Search results for: standing postural control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11131

Search results for: standing postural control

10741 Investigation of the GFR2400 Reactivity Control System

Authors: Ján Haščík, Štefan Čerba, Jakub Lüley, Branislav Vrban

Abstract:

The presented paper is related to the design methods and neutronic characterization of the reactivity control system in the large power unit of Generation IV Gas cooled Fast Reactor – GFR2400. The reactor core is based on carbide pin fuel type with the application of refractory metallic liners used to enhance the fission product retention of the SiC cladding. The heterogeneous design optimization of control rod is presented and the results of rods worth and their interferences in a core are evaluated. In addition, the idea of reflector removal as an additive reactivity management option is investigated and briefly described.

Keywords: control rods design, GFR2400, hot spot, movable reflector, reactivity

Procedia PDF Downloads 437
10740 The Non-Motor Symptoms of Filipino Patients with Parkinson’s Disease

Authors: Cherrie Mae S. Sia, Noel J. Belonguel, Jarungchai Anton S. Vatanagul

Abstract:

Background: Parkinson’s disease (PD) is a chronic progressive, neurodegenerative disorder known for its motor symptoms such as bradykinesia, resting tremor, muscle rigidity, and postural instability. Patients with PD also experience non-motor symptoms (NMS) such as depression, fatigue, and sleep disturbances that are most of the time unrecognized by clinicians. This may be due to the lack of spontaneous reports from the patients or partly because of the lack of systematic questioning from the healthcare professional. There is limited data with regards to these NMS especially that of Filipino patients with PD. Objectives: This study aims to determine the non-motor symptoms of Filipino patients with Parkinson’s disease. Materials and Methods: This is a prospective, cohort study involving thirty-four patients of Filipino-descent diagnosed with PD in three out-patient clinics in Cebu City from April to September 2014. Each patient was interviewed using the Non-Motor Symptom Scale (NMSS). A Cebuano version of the NMSS was also provided for the non-English speaking patients. Interview time was approximately ten to fifteen minutes for each respondent. Results: Of the thirty-four patients with Parkinson’s disease, majority was noted to be males (N=19) and the disease was noted to be more prevalent in patients with a mean age of 62 (SD±9) years old. Hypertension (59%) and diabetes mellitus (29%) were the common co-morbidities in the study population. All patients presented more than one NMS, with insomnia (41.2%), poor memory (23.5%) and depression (14.7%) being the first non-motor symptoms to occur. Symptoms involving mood/cognition (mean=2.21), and attention/memory (mean=2.05) were noted to be the most frequent and of moderate severity. Based on the NMSS, the symptoms that were noted to be mild and often to occur were those that involved the mood/cognition (score=3.84), attention/memory (score=3.50), and sleep/fatigue (score=3.00) domains. Levodopa-Carbidopa, Ropinirole, and Pramipexole were the most frequently used medications in the study population. Conclusion: Non-motor symptoms (NMS) are common in patients with Parkinson’s disease (PD). They appear at the time of diagnosis of PD or even before the motor symptoms manifest. The earliest non-motor symptoms to occur are insomnia, poor memory, and depression. Those pertaining to mood/cognition and attention/memory are the most frequent NMS and they are of moderate severity. Identifying these NMS by doing a questionnaire-guided interview such as the Non-Motor Symptom Scale (NMSS) before they can become more severe and affect the patient’s quality of life is a must for every clinician caring for a PD patient. Early treatment and control of these NMS can then be given, hence, improving the patient’s outcome and prognosis.

Keywords: non motor symptoms, Parkinson's Disease, insomnia, depression

Procedia PDF Downloads 448
10739 Sliding Mode Control of Variable Speed Wind Energy Conversion Systems

Authors: Zine Souhila Rached, Mazari Benyounes Bouzid, Mohamed Amine, Allaoui Tayeb

Abstract:

Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, its high cost is a major constraint, especially on the less windy sites. The purpose of wind energy systems is to maximize energy efficiency, and extract maximum power from the wind speed. In other words, having a power coefficient is maximum and therefore the maximum power point tracking. In this case, the MPPT control becomes important.To realize this control, strategy conventional proportional and integral (PI) controller is usually used. However, this strategy cannot achieve better performance. This paper proposes a robust control of a turbine which optimizes its production, that is improve the quality and energy efficiency, namely, a strategy of sliding mode control. The proposed sliding mode control strategy presents attractive features such as robustness to parametric uncertainties of the turbine; the proposed sliding mode control approach has been simulated on three-blade wind turbine. The simulation result under Matlab\Simulink has validated the performance of the proposed MPPT strategy.

