Search results for: video surveillance camera
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1859

Search results for: video surveillance camera

1469 Estimating Gait Parameter from Digital RGB Camera Using Real Time AlphaPose Learning Architecture

Authors: Murad Almadani, Khalil Abu-Hantash, Xinyu Wang, Herbert Jelinek, Kinda Khalaf

Abstract:

Gait analysis is used by healthcare professionals as a tool to gain a better understanding of the movement impairment and track progress. In most circumstances, monitoring patients in their real-life environments with low-cost equipment such as cameras and wearable sensors is more important. Inertial sensors, on the other hand, cannot provide enough information on angular dynamics. This research offers a method for tracking 2D joint coordinates using cutting-edge vision algorithms and a single RGB camera. We provide an end-to-end comprehensive deep learning pipeline for marker-less gait parameter estimation, which, to our knowledge, has never been done before. To make our pipeline function in real-time for real-world applications, we leverage the AlphaPose human posture prediction model and a deep learning transformer. We tested our approach on the well-known GPJATK dataset, which produces promising results.

Keywords: gait analysis, human pose estimation, deep learning, real time gait estimation, AlphaPose, transformer

Procedia PDF Downloads 118
1468 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning

Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih

Abstract:

Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.

Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network

Procedia PDF Downloads 187
1467 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models

Authors: Keyi Wang

Abstract:

Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.

Keywords: deep learning, hand gesture recognition, computer vision, image processing

Procedia PDF Downloads 139
1466 Application of Principle Component Analysis for Classification of Random Doppler-Radar Targets during the Surveillance Operations

Authors: G. C. Tikkiwal, Mukesh Upadhyay

Abstract:

During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving army, moving convoys etc. The Radar operator selects one of the promising targets into Single Target Tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper we present a technique using mathematical and statistical methods like Fast Fourier Transformation (FFT) and Principal Component Analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.

Keywords: radar target, fft, principal component analysis, eigenvector, octave-notes, dsp

Procedia PDF Downloads 346
1465 Correlation between Dynamic Knee Valgus with Isometric Hip External Rotators Strength during Single Leg Landing

Authors: Ahmed Fawzy, Khaled Ayad, Gh. M. Koura, W. Reda

Abstract:

The excessive frontal plane motion of the lower extremity during sports activities is thought to be a contributing factor to many traumatic and overuse injuries of the knee joint, little is known about the biomechanical factors that contribute to this loading pattern. Objectives: The purpose of this study was to investigate if there is a relationship between hip external rotators isometric strength and the value of frontal plane projection angle (FPPA) during single leg landing tasks in normal male subjects. Methods: One hundred (male) subjects free from lower extremity injuries for at least six months ago participated in this study. Their mean age was (23.25 ± 2.88) years, mean weight was (74.76 ± 13.54) (Kg), mean height was (174.23 ± 6.56) (Cm). The knee frontal plane projection angle was measured by digital video camera using single leg landing task. Hip external rotators isometric strength were assessed by portable hand held dynamometer. Muscle strength had been normalized to the body weight to obtain more accurate measurements. Results: The results demonstrated that there was no significant relationship between hip external rotators isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Conclusion: It can be concluded that there is no relationship between hip external rotators isometric strength and the value of FPPA during functional activities in normal male subjects.

Keywords: 2-dimensional motion analysis, hip strength, kinematics, knee injuries

Procedia PDF Downloads 226
1464 Teleconsultations and The Need of Onsite Additional Medical Services

Authors: Cristina Hotoleanu

Abstract:

Introduction: The recent Covid-19 pandemic accelerated the development of e-health, including telemedicine, smartphone applications, and medical wearable devices. Providing remote teleconsultations supposes challenges which may require further face-to-face medical interactions. The aim of this study was to assess the correlation between the types of teleconsultations and the need of onsite medical services (investigations and medical visits) for the diagnosis and treatment. Methods: a retrospective study including all the teleconsultations using the platform offered by a telehealth provider in Romania (Telios Care SA) between May 1, 2021- April 30, 2022, was performed. Binary data were analysed using the chi-square test with a significance level of p < 0.05. Results: out of 7163 consultations, 3961 were phone calls, 1981 were online messages, and 1221 were video calls. Onsite medical services were indicated in 3327 (46.44%) cases; the onsite investigations or the onsite visits were recommended for 2908 patients as follows: 2326 in case of phone calls, 582 in case of online messages, none in case of video calls. Both onsite investigations and visits were indicated for 419 patients. The need for onsite additional medical services was significantly higher in the case of phone calls than in the other 2 types of teleconsultations (Chi square= 1207.06, p= 0.00001). The indication for onsite services was done mainly after teleconsultations covering medical specialties (87.34%), significantly higher than the other specialties (Chi square=914.59, p=0.00001). Teleconsultations in surgical specialties and other fields (pharmacy, dentistry, psychology, wellbeing- nutrition, fitness) resulted in 12.13%, respective less than 1%, indication for onsite investigations or visits, explained by using of video calls in most of the cases. Conclusion: a further onsite medical service was necessary in less than a half of the teleconsultations. This indication was done mainly after phone calls and teleconsultations in medical specialties. Video calls were used mostly in psychology, nutrition, and fitness teleconsultations and did not require a further onsite medical service. Other studies are necessary to assess better the types of teleconsultations and the specialties bringing the biggest benefit for the patients.

