Search results for: algebraic code excited linear prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6806

Search results for: algebraic code excited linear prediction

2636 Pre and Post IFRS Loss Avoidance in France and the United Kingdom

Authors: T. Miková

Abstract:

This paper analyzes the effect of a single uniform accounting rule on reporting quality by investigating the influence of IFRS on earnings management. This paper examines whether earnings management is reduced after IFRS adoption through the use of “loss avoidance thresholds”, a method that has been verified in earlier studies. This paper concentrates on two European countries: one that represents the continental code law tradition with weak protection of investors (France) and one that represents the Anglo-American common law tradition, which typically implies a strong enforcement system (the United Kingdom). The research investigates a sample of 526 companies (6822 firm-year observations) during the years 2000 – 2013. The results are different for the two jurisdictions. This study demonstrates that a single set of accounting standards contributes to better reporting quality and reduces the pervasiveness of earnings management in France. In contrast, there is no evidence that a reduction in earnings management followed the implementation of IFRS in the United Kingdom. Due to the fact that IFRS benefit France but not the United Kingdom, other political and economic factors, such legal system or capital market strength, must play a significant role in influencing the comparability and transparency cross-border companies’ financial statements. Overall, the result suggests that IFRS moderately contribute to the accounting quality of reported financial statements and bring benefit for stakeholders, though the role played by other economic factors cannot be discounted.

Keywords: accounting standards, earnings management, international financial reporting standards, loss avoidance, reporting quality

Procedia PDF Downloads 195
2635 Application of Finite Volume Method for Numerical Simulation of Contaminant Transfer in a Two-Dimensional Reservoir

Authors: Atousa Ataieyan, Salvador A. Gomez-Lopera, Gennaro Sepede

Abstract:

Today, due to the growing urban population and consequently, the increasing water demand in cities, the amount of contaminants entering the water resources is increasing. This can impose harmful effects on the quality of the downstream water. Therefore, predicting the concentration of discharged pollutants at different times and distances of the interested area is of high importance in order to carry out preventative and controlling measures, as well as to avoid consuming the contaminated water. In this paper, the concentration distribution of an injected conservative pollutant in a square reservoir containing four symmetric blocks and three sources using Finite Volume Method (FVM) is simulated. For this purpose, after estimating the flow velocity, classical Advection-Diffusion Equation (ADE) has been discretized over the studying domain by Backward Time- Backward Space (BTBS) scheme. Then, the discretized equations for each node have been derived according to the initial condition, boundary conditions and point contaminant sources. Finally, taking into account the appropriate time step and space step, a computational code was set up in MATLAB. Contaminant concentration was then obtained at different times and distances. Simulation results show how using BTBS differentiating scheme and FVM as a numerical method for solving the partial differential equation of transport is an appropriate approach in the case of two-dimensional contaminant transfer in an advective-diffusive flow.

Keywords: BTBS differentiating scheme, contaminant concentration, finite volume, mass transfer, water pollution

Procedia PDF Downloads 130
2634 Assessment of Tidal Influence in Spatial and Temporal Variations of Water Quality in Masan Bay, Korea

Authors: S. J. Kim, Y. J. Yoo

Abstract:

Slack-tide sampling was carried out at seven stations at high and low tides for a tidal cycle, in summer (7, 8, 9) and fall (10), 2016 to determine the differences of water quality according to tides in Masan Bay. The data were analyzed by Pearson correlation and factor analysis. The mixing state of all the water quality components investigated is well explained by the correlation with salinity (SAL). Turbidity (TURB), dissolved silica (DSi), nitrite and nitrate nitrogen (NNN) and total nitrogen (TN), which find their way into the bay from the streams and have no internal source and sink reaction, showed a strong negative correlation with SAL at low tide, indicating the property of conservative mixing. On the contrary, in summer and fall, dissolved oxygen (DO), hydrogen sulfide (H2S) and chemical oxygen demand with KMnO4 (CODMn) of the surface and bottom water, which were sensitive to an internal source and sink reaction, showed no significant correlation with SAL at high and low tides. The remaining water quality parameters showed a conservative or a non-conservative mixing pattern depending on the mixing characteristics at high and low tides, determined by the functional relationship between the changes of the flushing time and the changes of the characteristics of water quality components of the end-members in the bay. Factor analysis performed on the concentration difference data sets between high and low tides helped in identifying the principal latent variables for them. The concentration differences varied spatially and temporally. Principal factors (PFs) scores plots for each monitoring situation showed high associations of the variations to the monitoring sites. At sampling station 1 (ST1), temperature (TEMP), SAL, DSi, TURB, NNN and TN of the surface water in summer, TEMP, SAL, DSi, DO, TURB, NNN, TN, reactive soluble phosphorus (RSP) and total phosphorus (TP) of the bottom water in summer, TEMP, pH, SAL, DSi, DO, TURB, CODMn, particulate organic carbon (POC), ammonia nitrogen (AMN), NNN, TN and fecal coliform (FC) of the surface water in fall, TEMP, pH, SAL, DSi, H2S, TURB, CODMn, AMN, NNN and TN of the bottom water in fall commonly showed up as the most significant parameters and the large concentration differences between high and low tides. At other stations, the significant parameters showed differently according to the spatial and temporal variations of mixing pattern in the bay. In fact, there is no estuary that always maintains steady-state flow conditions. The mixing regime of an estuary might be changed at any time from linear to non-linear, due to the change of flushing time according to the combination of hydrogeometric properties, inflow of freshwater and tidal action, And furthermore the change of end-member conditions due to the internal sinks and sources makes the occurrence of concentration difference inevitable. Therefore, when investigating the water quality of the estuary, it is necessary to take a sampling method considering the tide to obtain average water quality data.