Keywords: wind turbine, maximum power point tracking, sliding mode, energy conversion systems

Procedia PDF Downloads 611
10738 The End a Two-Party Hegemony

Authors: Mary Chidiebere Asoya

Abstract:

The dominance of two parties in multiparty democracies is a phenomenon that has come to be taken for granted. It has led to deepening corruption and redundant governance in many countries as politicians in the two dominating parties are aware of and exploit the fact that power must rotate between the two parties. As a result, politicians in two dominating parties can hobnob and frequently inter-marry between the two parties in a way that appears to suggest they are running a single dominating party. This paper explores what could end this hegemony by projecting a third party into the limelight. The argument is that long-standing frustration with corruption and increasing revolutionary tendencies could move voters away from the two dominating parties, ending the dominance of the parties. The case study is the February 25, 2023, Presidential elections in Nigeria.

Keywords: democracy, political party, election, nigeria, political science

Procedia PDF Downloads 92
10737 Application of Hyperbinomial Distribution in Developing a Modified p-Chart

Authors: Shourav Ahmed, M. Gulam Kibria, Kais Zaman

Abstract:

Control charts graphically verify variation in quality parameters. Attribute type control charts deal with quality parameters that can only hold two states, e.g., good or bad, yes or no, etc. At present, p-control chart is most commonly used to deal with attribute type data. In construction of p-control chart using binomial distribution, the value of proportion non-conforming must be known or estimated from limited sample information. As the probability distribution of fraction non-conforming (p) is considered in hyperbinomial distribution unlike a constant value in case of binomial distribution, it reduces the risk of false detection. In this study, a statistical control chart is proposed based on hyperbinomial distribution when prior estimate of proportion non-conforming is unavailable and is estimated from limited sample information. We developed the control limits of the proposed modified p-chart using the mean and variance of hyperbinomial distribution. The proposed modified p-chart can also utilize additional sample information when they are available. The study also validates the use of modified p-chart by comparing with the result obtained using cumulative distribution function of hyperbinomial distribution. The study clearly indicates that the use of hyperbinomial distribution in construction of p-control chart yields much accurate estimate of quality parameters than using binomial distribution.

Keywords: binomial distribution, control charts, cumulative distribution function, hyper binomial distribution

Procedia PDF Downloads 279
10736 Study on Planning of Smart GRID Using Landscape Ecology

Authors: Sunglim Lee, Susumu Fujii, Koji Okamura

Abstract:

Smart grid is a new approach for electric power grid that uses information and communications technology to control the electric power grid. Smart grid provides real-time control of the electric power grid, controlling the direction of power flow or time of the flow. Control devices are installed on the power lines of the electric power grid to implement smart grid. The number of the control devices should be determined, in relation with the area one control device covers and the cost associated with the control devices. One approach to determine the number of the control devices is to use the data on the surplus power generated by home solar generators. In current implementations, the surplus power is sent all the way to the power plant, which may cause power loss. To reduce the power loss, the surplus power may be sent to a control device and sent to where the power is needed from the control device. Under assumption that the control devices are installed on a lattice of equal size squares, our goal is to figure out the optimal spacing between the control devices, where the power sharing area (the area covered by one control device) is kept small to avoid power loss, and at the same time the power sharing area is big enough to have no surplus power wasted. To achieve this goal, a simulation using landscape ecology method is conducted on a sample area. First an aerial photograph of the land of interest is turned into a mosaic map where each area is colored according to the ratio of the amount of power production to the amount of power consumption in the area. The amount of power consumption is estimated according to the characteristics of the buildings in the area. The power production is calculated by the sum of the area of the roofs shown in the aerial photograph and assuming that solar panels are installed on all the roofs. The mosaic map is colored in three colors, each color representing producer, consumer, and neither. We started with a mosaic map with 100 m grid size, and the grid size is grown until there is no red grid. One control device is installed on each grid, so that the grid is the area which the control device covers. As the result of this simulation we got 350 m as the optimal spacing between the control devices that makes effective use of the surplus power for the sample area.