Keywords: onsite medical services, phone calls, teleconsultations, telemedicine

Procedia PDF Downloads 101
1463 Teachers’ Involvement in their Designed Play Activities in a Chinese Context

Authors: Shu-Chen Wu

Abstract:

This paper will present a study by the author which investigates Chinese teachers’ perspectives on learning at play and their teaching activities in the designed play activities. It asks the question of how Chinese teachers understand learning at play and how they design play activities in the classroom. Six kindergarten teachers in Hong Kong were invited to select and record exemplary play episodes which contain the largest amount of learning elements in their own classrooms. Applying video-stimulated interview, eight teachers in two focus groups were interviewed to elicit their perspectives on designing play activity and their teaching activities. The findings reveal that Chinese teachers have a very structured representation of learning at play, and the phenomenon of uniformity of teachers’ act was found. The contributions of which are important and useful for professional practices and curricular policies.

Keywords: learning at play, teacher involvement, video-stimulated interview, uniformity

Procedia PDF Downloads 142
1462 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting

Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey

Abstract:

Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.

Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method

Procedia PDF Downloads 78
1461 Impact of a Virtual Reality-Training on Real-World Hockey Skill: An Intervention Trial

Authors: Matthew Buns

Abstract:

Training specificity is imperative for successful performance of the elite athlete. Virtual reality (VR) has been successfully applied to a broad range of training domains. However, to date there is little research investigating the use of VR for sport training. The purpose of this study was to address the question of whether virtual reality (VR) training can improve real world hockey shooting performance. Twenty four volunteers were recruited and randomly selected to complete the virtual training intervention or enter a control group with no training. Four primary types of data were collected: 1) participant’s experience with video games and hockey, 2) participant’s motivation toward video game use, 3) participants technical performance on real-world hockey, and 4) participant’s technical performance in virtual hockey. One-way multivariate analysis of variance (ANOVA) indicated that that the intervention group demonstrated significantly more real-world hockey accuracy [F(1,24) =15.43, p <.01, E.S. = 0.56] while shooting on goal than their control group counterparts [intervention M accuracy = 54.17%, SD=12.38, control M accuracy = 46.76%, SD=13.45]. One-way multivariate analysis of variance (MANOVA) repeated measures indicated significantly higher outcome scores on real-world accuracy (35.42% versus 54.17%; ES = 1.52) and velocity (51.10 mph versus 65.50 mph; ES=0.86) of hockey shooting on goal. This research supports the idea that virtual training is an effective tool for increasing real-world hockey skill.

Keywords: virtual training, hockey skills, video game, esports

Procedia PDF Downloads 147
1460 Use of Pheromones, Active Surveillance and Treated Cattle to Prevent the Establishment of the Tropical Bont Tick in Puerto Rico and the Americas

Authors: Robert Miller, Fred Soltero, Sandra Allan, Denise Bonilla

Abstract:

The Tropical Bont Tick (TBT), Amblyomma variegatum, was introduced to the Caribbean in the mid-1700s. Since it has spread throughout the Caribbean dispersed by cattle egrets (Bubulcus ibis). Tropical Bont Ticks vector many pathogens to livestock and humans. However, only the livestock diseases heartwater, Ehrlichia (Cowdria) ruminantium, and dermatophilosis, Dermatophilus congolensis, are associated with TBT in the Caribbean. African tick bite fever (Rickettsia africae) is widespread in Caribbean TBT but human cases are rare. The Caribbean Amblyomma Programme (CAP) was an effort led by the Food and Agricultural Organization to eradicate TBTs from participating islands. This 10-year effort successfully eradicated TBT from many islands. However, most are reinfested since its termination. Pheromone technology has been developed to aid in TBT control. Although not part of the CAP treatment scheme, this research established that pheromones in combination with pesticide greatly improves treatment efficiencies. Additionally, pheromone combined with CO₂ traps greatly improves active surveillance success. St. Croix has a history of TBT outbreaks. Passive surveillance detected outbreaks in 2016 and in May of 2021. Surveillance efforts are underway to determine the extent of TBT on St Croix. Puerto Rico is the next island in the archipelago and is at a greater risk of re-infestation due to active outbreaks in St Croix. Tropical Bont Ticks were last detected in Puerto Rico in the 1980s. The infestation started on the small Puerto Rican island of Vieques, the closest landmass to St Croix, and spread to the main island through cattle movements. This infestation was eradicated with the help of the Tropical Cattle Tick (TCT), Rhipicephalus (Boophilus) microplus, eradication program. At the time, large percentages of Puerto Rican cattle were treated for ticks along with the necessary material and manpower mobilized for the effort. Therefore, a shift of focus from the TCT to TBT prevented its establishment in Puerto Rico. Currently, no large-scale treatment of TCTs occurs in Puerto Rico. Therefore, the risk of TBT establishment is now greater than it was in the 1980s. From Puerto Rico, the risk of TBT movement to the American continent increases significantly. The establishment of TBTs in the Americas would cause $1.2 billion USD in losses to the livestock industry per year. The USDA Agricultural Research Service recently worked with the USDA Animal Health Inspection Service and the Puerto Rican Department of Agriculture to modernize the management of the TCT. This modernized program uses safer pesticides and has successfully been used to eradicate pesticide-susceptible and -resistant ticks throughout the island. The objective of this work is to prevent the infestation of Puerto Rico by TBTs by combining the current TCT management efforts with TBT surveillance in Vieques. The combined effort is designed to eradicate TCT from Vieques while using the treated cattle as trap animals for TBT using pheromone impregnated tail tags attached to treated animals. Additionally, active surveillance using CO₂-baited traps combined with pheromone will be used to actively survey the environment for free-living TBT. Knowledge gained will inform TBT control efforts in St. Croix.