Keywords: conservative mixing, end-member, factor analysis, flushing time, high and low tide, latent variables, non-conservative mixing, slack-tide sampling, spatial and temporal variations, surface and bottom water

Procedia PDF Downloads 127
2633 Prediction of Phonon Thermal Conductivity of F.C.C. Al by Molecular Dynamics Simulation

Authors: Leila Momenzadeh, Alexander V. Evteev, Elena V. Levchenko, Tanvir Ahmed, Irina Belova, Graeme Murch

Abstract:

In this work, the phonon thermal conductivity of f.c.c. Al is investigated in detail in the temperature range 100 – 900 K within the framework of equilibrium molecular dynamics simulations making use of the Green-Kubo formalism and one of the most reliable embedded-atom method potentials. It is found that the heat current auto-correlation function of the f.c.c. Al model demonstrates a two-stage temporal decay similar to the previously observed for f.c.c Cu model. After the first stage of decay, the heat current auto-correlation function of the f.c.c. Al model demonstrates a peak in the temperature range 100-800 K. The intensity of the peak decreases as the temperature increases. At 900 K, it transforms to a shoulder. To describe the observed two-stage decay of the heat current auto-correlation function of the f.c.c. Al model, we employ decomposition model recently developed for phonon-mediated thermal transport in a monoatomic lattice. We found that the electronic contribution to the total thermal conductivity of f.c.c. Al dominates over the whole studied temperature range. However, the phonon contribution to the total thermal conductivity of f.c.c. Al increases as temperature decreases. It is about 1.05% at 900 K and about 12.5% at 100 K.

Keywords: aluminum, gGreen-Kubo formalism, molecular dynamics, phonon thermal conductivity

Procedia PDF Downloads 410
2632 The DAQ Debugger for iFDAQ of the COMPASS Experiment

Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius

Abstract:

In general, state-of-the-art Data Acquisition Systems (DAQ) in high energy physics experiments must satisfy high requirements in terms of reliability, efficiency and data rate capability. This paper presents the development and deployment of a debugging tool named DAQ Debugger for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. Utilizing a hardware event builder, the iFDAQ is designed to be able to readout data at the average maximum rate of 1.5 GB/s of the experiment. In complex softwares, such as the iFDAQ, having thousands of lines of code, the debugging process is absolutely essential to reveal all software issues. Unfortunately, conventional debugging of the iFDAQ is not possible during the real data taking. The DAQ Debugger is a tool for identifying a problem, isolating the source of the problem, and then either correcting the problem or determining a way to work around it. It provides the layer for an easy integration to any process and has no impact on the process performance. Based on handling of system signals, the DAQ Debugger represents an alternative to conventional debuggers provided by most integrated development environments. Whenever problem occurs, it generates reports containing all necessary information important for a deeper investigation and analysis. The DAQ Debugger was fully incorporated to all processes in the iFDAQ during the run 2016. It helped to reveal remaining software issues and improved significantly the stability of the system in comparison with the previous run. In the paper, we present the DAQ Debugger from several insights and discuss it in a detailed way.

Keywords: DAQ Debugger, data acquisition system, FPGA, system signals, Qt framework

Procedia PDF Downloads 280
2631 Stability of Solutions of Semidiscrete Stochastic Systems

Authors: Ramazan Kadiev, Arkadi Ponossov

Abstract:

Semidiscrete systems contain both continuous and discrete components. This means that the dynamics is mostly continuous, but at certain instants, it is exposed to abrupt influences. Such systems naturally appear in applications, for example, in biological and ecological models as well as in the control theory. Therefore, the study of semidiscrete systems has recently attracted the attention of many specialists. Stochastic effects are an important part of any realistic approach to modeling. For example, stochasticity arises in the population dynamics, demographic and ecological due to a change in time of factors external to the system affecting the survival of the population. In control theory, random coefficients can simulate inaccuracies in measurements. It will be shown in the presentation how to incorporate such effects into semidiscrete systems. Stability analysis is an essential part of modeling real-world problems. In the presentation, it will be explained how sufficient conditions for the moment stability of solutions in terms of the coefficients for linear semidiscrete stochastic equations can be derived using non-Lyapunov technique.

Keywords: abrupt changes, exponential stability, regularization, stochastic noises

Procedia PDF Downloads 182
2630 The Derivation of a Four-Strain Optimized Mohr's Circle for Use in Experimental Reinforced Concrete Research

Authors: Edvard P. G. Bruun

Abstract:

One of the best ways of improving our understanding of reinforced concrete is through large-scale experimental testing. The gathered information is critical in making inferences about structural mechanics and deriving the mathematical models that are the basis for finite element analysis programs and design codes. An effective way of measuring the strains across a region of a specimen is by using a system of surface mounted Linear Variable Differential Transformers (LVDTs). While a single LVDT can only measure the linear strain in one direction, by combining several measurements at known angles a Mohr’s circle of strain can be derived for the whole region under investigation. This paper presents a method that can be used by researchers, which improves the accuracy and removes experimental bias in the calculation of the Mohr’s circle, using four rather than three independent strain measurements. Obtaining high quality strain data is essential, since knowing the angular deviation (shear strain) and the angle of principal strain in the region are important properties in characterizing the governing structural mechanics. For example, the Modified Compression Field Theory (MCFT) developed at the University of Toronto, is a rotating crack model that requires knowing the direction of the principal stress and strain, and then calculates the average secant stiffness in this direction. But since LVDTs can only measure average strains across a plane (i.e., between discrete points), localized cracking and spalling that typically occur in reinforced concrete, can lead to unrealistic results. To build in redundancy and improve the quality of the data gathered, the typical experimental setup for a large-scale shell specimen has four independent directions (X, Y, H, and V) that are instrumented. The question now becomes, which three should be used? The most common approach is to simply discard one of the measurements. The problem is that this can produce drastically different answers, depending on the three strain values that are chosen. To overcome this experimental bias, and to avoid simply discarding valuable data, a more rigorous approach would be to somehow make use of all four measurements. This paper presents the derivation of a method to draw what is effectively a Mohr’s circle of 'best-fit', which optimizes the circle by using all four independent strain values. The four-strain optimized Mohr’s circle approach has been utilized to process data from recent large-scale shell tests at the University of Toronto (Ruggiero, Proestos, and Bruun), where analysis of the test data has shown that the traditional three-strain method can lead to widely different results. This paper presents the derivation of the method and shows its application in the context of two reinforced concrete shells tested in pure torsion. In general, the constitutive models and relationships that characterize reinforced concrete are only as good as the experimental data that is gathered – ensuring that a rigorous and unbiased approach exists for calculating the Mohr’s circle of strain during an experiment, is of utmost importance to the structural research community.

Keywords: reinforced concrete, shell tests, Mohr’s circle, experimental research

Procedia PDF Downloads 233
2629 3D Simulation for Design and Predicting Performance of a Thermal Heat Storage Facility using Sand

Authors: Nadjiba Mahfoudi, Abdelhafid Moummi , Mohammed El Ganaoui

Abstract:

Thermal applications are drawing increasing attention in the solar energy research field, due to their high performance in energy storage density and energy conversion efficiency. In these applications, solar collectors and thermal energy storage systems are the two core components. This paper presents a thermal analysis of the transient behavior and storage capability of a sensible heat storage device in which sand is used as a storage media. The TES unit with embedded charging tubes is connected to a solar air collector. To investigate it storage characteristics a 3D-model using no linear coupled partial differential equations for both temperature of storage medium and heat transfer fluid (HTF), has been developed. Performances of thermal storage bed of capacity of 17 MJ (including bed temperature, charging time, energy storage rate, charging energy efficiency) have been evaluated. The effect of the number of charging tubes (3 configurations) is presented.

Keywords: design, thermal modeling, heat transfer enhancement, sand, sensible heat storage

Procedia PDF Downloads 556
2628 Analysis of Cardiovascular Diseases Using Artificial Neural Network

Authors: Jyotismita Talukdar

Abstract:

In this paper, a study has been made on the possibility and accuracy of early prediction of several Heart Disease using Artificial Neural Network. (ANN). The study has been made in both noise free environment and noisy environment. The data collected for this analysis are from five Hospitals. Around 1500 heart patient’s data has been collected and studied. The data is analysed and the results have been compared with the Doctor’s diagnosis. It is found that, in noise free environment, the accuracy varies from 74% to 92%and in noisy environment (2dB), the results of accuracy varies from 62% to 82%. In the present study, four basic attributes considered are Blood Pressure (BP), Fasting Blood Sugar (FBS), Thalach (THAL) and Cholesterol (CHOL.). It has been found that highest accuracy(93%), has been achieved in case of PPI( Post-Permanent-Pacemaker Implementation ), around 79% in case of CAD(Coronary Artery disease), 87% in DCM (Dilated Cardiomyopathy), 89% in case of RHD&MS(Rheumatic heart disease with Mitral Stenosis), 75 % in case of RBBB +LAFB (Right Bundle Branch Block + Left Anterior Fascicular Block), 72% for CHB(Complete Heart Block) etc. The lowest accuracy has been obtained in case of ICMP (Ischemic Cardiomyopathy), about 38% and AF( Atrial Fibrillation), about 60 to 62%.

Keywords: coronary heart disease, chronic stable angina, sick sinus syndrome, cardiovascular disease, cholesterol, Thalach

Procedia PDF Downloads 172
2627 Analysis of the Lung Microbiome in Cystic Fibrosis Patients Using 16S Sequencing

Authors: Manasvi Pinnaka, Brianna Chrisman

Abstract:

Cystic fibrosis patients often develop lung infections that range anywhere in severity from mild to life-threatening due to the presence of thick and sticky mucus that fills their airways. Since many of these infections are chronic, they not only affect a patient’s ability to breathe but also increase the chances of mortality by respiratory failure. With a publicly available dataset of DNA sequences from bacterial species in the lung microbiome of cystic fibrosis patients, the correlations between different microbial species in the lung and the extent of deterioration of lung function were investigated. 16S sequencing technologies were used to determine the microbiome composition of the samples in the dataset. For the statistical analyses, referencing helped distinguish between taxonomies, and the proportions of certain taxa relative to another were determined. It was found that the Fusobacterium, Actinomyces, and Leptotrichia microbial types all had a positive correlation with the FEV1 score, indicating the potential displacement of these species by pathogens as the disease progresses. However, the dominant pathogens themselves, including Pseudomonas aeruginosa and Staphylococcus aureus, did not have statistically significant negative correlations with the FEV1 score as described by past literature. Examining the lung microbiology of cystic fibrosis patients can help with the prediction of the current condition of lung function, with the potential to guide doctors when designing personalized treatment plans for patients.

