short glass fibres, moulding, wear, experimental modelling, glass fibres content influence
Procedia PDF Downloads 268