Keywords: Amblyomma variegatum, caribbean, eradication, Rhipicephalus (boophilus) microplus, pheromone

Procedia PDF Downloads 176
1459 Transcultural Study on Social Intelligence

Authors: Martha Serrano-Arias, Martha Frías-Armenta

Abstract:

Significant results have been found both supporting universality of emotion recognition and cultural background influence. Thus, the aim of this research was to test a Mexican version of the MTSI in different cultures to find differences in their performance. The MTSI-Mx assesses through a scenario approach were subjects must evaluate real persons. Two target persons were used for the construction, a man (FS) and a woman (AD). The items were grouped in four variables: Picture, Video, and FS and AD scenarios. The test was applied to 201 students from Mexico and Germany. T-test for picture and FS scenario show no significance. Video and AD had a significance at the 5% level. Results show slight differences between cultures, although a more comprehensive research is needed to conclude which culture can perform better in this kind of assessments.

Keywords: emotion recognition, MTSI, social intelligence, transcultural study

Procedia PDF Downloads 326
1458 Introducing a Video-Based E-Learning Module to Improve Disaster Preparedness at a Tertiary Hospital in Oman

Authors: Ahmed Al Khamisi

Abstract:

The Disaster Preparedness Standard (DPS) is one of the elements that is evaluated by the Accreditation Canada International (ACI). ACI emphasizes to train and educate all staff, including service providers and senior leaders, on emergency and disaster preparedness upon the orientation and annually thereafter. Lack of awareness and deficit of knowledge among the healthcare providers about DPS have been noticed in a tertiary hospital where ACI standards were implemented. Therefore, this paper aims to introduce a video-based e-learning (VB-EL) module that explains the hospital’s disaster plan in a simple language which will be easily accessible to all healthcare providers through the hospital’s website. The healthcare disaster preparedness coordinator in the targeted hospital will be responsible to ensure that VB-EL is ready by 25 April 2019. This module will be developed based on the Kirkpatrick evaluation method. In fact, VB-EL combines different data forms such as images, motion, sounds, text in a complementary fashion which will suit diverse learning styles and individual learning pace of healthcare providers. Moreover, the module can be adjusted easily than other tools to control the information that healthcare providers receive. It will enable healthcare providers to stop, rewind, fast-forward, and replay content as many times as needed. Some anticipated limitations in the development of this module include challenges of preparing VB-EL content and resistance from healthcare providers.

Keywords: Accreditation Canada International, Disaster Preparedness Standard, Kirkpatrick evaluation method, video-based e-learning

Procedia PDF Downloads 147
1457 Brain-Motor Disablement: Using Virtual Reality-Based Therapeutic Simulations

Authors: Vince Macri, Jakub Petioky, Paul Zilber

Abstract:

Virtual-reality-based technology, i.e. video-game-like simulations (collectively, VRSims) are used in therapy for a variety of medical conditions. The purpose of this paper is to contribute to a discussion on criteria for selecting VRSims to augment treatment of survivors of acquired brain injury. Specifically, for treatments to improve or restore brain motor function in upper extremities affected by paresis or paralysis. Six uses of virtual reality are reviewed video games for entertainment, training simulations, unassisted or device-assisted movements of affected or unaffected extremities displayed in virtual environments and virtual anatomical interactivity.