Keywords: bacterial infections, cystic fibrosis, lung microbiome, 16S sequencing

Procedia PDF Downloads 97
2626 The Nonlinear Research on Rotational Stiffness of Cuplock Joint

Authors: Liuyu Zhang, Di Mo, Qiang Yan, Min Liu

Abstract:

As the important equipment in the construction field, cuplock scaffold plays an important role in the construction process. As a scaffold connecting member, cuplock joint is of great importance. In order to explore the rotational stiffness nonlinear characteristics changing features of different structural forms of cuplock joint in different tightening torque condition under different conditions of load, ANSYS is used to establish four kinds of cuplock joint models with different forces to simulate the real force situation. By setting the different load conditions which means the cuplock is loaded at a certain distance from the cuplock joint in a certain direction until the cuplock is damaged and considering the gap between the cross bar joint and the vertical bar, the differences in the influence of the structural form and tightening torque on the rotation stiffness of the cuplock under different load conditions are compared. It is significantly important to improve the accuracy of calculating bearing capacity and stability of the cuplock steel pipe scaffold.

Keywords: cuplock joint, highway tunnel, non-linear characteristics, rotational stiffness, scaffold stability, theoretical analysis

Procedia PDF Downloads 119
2625 Design and Application of a Model Eliciting Activity with Civil Engineering Students on Binomial Distribution to Solve a Decision Problem Based on Samples Data Involving Aspects of Randomness and Proportionality

Authors: Martha E. Aguiar-Barrera, Humberto Gutierrez-Pulido, Veronica Vargas-Alejo

Abstract:

Identifying and modeling random phenomena is a fundamental cognitive process to understand and transform reality. Recognizing situations governed by chance and giving them a scientific interpretation, without being carried away by beliefs or intuitions, is a basic training for citizens. Hence the importance of generating teaching-learning processes, supported using technology, paying attention to model creation rather than only executing mathematical calculations. In order to develop the student's knowledge about basic probability distributions and decision making; in this work a model eliciting activity (MEA) is reported. The intention was applying the Model and Modeling Perspective to design an activity related to civil engineering that would be understandable for students, while involving them in its solution. Furthermore, the activity should imply a decision-making challenge based on sample data, and the use of the computer should be considered. The activity was designed considering the six design principles for MEA proposed by Lesh and collaborators. These are model construction, reality, self-evaluation, model documentation, shareable and reusable, and prototype. The application and refinement of the activity was carried out during three school cycles in the Probability and Statistics class for Civil Engineering students at the University of Guadalajara. The analysis of the way in which the students sought to solve the activity was made using audio and video recordings, as well as with the individual and team reports of the students. The information obtained was categorized according to the activity phase (individual or team) and the category of analysis (sample, linearity, probability, distributions, mechanization, and decision-making). With the results obtained through the MEA, four obstacles have been identified to understand and apply the binomial distribution: the first one was the resistance of the student to move from the linear to the probabilistic model; the second one, the difficulty of visualizing (infering) the behavior of the population through the sample data; the third one, viewing the sample as an isolated event and not as part of a random process that must be viewed in the context of a probability distribution; and the fourth one, the difficulty of decision-making with the support of probabilistic calculations. These obstacles have also been identified in literature on the teaching of probability and statistics. Recognizing these concepts as obstacles to understanding probability distributions, and that these do not change after an intervention, allows for the modification of these interventions and the MEA. In such a way, the students may identify themselves the erroneous solutions when they carrying out the MEA. The MEA also showed to be democratic since several students who had little participation and low grades in the first units, improved their participation. Regarding the use of the computer, the RStudio software was useful in several tasks, for example in such as plotting the probability distributions and to exploring different sample sizes. In conclusion, with the models created to solve the MEA, the Civil Engineering students improved their probabilistic knowledge and understanding of fundamental concepts such as sample, population, and probability distribution.

Keywords: linear model, models and modeling, probability, randomness, sample

Procedia PDF Downloads 116
2624 Max-Entropy Feed-Forward Clustering Neural Network

Authors: Xiaohan Bookman, Xiaoyan Zhu

Abstract:

The outputs of non-linear feed-forward neural network are positive, which could be treated as probability when they are normalized to one. If we take Entropy-Based Principle into consideration, the outputs for each sample could be represented as the distribution of this sample for different clusters. Entropy-Based Principle is the principle with which we could estimate the unknown distribution under some limited conditions. As this paper defines two processes in Feed-Forward Neural Network, our limited condition is the abstracted features of samples which are worked out in the abstraction process. And the final outputs are the probability distribution for different clusters in the clustering process. As Entropy-Based Principle is considered into the feed-forward neural network, a clustering method is born. We have conducted some experiments on six open UCI data sets, comparing with a few baselines and applied purity as the measurement. The results illustrate that our method outperforms all the other baselines that are most popular clustering methods.