Keywords: landscape ecology, IT, smart grid, aerial photograph, simulation

Procedia PDF Downloads 444
10735 Chaotic Control, Masking and Secure Communication Approach of Supply Chain Attractor

Authors: Unal Atakan Kahraman, Yilmaz Uyaroğlu

Abstract:

The chaotic signals generated by chaotic systems have some properties such as randomness, complexity and sensitive dependence on initial conditions, which make them particularly suitable for secure communications. Since the 1990s, the problem of secure communication, based on chaos synchronization, has been thoroughly investigated and many methods, for instance, robust and adaptive control approaches, have been proposed to realize the chaos synchronization. In this paper, an improved secure communication model is proposed based on control of supply chain management system. Control and masking communication simulation results are used to visualize the effectiveness of chaotic supply chain system also performed on the application of secure communication to the chaotic system. So, we discover the secure phenomenon of chaos-amplification in supply chain system

Keywords: chaotic analyze, control, secure communication, supply chain attractor

Procedia PDF Downloads 517
10734 Modelling and Technical Assessment of Multi-Motor for Electric Vehicle Drivetrains by Using Electric Differential

Authors: Mohamed Abdel-Monem, Gamal Sowilam, Omar Hegazy

Abstract:

This paper presents a technical assessment of an electric vehicle with two independent rear-wheel motor and an improved traction control system. The electric differential and the control strategy have been implemented to assure that in a straight trajectory, the two rear-wheels run exactly at the same speed, considering the same/different road conditions under the left and right side of the wheels. In case of turning to right/left, the difference between the two rear-wheels speeds assures a vehicle trajectory without sliding, thanks to a harmony between the electric differential and the control strategy. The present article demonstrates a complete model and analysis of a traction control system, considering four different traction scenarios, for two independent rear-wheels motors for electric vehicles. Furthermore, the vehicle model, including wheel dynamics, load forces, electric differential, and control strategy, is designed and verified by using MATLAB/Simulink environment.

Keywords: electric vehicle, energy saving, multi-motor, electric differential, simulation and control

Procedia PDF Downloads 351
10733 PEA Design of the Direct Control for Training Motor Drives

Authors: Abdulatif Abdulsalam Mohamed Shaban

Abstract:

This paper states that the art of Procedure Entry Array (PEA) plan with a focus on control system applications. This paper begins with an impression of PEA technology development, followed by an arrangement of design technologies, and the use of programmable description languages and system-level design tools. They allow a practical approach based on a unique model for complete engineering electronics systems. There are three main design rules are implemented in the system. These are algorithm based fine-tuning, modularity, and the control act and the architectural constraints. An overview of contributions and limits of PEAs is also given, followed by a short survey of PEA-based gifted controllers for recent engineering systems. Finally, two complete and timely case studies are presented to illustrate the benefits of a PEA implementation when using the proposed system modelling and devise attitude. These consist of the direct control for training motor drives and the control of a diesel-driven stand-alone generator with the help of logical design.

Keywords: control (DC), engineering electronics systems, training motor drives, procedure entry array

Procedia PDF Downloads 515
10732 Optimization Design of Single Phase Inverter Connected to the Grid

Authors: Linda Hassaine, Abdelhamid Mraoui, Mohamed Rida Bengourina

Abstract:

In grid-connected photovoltaic systems, significant improvements can be carried out in the design and implementation of inverters: reduction of harmonic distortion, elimination of the DC component injected into the grid and the proposed control. This paper proposes a control strategy based on PWM switching patterns for an inverter for the photovoltaic system connected to the grid in order to control the injected current. The current injected must be sinusoidal with reduced harmonic distortion. An additional filter is designed to reduce high-order harmonics on the output side. This strategy exhibits the advantages: Simplicity, reduction of harmonics, the size of the line filter, reduction of the memory requirements and power calculation for the control.