Keywords: acquired brain injury, brain-motor function, virtual anatomical interactivity, therapeutic simulations

Procedia PDF Downloads 588
1456 Multiperson Drone Control with Seamless Pilot Switching Using Onboard Camera and Openpose Real-Time Keypoint Detection

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

Traditional classification Convolutional Neural Networks (CNN) attempt to classify an image in its entirety. This becomes problematic when trying to perform classification with a drone’s camera in real-time due to unpredictable backgrounds. Object detectors with bounding boxes can be used to isolate individuals and other items, but the original backgrounds remain within these boxes. These basic detectors have been regularly used to determine what type of object an item is, such as “person” or “dog.” Recent advancement in computer vision, particularly with human imaging, is keypoint detection. Human keypoint detection goes beyond bounding boxes to fully isolate humans and plot points, or Regions of Interest (ROI), on their bodies within an image. ROIs can include shoulders, elbows, knees, heads, etc. These points can then be related to each other and used in deep learning methods such as pose estimation. For drone control based on human motions, poses, or signals using the onboard camera, it is important to have a simple method for pilot identification among multiple individuals while also giving the pilot fine control options for the drone. To achieve this, the OpenPose keypoint detection network was used with body and hand keypoint detection enabled. OpenPose supports the ability to combine multiple keypoint detection methods in real-time with a single network. Body keypoint detection allows simple poses to act as the pilot identifier. The hand keypoint detection with ROIs for each finger can then offer a greater variety of signal options for the pilot once identified. For this work, the individual must raise their non-control arm to be identified as the operator and send commands with the hand on their other arm. The drone ignores all other individuals in the onboard camera feed until the current operator lowers their non-control arm. When another individual wish to operate the drone, they simply raise their arm once the current operator relinquishes control, and then they can begin controlling the drone with their other hand. This is all performed mid-flight with no landing or script editing required. When using a desktop with a discrete NVIDIA GPU, the drone’s 2.4 GHz Wi-Fi connection combined with OpenPose restrictions to only body and hand allows this control method to perform as intended while maintaining the responsiveness required for practical use.

Keywords: computer vision, drone control, keypoint detection, openpose

Procedia PDF Downloads 184
1455 Forensic Challenges in Source Device Identification for Digital Videos

Authors: Mustapha Aminu Bagiwa, Ainuddin Wahid Abdul Wahab, Mohd Yamani Idna Idris, Suleman Khan

Abstract:

Video source device identification has become a problem of concern in numerous domains especially in multimedia security and digital investigation. This is because videos are now used as evidence in legal proceedings. Source device identification aim at identifying the source of digital devices using the content they produced. However, due to affordable processing tools and the influx in digital content generating devices, source device identification is still a major problem within the digital forensic community. In this paper, we discuss source device identification for digital videos by identifying techniques that were proposed in the literature for model or specific device identification. This is aimed at identifying salient open challenges for future research.

Keywords: video forgery, source camcorder, device identification, forgery detection

Procedia PDF Downloads 631
1454 An Exploratory Study on the Impact of Video-stimulated Reflection on Novice EFL Teachers’ Professional Development

Authors: Ibrahima Diallo

Abstract:

The literature on teacher education foregrounds reflection as an important aspect of professional practice. Reflection for a teacher consists in critically analysing and evaluating retrospectively a lesson to see what worked, what did not work, and how to improve it for the future. Now, many teacher education programmes worldwide consider the ability to reflect as one of the hallmarks of an effective educator. However, in some context like Senegal, reflection has not been given due consideration in teacher education programmes. In contexts where it has been in the education landscape for some time now, reflection is mostly depicted as an individual written activity and many teacher trainees have become disenchanted by the repeated enactments of this task that is solely intended to satisfy course requirements. This has resulted in whitewashing weaknesses or even ‘faking’ reflection. Besides, the “one-size-fits-all” approach of reflection could not flourish because how reflection impacts on practice is still unproven. Therefore, reflective practice needs to be contextualised and made more thought-provoking through dialogue and by using classroom data. There is also a need to highlight change brought in teachers’ practice through reflection. So, this study introduces reflection in a new context and aims to show evidenced change in novice EFL teachers’ practice through dialogic data-led reflection. The purpose of this study is also to contribute to the scarce literature on reflection in sub-Saharan Africa by bringing new perspectives on contextualised teacher-led reflection. Eight novice EFL teachers participated in this qualitative longitudinal study, and data have been gathered online through post-lesson reflection recordings and lesson videos for a period of four months. Then, the data have been thematically analysed using NVivo to systematically organize and manage the large amount of data. The analysis followed the six steps approach to thematic analysis. Major themes related to teachers’ classroom practice and their conception of reflection emerged from the analysis of the data. The results showed that post-lesson reflection with a peer can help novice EFL teachers gained more awareness on their classroom practice. Dialogic reflection also helped them evaluate their lessons and seek for improvement. The analysis of the data also gave insight on teachers’ conception of reflection in an EFL context. It was found that teachers were more engaged in reflection when using their lesson video recordings. Change in teaching behaviour as a result of reflection was evidenced by the analysis of the lesson video recordings. This study has shown that video-stimulated reflection is practical form of professional development that can be embedded in teachers’ professional life.