Keywords: feed-forward neural network, clustering, max-entropy principle, probabilistic models

Procedia PDF Downloads 433
2623 Convergence Analysis of Cubic B-Spline Collocation Method for Time Dependent Parabolic Advection-Diffusion Equations

Authors: Bharti Gupta, V. K. Kukreja

Abstract:

A comprehensive numerical study is presented for the solution of time-dependent advection diffusion problems by using cubic B-spline collocation method. The linear combination of cubic B-spline basis, taken as approximating function, is evaluated using the zeros of shifted Chebyshev polynomials as collocation points in each element to obtain the best approximation. A comparison, on the basis of efficiency and accuracy, with the previous techniques is made which confirms the superiority of the proposed method. An asymptotic convergence analysis of technique is also discussed, and the method is found to be of order two. The theoretical analysis is supported with suitable examples to show second order convergence of technique. Different numerical examples are simulated using MATLAB in which the 3-D graphical presentation has taken at different time steps as well as different domain of interest.

Keywords: cubic B-spline basis, spectral norms, shifted Chebyshev polynomials, collocation points, error estimates

Procedia PDF Downloads 218
2622 Trends of Conservation and Development in Mexican Biosphere Reserves: Spatial Analysis and Linear Mixed Model

Authors: Cecilia Sosa, Fernanda Figueroa, Leonardo Calzada

Abstract:

Biosphere reserves (BR) are considered as the main strategy for biodiversity and ecosystems conservation. Mexican BR are mainly inhabited by rural communities who strongly depend on forests and their resources. Even though the dual objective of conservation and development has been sought in BR, land cover change is a common process in these areas, while most rural communities are highly marginalized, partly as a result of restrictions imposed by conservation to the access and use of resources. Achieving ecosystems conservation and social development face serious challenges. Factors such as financial support for development projects (public/private), environmental conditions, infrastructure and regional economic conditions might influence both land use change and wellbeing. Examining the temporal trends of conservation and development in BR is central for the evaluation of outcomes for these conservation strategies. In this study, we analyzed changes in primary vegetation cover (as a proxy for conservation) and the index of marginalization (as a proxy for development) in Mexican BR (2000-2015); we also explore the influence of various factors affecting these trends, such as conservation-development projects financial support (public or private), geographical distribution in ecoregions (as a proxy for shared environmental conditions) and in economic zones (as a proxy for regional economic conditions). We developed a spatial analysis at the municipal scale (2,458 municipalities nationwide) in ArcGIS, to obtain road densities, geographical distribution in ecoregions and economic zones, the financial support received, and the percent of municipality area under protection by protected areas and, particularly, by BR. Those municipalities with less than 25% of area under protection were regarded as part of the protected area. We obtained marginalization indexes for all municipalities and, using MODIS in Google Earth Engine, the number of pixels covered by primary vegetation. We used a linear mixed model in RStudio for the analysis. We found a positive correlation between the marginalization index and the percent of primary vegetation cover per year (r=0.49-0.5); i.e., municipalities with higher marginalization also show higher percent of primary vegetation cover. Also, those municipalities with higher area under protection have more development projects (r=0.46) and some environmental conditions were relevant for percent of vegetation cover. Time, economic zones and marginalization index were all important. Time was particularly, in 2005, when both marginalization and deforestation decreased. Road densities and financial support for conservation-development projects were irrelevant as factors in the general correlation. Marginalization is still being affected by the conservation strategies applied in BR, even though that this management category considers both conservation and development of local communities as its objectives. Our results suggest that roads densities and support for conservation-development projects have not been a factor of poverty alleviation. As better conservation is being attained in the most impoverished areas, we face the dilemma of how to improve wellbeing in rural communities under conservation, since current strategies have not been able to leave behind the conservation-development contraposition.

Keywords: deforestation, local development, marginalization, protected areas

Procedia PDF Downloads 129
2621 Development of a Novel Score for Early Detection of Hepatocellular Carcinoma in Patients with Hepatitis C Virus

Authors: Hatem A. El-Mezayen, Hossam Darwesh

Abstract:

Background/Aim: Hepatocellular carcinoma (HCC) is often diagnosed at advanced stage where effective therapies are lacking. Identification of new scoring system is needed to discriminate HCC patients from those with chronic liver disease. Based on the link between vascular endothelial growth factor (VEGF) and HCC progression, we aimed to develop a novel score based on combination of VEGF and routine laboratory tests for early prediction of HCC. Methods: VEGF was assayed for HCC group (123), liver cirrhosis group (210) and control group (50) by Enzyme Linked Immunosorbent Assay (ELISA). Data from all groups were retrospectively analyzed including α feto protein (AFP), international normalized ratio (INR), albumin and platelet count, transaminases, and age. Areas under ROC curve were used to develop the score. Results: A novel index named hepatocellular carcinoma-vascular endothelial growth factor score (HCC-VEGF score)=1.26 (numerical constant) + 0.05 ×AFP (U L-1)+0.038 × VEGF(ng ml-1)+0.004× INR –1.02 × Albumin (g l-1)–0.002 × Platelet count × 109 l-1 was developed. HCC-VEGF score produce area under ROC curve of 0.98 for discriminating HCC patients from liver cirrhosis with sensitivity of 91% and specificity of 82% at cut-off 4.4 (ie less than 4.4 considered cirrhosis and greater than 4.4 considered HCC). Conclusion: Hepatocellular carcinoma-VEGF score could replace AFP in HCC screening and follow up of cirrhotic patients.