Keywords: control, inverters, LCL filter, grid-connected photovoltaic system

Procedia PDF Downloads 325
10731 Iterative Design Process for Development and Virtual Commissioning of Plant Control Software

Authors: Thorsten Prante, Robert Schöch, Ruth Fleisch, Vaheh Khachatouri, Alexander Walch

Abstract:

The development of industrial plant control software is a complex and often very expensive task. One of the core problems is that a lot of the implementation and adaptation work can only be done after the plant hardware has been installed. In this paper, we present our approach to virtually developing and validating plant-level control software of production plants. This way, plant control software can be virtually commissioned before actual ramp-up of a plant, reducing actual commissioning costs and time. Technically, this is achieved by linking the actual plant-wide process control software (often called plant server) and an elaborate virtual plant model together to form an emulation system. Method-wise, we are suggesting a four-step iterative process with well-defined increments and time frame. Our work is based on practical experiences from planning to commissioning and start-up of several cut-to-size plants.

Keywords: iterative system design, virtual plant engineering, plant control software, simulation and emulation, virtual commissioning

Procedia PDF Downloads 490
10730 Aquatic Therapy Improving Balance Function of Individuals with Stroke: A Systematic Review with Meta-Analysis

Authors: Wei-Po Wu, Wen-Yu Liu, Wei−Ting Lin, Hen-Yu Lien

Abstract:

Introduction: Improving balance function for individuals after stroke is a crucial target in physiotherapy. Aquatic therapy which challenges individual’s postural control in an unstable fluid environment may be beneficial in enhancing balance functions. The purposes of the systematic review with meta-analyses were to validate the effects of aquatic therapy in improving balance functions for individuals with strokes in contrast to conventional physiotherapy. Method: Available studies were explored from three electronic databases: PubMed, Scopus, and Web of Science. During literature search, the published date of studies was not limited. The study design of the included studies should be randomized controlled trials (RCTs) and the studies should contain at least one outcome measurement of balance function. The PEDro scale was adopted to assess the quality of included studies, while the 'Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence' was used to evaluate the level of evidence. After the data extraction, studies with same outcome measures were pooled together for meta-analysis. Result: Ten studies with 282 participants were included in analyses. The research qualities of the studies were ranged from fair to good (4 to 8 points). Levels of evidence of the included studies were graded as level 2 and 3. Finally, scores of Berg Balance Scale (BBS), Eye closed force plate center of pressure velocity (anterior-posterior, medial-lateral axis) and Timed up and Go test were pooled and analyzed separately. The pooled results shown improvement in balance function (BBS mean difference (MD): 1.39 points; 95% confidence interval (CI): 0.05-2.29; p=0.002) (Eye closed force plate center of pressure velocity (anterior-posterior axis) MD: 1.39 mm/s; 95% confidence interval (CI): 0.93-1.86; p<0.001) (Eye closed force plate center of pressure velocity (medial-lateral) MD: 1.48 mm/s; 95% confidence interval (CI): 0.15-2.82; p=0.03) and mobility (MD: 0.9 seconds; 95% CI: 0.07-1.73; p=0.03) of stroke individuals after aquatic therapy compared to conventional therapy. Although there were significant differences between two treatment groups, the differences in improvement were relatively small. Conclusion: The aquatic therapy improved general balance function and mobility in the individuals with stroke better than conventional physiotherapy.

Keywords: aquatic therapy, balance function, meta-analysis, stroke, systematic review

Procedia PDF Downloads 201
10729 Jointly Optimal Statistical Process Control and Maintenance Policy for Deteriorating Processes

Authors: Lucas Paganin, Viliam Makis

Abstract:

With the advent of globalization, the market competition has become a major issue for most companies. One of the main strategies to overcome this situation is the quality improvement of the product at a lower cost to meet customers’ expectations. In order to achieve the desired quality of products, it is important to control the process to meet the specifications, and to implement the optimal maintenance policy for the machines and the production lines. Thus, the overall objective is to reduce process variation and the production and maintenance costs. In this paper, an integrated model involving Statistical Process Control (SPC) and maintenance is developed to achieve this goal. Therefore, the main focus of this paper is to develop the jointly optimal maintenance and statistical process control policy minimizing the total long run expected average cost per unit time. In our model, the production process can go out of control due to either the deterioration of equipment or other assignable causes. The equipment is also subject to failures in any of the operating states due to deterioration and aging. Hence, the process mean is controlled by an Xbar control chart using equidistant sampling epochs. We assume that the machine inspection epochs are the times when the control chart signals an out-of-control condition, considering both true and false alarms. At these times, the production process will be stopped, and an investigation will be conducted not only to determine whether it is a true or false alarm, but also to identify the causes of the true alarm, whether it was caused by the change in the machine setting, by other assignable causes, or by both. If the system is out of control, the proper actions will be taken to bring it back to the in-control state. At these epochs, a maintenance action can be taken, which can be no action, or preventive replacement of the unit. When the equipment is in the failure state, a corrective maintenance action is performed, which can be minimal repair or replacement of the machine and the process is brought to the in-control state. SMDP framework is used to formulate and solve the joint control problem. Numerical example is developed to demonstrate the effectiveness of the control policy.