Keywords: novice EFL teachers, practice, professional development, video-stimulated reflection

Procedia PDF Downloads 100
1453 Convolutional Neural Network and LSTM Applied to Abnormal Behaviour Detection from Highway Footage

Authors: Rafael Marinho de Andrade, Elcio Hideti Shiguemori, Rafael Duarte Coelho dos Santos

Abstract:

Relying on computer vision, many clever things are possible in order to make the world safer and optimized on resource management, especially considering time and attention as manageable resources, once the modern world is very abundant in cameras from inside our pockets to above our heads while crossing the streets. Thus, automated solutions based on computer vision techniques to detect, react, or even prevent relevant events such as robbery, car crashes and traffic jams can be accomplished and implemented for the sake of both logistical and surveillance improvements. In this paper, we present an approach for vehicles’ abnormal behaviors detection from highway footages, in which the vectorial data of the vehicles’ displacement are extracted directly from surveillance cameras footage through object detection and tracking with a deep convolutional neural network and inserted into a long-short term memory neural network for behavior classification. The results show that the classifications of behaviors are consistent and the same principles may be applied to other trackable objects and scenarios as well.

Keywords: artificial intelligence, behavior detection, computer vision, convolutional neural networks, LSTM, highway footage

Procedia PDF Downloads 166
1452 Podcasting: A Tool for an Enhanced Learning Experience of Introductory Courses to Science and Engineering Students

Authors: Yaser E. Greish, Emad F. Hindawy, Maryam S. Al Nehayan

Abstract:

Introductory courses such as General Chemistry I, General Physics I and General Biology need special attention as students taking these courses are usually at their first year of the university. In addition to the language barrier for most of them, they also face other difficulties if these elementary courses are taught in the traditional way. Changing the routine method of teaching of these courses is therefore mandated. In this regard, podcasting of chemistry lectures was used as an add-on to the traditional and non-traditional methods of teaching chemistry to science and non-science students. Podcasts refer to video files that are distributed in a digital format through the Internet using personal computers or mobile devices. Pedagogical strategy is another way of identifying podcasts. Three distinct teaching approaches are evident in the current literature and include receptive viewing, problem-solving, and created video podcasts. The digital format and dispensing of video podcasts have stabilized over the past eight years, the type of podcasts vary considerably according to their purpose, degree of segmentation, pedagogical strategy, and academic focus. In this regard, the whole syllabus of 'General Chemistry I' course was developed as podcasts and were delivered to students throughout the semester. Students used the podcasted files extensively during their studies, especially as part of their preparations for exams. Feedback of students strongly supported the idea of using podcasting as it reflected its effect on the overall understanding of the subject, and a consequent improvement of their grades.

Keywords: podcasting, introductory course, interactivity, flipped classroom

Procedia PDF Downloads 265
1451 In Search of the Chosen One: The Effectiveness of Video Games to Reduce the Intensity of Anxiety - State in College Students

Authors: Gerardo Hernández Sierra

Abstract:

Today, we are exposed to different anxiogenic stimuli, some of those stimuli (such as traffic, noise, etc.) generates anxiety in people, being the anxiety a factor that can develop different disorders in people. Therefore, and to improve the quality of life of people it is necessary to find new and helpful tools according to the times we’re living to decrease their anxiety state. Moreover, video games are consolidated globally as a way of interactive entertainment characterized by being available to many people, being fun and easy to play. Even so, people reports that they like playing videogames because they decrease their stress (an anxiety detonator). This research will seek the effectiveness of some videogame genres to reduce the intensity of state anxiety in students. Using State Trait Anxiety Inventory (STAI) to do a monitoring of the levels of anxiety pre and post displayed the videogames.

Keywords: anxiety, state trait anxiety inventory (STAI), stress, videogames

Procedia PDF Downloads 493
1450 Using Variation Theory in a Design-based Approach to Improve Learning Outcomes of Teachers Use of Video and Live Experiments in Swedish Upper Secondary School

Authors: Andreas Johansson

Abstract:

Conceptual understanding needs to be grounded on observation of physical phenomena, experiences or metaphors. Observation of physical phenomena using demonstration experiments has a long tradition within physics education and students need to develop mental models to relate the observations to concepts from scientific theories. This study investigates how live and video experiments involving an acoustic trap to visualize particle-field interaction, field properties and particle properties can help develop students' mental models and how they can be used differently to realize their potential as teaching tools. Initially, they were treated as analogs and the lesson designs were kept identical. With a design-based approach, the experimental and video designs, as well as best practices for a respective teaching tool, were then developed in iterations. Variation theory was used as a theoretical framework to analyze the planned respective realized pattern of variation and invariance in order to explain learning outcomes as measured by a pre-posttest consisting of conceptual multiple-choice questions inspired by the Force Concept Inventory and the Force and Motion Conceptual Evaluation. Interviews with students and teachers were used to inform the design of experiments and videos in each iteration. The lesson designs and the live and video experiments has been developed to help teachers improve student learning and make school physics more interesting by involving experimental setups that usually are out of reach and to bridge the gap between what happens in classrooms and in science research. As students’ conceptual knowledge also rises their interest in physics the aim is to increase their chances of pursuing careers within science, technology, engineering or mathematics.