Keywords: Hepatocellular carcinoma, cirrhosis, HCV, diagnosis, tumor markers

Procedia PDF Downloads 319
2620 A Three-Dimensional (3D) Numerical Study of Roofs Shape Impact on Air Quality in Urban Street Canyons with Tree Planting

Authors: Bouabdellah Abed, Mohamed Bouzit, Lakhdar Bouarbi

Abstract:

The objective of this study is to investigate numerically the effect of roof shaped on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, Pvol = 96%. A three-dimensional computational fluid dynamics (CFD) model for evaluating air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier–Stokes (RANS) equations and the k-Epsilon EARSM turbulence model as close of the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against the wind tunnel experiment. Having established this, the wind flow and pollutant dispersion in urban street canyons of six roof shapes are simulated. The numerical simulation agrees reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated, this complexity is increased with presence of tree and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped. The results also indicated that the corners eddies provide additional ventilation and lead to lower traffic pollutant concentrations at the street canyon ends.

Keywords: street canyon, pollutant dispersion, trees, building configuration, numerical simulation, k-Epsilon EARSM

Procedia PDF Downloads 360
2619 The Influence of Oil Price Fluctuations on Macroeconomics Variables of the Kingdom of Saudi Arabia

Authors: Khalid Mujaljal, Hassan Alhajhoj

Abstract:

This paper empirically investigates the influence of oil price fluctuations on the key macroeconomic variables of the Kingdom of Saudi Arabia using unrestricted VAR methodology. Two analytical tools- Granger-causality and variance decomposition are used. The Granger-causality test reveals that almost all specifications of oil price shocks significantly Granger-cause GDP and demonstrates evidence of causality between oil price changes and money supply (M3) and consumer price index percent (CPIPC) in the case of positive oil price shocks. Surprisingly, almost all specifications of oil price shocks do not Granger-cause government expenditure. The outcomes from variance decomposition analysis suggest that positive oil shocks contribute about 25 percent in causing inflation in the country. Also, contribution of symmetric linear oil price shocks and asymmetric positive oil price shocks is significant and persistent with 25 percent explaining variation in world consumer price index till end of the period.

Keywords: Granger causality, oil prices changes, Saudi Arabian economy, variance decomposition

Procedia PDF Downloads 319
2618 Parameter Identification Analysis in the Design of Rock Fill Dams

Authors: G. Shahzadi, A. Soulaimani

Abstract:

This research work aims to identify the physical parameters of the constitutive soil model in the design of a rockfill dam by inverse analysis. The best parameters of the constitutive soil model, are those that minimize the objective function, defined as the difference between the measured and numerical results. The Finite Element code (Plaxis) has been utilized for numerical simulation. Polynomial and neural network-based response surfaces have been generated to analyze the relationship between soil parameters and displacements. The performance of surrogate models has been analyzed and compared by evaluating the root mean square error. A comparative study has been done based on objective functions and optimization techniques. Objective functions are categorized by considering measured data with and without uncertainty in instruments, defined by the least square method, which estimates the norm between the predicted displacements and the measured values. Hydro Quebec provided data sets for the measured values of the Romaine-2 dam. Stochastic optimization, an approach that can overcome local minima, and solve non-convex and non-differentiable problems with ease, is used to obtain an optimum value. Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Differential Evolution (DE) are compared for the minimization problem, although all these techniques take time to converge to an optimum value; however, PSO provided the better convergence and best soil parameters. Overall, parameter identification analysis could be effectively used for the rockfill dam application and has the potential to become a valuable tool for geotechnical engineers for assessing dam performance and dam safety.

Keywords: Rockfill dam, parameter identification, stochastic analysis, regression, PLAXIS

Procedia PDF Downloads 142
2617 Fault Diagnosis and Fault-Tolerant Control of Bilinear-Systems: Application to Heating, Ventilation, and Air Conditioning Systems in Multi-Zone Buildings

Authors: Abderrhamane Jarou, Dominique Sauter, Christophe Aubrun

Abstract:

Over the past decade, the growing demand for energy efficiency in buildings has attracted the attention of the control community. Failures in HVAC (heating, ventilation and air conditioning) systems in buildings can have a significant impact on the desired and expected energy performance of buildings and on the user's comfort as well. FTC is a recent technology area that studies the adaptation of control algorithms to faulty operating conditions of a system. The application of Fault-Tolerant Control (FTC) in HVAC systems has gained attention in the last two decades. The objective is to maintain the variations in system performance due to faults within an acceptable range with respect to the desired nominal behavior. This paper considers the so-called active approach, which is based on fault and identification scheme combined with a control reconfiguration algorithm that consists in determining a new set of control parameters so that the reconfigured performance is "as close as possible, "in some sense, to the nominal performance. Thermal models of buildings and their HVAC systems are described by non-linear (usually bi-linear) equations. Most of the works carried out so far in FDI (fault diagnosis and isolation) or FTC consider a linearized model of the studied system. However, this model is only valid in a reduced range of variation. This study presents a new fault diagnosis (FD) algorithm based on a bilinear observer for the detection and accurate estimation of the magnitude of the HVAC system failure. The main contribution of the proposed FD algorithm is that instead of using specific linearized models, the algorithm inherits the structure of the actual bilinear model of the building thermal dynamics. As an immediate consequence, the algorithm is applicable to a wide range of unpredictable operating conditions, i.e., weather dynamics, outdoor air temperature, zone occupancy profile. A bilinear fault detection observer is proposed for a bilinear system with unknown inputs. The residual vector in the observer design is decoupled from the unknown inputs and, under certain conditions, is made sensitive to all faults. Sufficient conditions are given for the existence of the observer and results are given for the explicit computation of observer design matrices. Dedicated observer schemes (DOS) are considered for sensor FDI while unknown input bilinear observers are considered for actuator or system components FDI. The proposed strategy for FTC works as follows: At a first level, FDI algorithms are implemented, making it also possible to estimate the magnitude of the fault. Once the fault is detected, the fault estimation is then used to feed the second level and reconfigure the control low so that that expected performances are recovered. This paper is organized as follows. A general structure for fault-tolerant control of buildings is first presented and the building model under consideration is introduced. Then, the observer-based design for Fault Diagnosis of bilinear systems is studied. The FTC approach is developed in Section IV. Finally, a simulation example is given in Section V to illustrate the proposed method.