Keywords: acoustic trap, design-based research, experiments, variation theory

Procedia PDF Downloads 83
1449 A Unified Webcam Proctoring Solution on Edge

Authors: Saw Thiha, Jay Rajasekera

Abstract:

A boom in video conferencing generated millions of hours of video data daily to be analyzed. However, such enormous data pose certain scalability issues to be analyzed efficiently, let alone do it in real-time, as online conferences can involve hundreds of people and can last for hours. This paper proposes an efficient online proctoring solution that can analyze the online conferences real-time on edge devices such as Android, iOS, and desktops. Since the computation can be done upfront on the devices where online conferences take place, it can scale well without requiring intensive resources such as GPU servers and complex cloud infrastructure. According to the linear models, face orientation does indeed impact the perceived eye openness. Also, the proposed z score facial landmark standardization was proven to be functional in detecting face orientation and contributed to classifying eye blinks with single eyelid distance computation while achieving a better f1 score and accuracy than the Eye Aspect Ratio (EAR) threshold method. Last but not least, the authors implemented the solution natively in the MediaPipe framework and open-sourced it along with the reproducible experimental results on GitHub. The solution provides face orientation, eye blink, facial activity, and translation detections out of the box and is highly customizable and extensible.

Keywords: android, desktop, edge computing, blink, face orientation, facial activity and translation, MediaPipe, open source, real-time, video conference, web, iOS, Z score facial landmark standardization

Procedia PDF Downloads 97
1448 The Epidemiology of Hospital Maternal Deaths, Haiti 2017-2020

Authors: Berger Saintius, Edna Ariste, Djeamsly Salomon

Abstract:

Background: Maternal mortality is a preventable global health problem that affects developed, developing, and underdeveloped countries alike. Globally, maternal mortality rates have declined since 1990, but 830 women die every day from pregnancy and childbirth-related causes that are often preventable. Haiti, with a number of 529 maternal deaths per 100,000 live births, is one of the countries with the highest maternal mortality rate in the Caribbean. This study consists of analyzing maternal death surveillance data in Haiti from 2017-2020. Method : A descriptive study was conducted; data were extracted from the National Epidemiological Surveillance Network of maternal deaths from 2017 to 2020. Sociodemographic variables were analyzed. Excel and Epi Info 7.2 were used for data analysis. Frequency and proportion measurements were calculated. Results: 756 deaths were recorded for the study period: 42 (6%) in 2017, 168 (22%) in 2018, 265 (35%) in 2019, and 281 (37%) in 2020. The North Department recorded the highest number of deaths, 167 (22%). 83(11%) in Les Cayes. 96% of these deaths are people aged between 15 and 49. Conclusion. Maternal mortality is a major health problem in Haiti. Mobilization, participation, and involvement of communities, increase in obstetric care coverage and promotion of Family Planning are among the strategies to fight this problem.

Keywords: epidemiology, maternal death, hospital, Haiti

Procedia PDF Downloads 90
1447 Using Augmented Reality to Enhance Doctor Patient Communication

Authors: Rutusha Bhutada, Gaurav Chavan, Sarvesh Kasat, Varsha Mujumdar

Abstract:

This software system will be an Augmented Reality application designed to maximize the doctor’s productivity by providing tools to assist in automating the patient recognition and updating patient’s records using face and voice recognition features, which would otherwise have to be performed manually. By maximizing the doctor’s work efficiency and production, the application will meet the doctor’s needs while remaining easy to understand and use. More specifically, this application is designed to allow a doctor to manage his productive time in handling the patient without losing eye-contact with him and communicate with a group of other doctors for consultation, for in-place treatments through video streaming, as a video study. The system also contains a relational database containing a list of doctor, patient and display techniques.

Keywords: augmented reality, hand-held devices, head-mounted devices, marker based systems, speech recognition, face detection

Procedia PDF Downloads 436
1446 Extended Constraint Mask Based One-Bit Transform for Low-Complexity Fast Motion Estimation

Authors: Oğuzhan Urhan

Abstract:

In this paper, an improved motion estimation (ME) approach based on weighted constrained one-bit transform is proposed for block-based ME employed in video encoders. Binary ME approaches utilize low bit-depth representation of the original image frames with a Boolean exclusive-OR based hardware efficient matching criterion to decrease computational burden of the ME stage. Weighted constrained one-bit transform (WC‑1BT) based approach improves the performance of conventional C-1BT based ME employing 2-bit depth constraint mask instead of a 1-bit depth mask. In this work, the range of constraint mask is further extended to increase ME performance of WC-1BT approach. Experiments reveal that the proposed method provides better ME accuracy compared existing similar ME methods in the literature.