Keywords: bilinear systems, fault diagnosis, fault-tolerant control, multi-zones building

Procedia PDF Downloads 168
2616 Improving the LDMOS Temperature Compensation Bias Circuit to Optimize Back-Off

Authors: Antonis Constantinides, Christos Yiallouras, Christakis Damianou

Abstract:

The application of today's semiconductor transistors in high power UHF DVB-T linear amplifiers has evolved significantly by utilizing LDMOS technology. This fact provides engineers with the option to design a single transistor signal amplifier which enables output power and linearity that was unobtainable previously using bipolar junction transistors or later type first generation MOSFETS. The quiescent current stability in terms of thermal variations of the LDMOS guarantees a robust operation in any topology of DVB-T signal amplifiers. Otherwise, progressively uncontrolled heat dissipation enhancement on the LDMOS case can degrade the amplifier’s crucial parameters in regards to the gain, linearity, and RF stability, resulting in dysfunctional operation or a total destruction of the unit. This paper presents one more sophisticated approach from the traditional biasing circuits used so far in LDMOS DVB-T amplifiers. It utilizes a microprocessor control technology, providing stability in topologies where IDQ must be perfectly accurate.

Keywords: LDMOS, amplifier, back-off, bias circuit

Procedia PDF Downloads 335
2615 Development of Time Series Forecasting Model for Dengue Cases in Nakhon Si Thammarat, Southern Thailand

Authors: Manit Pollar

Abstract:

Identifying the dengue epidemic periods early would be helpful to take necessary actions to prevent the dengue outbreaks. Providing an accurate prediction on dengue epidemic seasons will allow sufficient time to take the necessary decisions and actions to safeguard the situation for local authorities. This study aimed to develop a forecasting model on number of dengue incidences in Nakhon Si Thammarat Province, Southern Thailand using time series analysis. We develop Seasonal Autoregressive Moving Average (SARIMA) models on the monthly data collected between 2003-2011 and validated the models using data collected between January-September 2012. The result of this study revealed that the SARIMA(1,1,0)(1,2,1)12 model closely described the trends and seasons of dengue incidence and confirmed the existence of dengue fever cases in Nakhon Si Thammarat for the years between 2003-2011. The study showed that the one-step approach for predicting dengue incidences provided significantly more accurate predictions than the twelve-step approach. The model, even if based purely on statistical data analysis, can provide a useful basis for allocation of resources for disease prevention.

Keywords: SARIMA, time series model, dengue cases, Thailand

Procedia PDF Downloads 355
2614 Composite Kernels for Public Emotion Recognition from Twitter

Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang

Abstract:

The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.

Keywords: emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining

Procedia PDF Downloads 215
2613 Behavior of the RC Slab Subjected to Impact Loading According to the DIF

Authors: Yong Jae Yu, Jae-Yeol Cho

Abstract:

In the design of structural concrete for impact loading, design or model codes often employ a dynamic increase factor (DIF) to impose dynamic effect on static response. Dynamic increase factors that are obtained from laboratory material test results and that are commonly given as a function of strain rate only are quite different from each other depending on the design concept of design codes like ACI 349M-06, fib Model Code 2010 and ACI 370R-14. Because the dynamic increase factors currently adopted in the codes are too simple and limited to consider a variety of strength of materials, their application in practical design is questionable. In this study, the dynamic increase factors used in the three codes were validated through the finite element analysis of reinforced concrete slab elements which were tested and reported by other researcher. The test was intended to simulate a wall element of the containment building in nuclear power plants that is assumed to be subject to impact scenario that the Pentagon experienced on September 11, 2001. The finite element analysis was performed using the ABAQAUS 6.10 and the plasticity models were employed for the concrete, reinforcement. The dynamic increase factors given in the three codes were applied to the stress-strain curves of the materials. To estimate the dynamic increase factors, strain rate was adopted as a parameter. Comparison of the test and analysis was done with regard to perforation depth, maximum deflection, and surface crack area of the slab. Consequently, it was found that DIF has so great an effect on the behavior of the reinforced concrete structures that selection of DIF should be very careful. The result implies that DIF should be provided in design codes in more delicate format considering various influence factors.

Keywords: impact, strain rate, DIF, slab elements

Procedia PDF Downloads 290
2612 The Continuous Facility Location Problem and Transportation Mode Selection in the Supply Chain under Sustainability

Authors: Abdulaziz Alageel, Martino Luis, Shuya Zhong

Abstract:

The main focus of this research study is on the challenges faced in decision-making in a supply chain network regarding the facility location while considering carbon emissions. The study aims (i) to locate facilities (i.e., distribution centeres) in a continuous space considering limitations of capacity and the costs associated with opening and (ii) to reduce the cost of carbon emissions by selecting the mode of transportation. The problem is formulated as mixed-integer linear programming. This study hybridised a greedy randomised adaptive search (GRASP) and variable neighborhood search (VNS) to deal with the problem. Well-known datasets from the literature (Brimberg et al. 2001) are used and adapted in order to assess the performance of the proposed method. The proposed hybrid method produces encouraging results based on computational analysis. The study also highlights some research avenues for future recommendations.