Keywords: fast motion estimation; low-complexity motion estimation, video coding

Procedia PDF Downloads 316
1445 Video Analytics on Pedagogy Using Big Data

Authors: Jamuna Loganath

Abstract:

Education is the key to the development of any individual’s personality. Today’s students will be tomorrow’s citizens of the global society. The education of the student is the edifice on which his/her future will be built. Schools therefore should provide an all-round development of students so as to foster a healthy society. The behaviors and the attitude of the students in school play an essential role for the success of the education process. Frequent reports of misbehaviors such as clowning, harassing classmates, verbal insults are becoming common in schools today. If this issue is left unattended, it may develop a negative attitude and increase the delinquent behavior. So, the need of the hour is to find a solution to this problem. To solve this issue, it is important to monitor the students’ behaviors in school and give necessary feedback and mentor them to develop a positive attitude and help them to become a successful grownup. Nevertheless, measuring students’ behavior and attitude is extremely challenging. None of the present technology has proven to be effective in this measurement process because actions, reactions, interactions, response of the students are rarely used in the course of the data due to complexity. The purpose of this proposal is to recommend an effective supervising system after carrying out a feasibility study by measuring the behavior of the Students. This can be achieved by equipping schools with CCTV cameras. These CCTV cameras installed in various schools of the world capture the facial expressions and interactions of the students inside and outside their classroom. The real time raw videos captured from the CCTV can be uploaded to the cloud with the help of a network. The video feeds get scooped into various nodes in the same rack or on the different racks in the same cluster in Hadoop HDFS. The video feeds are converted into small frames and analyzed using various Pattern recognition algorithms and MapReduce algorithm. Then, the video frames are compared with the bench marking database (good behavior). When misbehavior is detected, an alert message can be sent to the counseling department which helps them in mentoring the students. This will help in improving the effectiveness of the education process. As Video feeds come from multiple geographical areas (schools from different parts of the world), BIG DATA helps in real time analysis as it analyzes computationally to reveal patterns, trends, and associations, especially relating to human behavior and interactions. It also analyzes data that can’t be analyzed by traditional software applications such as RDBMS, OODBMS. It has also proven successful in handling human reactions with ease. Therefore, BIG DATA could certainly play a vital role in handling this issue. Thus, effectiveness of the education process can be enhanced with the help of video analytics using the latest BIG DATA technology.

Keywords: big data, cloud, CCTV, education process

Procedia PDF Downloads 240
1444 Lightweight and Seamless Distributed Scheme for the Smart Home

Authors: Muhammad Mehran Arshad Khan, Chengliang Wang, Zou Minhui, Danyal Badar Soomro

Abstract:

Security of the smart home in terms of behavior activity pattern recognition is a totally dissimilar and unique issue as compared to the security issues of other scenarios. Sensor devices (low capacity and high capacity) interact and negotiate each other by detecting the daily behavior activity of individuals to execute common tasks. Once a device (e.g., surveillance camera, smart phone and light detection sensor etc.) is compromised, an adversary can then get access to a specific device and can damage daily behavior activity by altering the data and commands. In this scenario, a group of common instruction processes may get involved to generate deadlock. Therefore, an effective suitable security solution is required for smart home architecture. This paper proposes seamless distributed Scheme which fortifies low computational wireless devices for secure communication. Proposed scheme is based on lightweight key-session process to upheld cryptic-link for trajectory by recognizing of individual’s behavior activities pattern. Every device and service provider unit (low capacity sensors (LCS) and high capacity sensors (HCS)) uses an authentication token and originates a secure trajectory connection in network. Analysis of experiments is revealed that proposed scheme strengthens the devices against device seizure attack by recognizing daily behavior activities, minimum utilization memory space of LCS and avoids network from deadlock. Additionally, the results of a comparison with other schemes indicate that scheme manages efficiency in term of computation and communication.

Keywords: authentication, key-session, security, wireless sensors

Procedia PDF Downloads 318
1443 Smartphones as a Tool of Mobile Journalism in Saudi Arabia

Authors: Ahmed Deen

Abstract:

The introduction of the mobile devices which were equipped with internet access and a camera, as well as the messaging services, has become a major inspiration for the use of the mobile devices in the growth in the reporting of news. Mobile journalism (MOJO) was a creation of modern technology, especially the use of mobile technology for video journalism purposes. MOJO, thus, is the process by which information is collected and disseminated to society, through the use of mobile technology, and even the use of the tablets. This paper seeks to better understand the ethics of Saudi mobile journalists towards news coverage. Also, this study aims to explore the relationship between minimizing harms and truth-seeking efforts among Saudi mobile journalists. Three main ethics were targeted in this study, which are seek truth and report it, minimize harm, and being accountable. Diffusion of innovation theory applied to reach this study’s goals. The non- probability sampling approach, ‘Snowball Sampling’ was used to target 124 survey participants, an online survey via SurveyMonkey that was distributed through social media platforms as a web link. The code of ethics of the Society of Professional Journalists has applied as a scale in this study. This study found that the relationship between minimizing harm and truth-seeking efforts is significantly moderate among Saudi mobile journalists. Also, it is found that the level journalistic experiences and using smartphones to cover news are weakly and negatively related to the perceptions of mobile journalism among Saudi journalists, while Saudi journalists who use their smartphone to cover the news between 1-3 years, were the majority of participants (55 participants by 51.4%).

Keywords: mobile journalism, Saudi journalism, smartphone, Saudi Arabia

Procedia PDF Downloads 176
1442 Multi-Sensor Image Fusion for Visible and Infrared Thermal Images

Authors: Amit Kumar Happy

Abstract:

This paper is motivated by the importance of multi-sensor image fusion with a specific focus on infrared (IR) and visual image (VI) fusion for various applications, including military reconnaissance. Image fusion can be defined as the process of combining two or more source images into a single composite image with extended information content that improves visual perception or feature extraction. These images can be from different modalities like visible camera & IR thermal imager. While visible images are captured by reflected radiations in the visible spectrum, the thermal images are formed from thermal radiation (infrared) that may be reflected or self-emitted. A digital color camera captures the visible source image, and a thermal infrared camera acquires the thermal source image. In this paper, some image fusion algorithms based upon multi-scale transform (MST) and region-based selection rule with consistency verification have been proposed and presented. This research includes the implementation of the proposed image fusion algorithm in MATLAB along with a comparative analysis to decide the optimum number of levels for MST and the coefficient fusion rule. The results are presented, and several commonly used evaluation metrics are used to assess the suggested method's validity. Experiments show that the proposed approach is capable of producing good fusion results. While deploying our image fusion algorithm approaches, we observe several challenges from the popular image fusion methods. While high computational cost and complex processing steps of image fusion algorithms provide accurate fused results, they also make it hard to become deployed in systems and applications that require a real-time operation, high flexibility, and low computation ability. So, the methods presented in this paper offer good results with minimum time complexity.

Keywords: image fusion, IR thermal imager, multi-sensor, multi-scale transform

Procedia PDF Downloads 115
1441 A Gradient Orientation Based Efficient Linear Interpolation Method

Authors: S. Khan, A. Khan, Abdul R. Soomrani, Raja F. Zafar, A. Waqas, G. Akbar

Abstract:

This paper proposes a low-complexity image interpolation method. Image interpolation is used to convert a low dimension video/image to high dimension video/image. The objective of a good interpolation method is to upscale an image in such a way that it provides better edge preservation at the cost of very low complexity so that real-time processing of video frames can be made possible. However, low complexity methods tend to provide real-time interpolation at the cost of blurring, jagging and other artifacts due to errors in slope calculation. Non-linear methods, on the other hand, provide better edge preservation, but at the cost of high complexity and hence they can be considered very far from having real-time interpolation. The proposed method is a linear method that uses gradient orientation for slope calculation, unlike conventional linear methods that uses the contrast of nearby pixels. Prewitt edge detection is applied to separate uniform regions and edges. Simple line averaging is applied to unknown uniform regions, whereas unknown edge pixels are interpolated after calculation of slopes using gradient orientations of neighboring known edge pixels. As a post-processing step, bilateral filter is applied to interpolated edge regions in order to enhance the interpolated edges.

Keywords: edge detection, gradient orientation, image upscaling, linear interpolation, slope tracing

Procedia PDF Downloads 260
1440 Adjustable Aperture with Liquid Crystal for Real-Time Range Sensor

Authors: Yumee Kim, Seung-Guk Hyeon, Kukjin Chun

Abstract:

An adjustable aperture using a liquid crystal is proposed for real-time range detection and obtaining images simultaneously. The adjustable aperture operates as two types of aperture stops which can create two different Depth of Field images. By analyzing these two images, the distance can be extracted from camera to object. Initially, the aperture stop has large size with zero voltage. When the input voltage is applied, the aperture stop transfer to smaller size by orientational transition of liquid crystal molecules in the device. The diameter of aperture stop is 1.94mm and 1.06mm. The proposed device has low driving voltage of 7.0V and fast response time of 6.22m. Compact size aperture of 6×6×1.1 mm3 is assembled in conventional camera which contain 1/3” HD image sensor and focal length of 3.3mm that can be used in autonomous. The measured range was up to 5m. The adjustable aperture has high stability due to no mechanically moving parts. This range sensor can be applied to the various field of 3D depth map application which is the Advanced Driving Assistance System (ADAS), drones and manufacturing machine.

Keywords: adjustable aperture, dual aperture, liquid crystal, ranging and imaging, ADAS, range sensor

Procedia PDF Downloads 381