Keywords: supply chain, facility location, weber problem, sustainability

Procedia PDF Downloads 98
2611 An Anthropological Perspective: Interaction with Extended Kinship in Saudi Arabia in the 21st Century

Authors: Alaa Alshehri

Abstract:

It has been thought that kinship in modernization is moving in a linear Western model; however, the literature shows that different cultures adjust to modernization by preserving its norms and values. Saudi Arabia is a young country experiencing rapid expansion from oil discovery until economic diversification. By conducting 10 interviews from different provinces of the country from the age of 27-47, these anthropological studies suggest that Saudi people adapted to modernization and globalization through unique interactions with extended families by asking the participants to give detailed descriptions of their interactions with their kinship. With almost all the participants noticing the changes within the last few years, this interaction is rooted in their religious beliefs, which they stressed, even with the free choice of life opportunities. They tried to find a balance between individuality and collectivity and connect the gap between the older and younger generations. This study adds to the anthropological debate on kinship definition and ties in modernization and provides a perspective on the social reality of one of the major Middle Eastern countries, Saudi Arabia.

Keywords: collectivity, economic diversification, kinship, modernization theory, individuality

Procedia PDF Downloads 97
2610 Optimization of Our Eyes Cooperation as the Counter-Terrorism Strategy in Association of South East Asian Nations

Authors: Chastiti Mediafira Wulolo

Abstract:

Our Eyes is a cooperation pact in the field of intelligence information exchanges initiated by the Indonesian Ministry of Defense, which has been signed by Indonesia, Philippines, Malaysia, Brunei Darussalam, Thailand, and Singapore. This cooperation mostly engages the military acts as a central role, but this pact still requires the involvement of various parties such as police and other linear institution. This paper will use a qualitative content analysis method by doing some deep analyzing the pattern of cooperation itself. As the implementation of translantic counter-terrorism cooperation, this research will address how the role of Our Eyes can be optimized as a form of government’s response towards the contemporary threat in the Dynamics of Strategic Environmental Security in the Asia Pacific Region. Optimizing the role of this cooperation will also acquire from the previous counter-terrorism cooperation in ASEAN region, so it expects that Our Eyes collaboration can be the most effective cooperation in overcoming terrorism issues in ASEAN, eventually in Asia Pacific.

Keywords: our eyes, Defense Ministry of Indonesia, ASEAN, counter-terrorism

Procedia PDF Downloads 179
2609 Diagnostic Performance of Tumor Associated Trypsin Inhibitor in Early Detection of Hepatocellular Carcinoma in Patients with Hepatitis C Virus

Authors: Aml M. El-Sharkawy, Hossam M. Darwesh

Abstract:

Abstract— Background/Aim: Hepatocellular carcinoma (HCC) is often diagnosed at advanced stage where effective therapies are lacking. Identification of new scoring system is needed to discriminate HCC patients from those with chronic liver disease. Based on the link between tumor associated trypsin inhibitor (TATI) and HCC progression, we aimed to develop a novel score based on combination of TATI and routine laboratory tests for early prediction of HCC. Methods: TATI was assayed for HCC group (123), liver cirrhosis group (210) and control group (50) by Enzyme Linked Immunosorbent Assay (ELISA). Data from all groups were retrospectively analyzed including α feto protein (AFP), international normalized ratio (INR), albumin and platelet count, transaminases, and age. Areas under ROC curve were used to develop the score. Results: A novel index named hepatocellular carcinoma-vascular endothelial growth factor score (HCC-TATI score) = 3.1 (numerical constant) + 0.09 ×AFP (U L-1) + 0.067 × TATI (ng ml-1) + 0.16 × INR – 1.17 × Albumin (g l-1) – 0.032 × Platelet count × 109 l-1 was developed. HCC-TATI score produce area under ROC curve of 0.98 for discriminating HCC patients from liver cirrhosis with sensitivity of 91% and specificity of 82% at cut-off 6.5 (ie less than 6.5 considered cirrhosis and greater than 4.4 considered HCC). Conclusion: Hepatocellular carcinoma-TATI score could replace AFP in HCC screening and follow up of cirrhotic patients.

Keywords: Hepatocellular carcinoma, cirrhosis, HCV, diagnosis, TATI

Procedia PDF Downloads 332
2608 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data

Authors: Ruchika Malhotra, Megha Khanna

Abstract:

The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.

Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics

Procedia PDF Downloads 418
2607 Emotional Labor Strategies and Intentions to Quit among Nurses in Pakistan

Authors: Maham Malik, Amjad Ali, Muhammad Asif

Abstract:

Current study aims to examine the relationship of emotional labor strategies - deep acting and surface acting - with employees' job satisfaction, organizational commitment and intentions to quit. The study also examines the mediating role of job satisfaction and organizational commitment for relationship of emotional labor strategies with intentions to quit. Data were conveniently collected from 307 nurses by using self-administered questionnaire. Linear regression test was applied to find the relationship between the variables. Mediation was checked through Baron and Kenny Model and Sobel test. Results prove the existence of partial mediation of job satisfaction between the emotional labor strategies and quitting intentions. The study recommends that deep acting should be promoted because it is positively associated with quality of work life, work engagement and organizational citizenship behavior of employees.

Keywords: emotional labor strategies, intentions to quit, job satisfaction, organizational commitment, nursing

Procedia PDF Downloads 142