Keywords: maintenance, semi-Markov decision process, statistical process control, Xbar control chart

Procedia PDF Downloads 91
10728 Integrated Braking and Traction Torque Vectoring Control Based on Vehicle Yaw Rate for Stability improvement of All-Wheel-Drive Electric Vehicles

Authors: Mahmoud Said Jneid, Péter Harth

Abstract:

EVs with independent wheel driving greatly improve vehicle stability in poor road conditions. Wheel torques can be precisely controlled through electric motors driven using advanced technologies. As a result, various types of advanced chassis assistance systems (ACAS) can be implemented. This paper proposes an integrated torque vectoring control based on wheel slip regulation in both braking and traction modes. For generating the corrective yaw moment, the vehicle yaw rate and sideslip angle are monitored. The corrective yaw moment is distributed into traction and braking torques based on an equal-opposite components approach. The proposed torque vectoring control scheme is validated in simulation and the results show its superiority when compared to conventional schemes.

Keywords: all-wheel-drive, electric vehicle, torque vectoring, regenerative braking, stability control, traction control, yaw rate control

Procedia PDF Downloads 83
10727 H∞ Sampled-Data Control for Linear Systems Time-Varying Delays: Application to Power System

Authors: Chang-Ho Lee, Seung-Hoon Lee, Myeong-Jin Park, Oh-Min Kwon

Abstract:

This paper investigates improved stability criteria for sampled-data control of linear systems with disturbances and time-varying delays. Based on Lyapunov-Krasovskii stability theory, delay-dependent conditions sufficient to ensure H∞ stability for the system are derived in the form of linear matrix inequalities(LMI). The effectiveness of the proposed method will be shown in numerical examples.

Keywords: sampled-data control system, Lyapunov-Krasovskii functional, time delay-dependent, LMI, H∞ control

Procedia PDF Downloads 320
10726 The Effect of Head Posture on the Kinematics of the Spine During Lifting and Lowering Tasks

Authors: Mehdi Nematimoez

Abstract:

Head posture is paramount to retaining gaze and balance in many activities; its control is thus important in many activities. However, little information is available about the effects of head movement restriction on other spine segment kinematics and movement patterns during lifting and lowering tasks. The aim of this study was to examine the effects of head movement restriction on relative angles and their derivatives using the stepwise segmentation approach during lifting and lowering tasks. Ten healthy men lifted and lowered a box using two styles (stoop and squat), with two loads (i.e., 10 and 20% of body weight); they performed these tasks with two instructed head postures (1. Flexing the neck to keep contact between chin and chest over the task cycle; 2. No instruction, free head posture). The spine was divided into five segments, tracked by six cluster markers (C7, T3, T6, T9, T12, and L5). Relative angles between spine segments and their derivatives (first and second) were analyzed by a stepwise segmentation approach to consider the effect of each segment on the whole spine. Accordingly, head posture significantly affected the derivatives of the relative angles and manifested latency in spine segments movement, i.e., cephalad-to-caudad or caudad-to-cephalad patterns. The relative angles for C7-T3 and T3-T6 increased over the cycle of all lifting and lowering tasks; nevertheless, in lower segments increased significantly when the spine moved into upright standing. However, these effects were clearer during lifting than lowering. Conclusively, the neck flexion can unevenly increase the flexion angles of spine segments from cervical to lumbar over lifting and lowering tasks; furthermore, stepwise segmentation reveals potential for assessing the segmental contribution in spine ROM and movement patterns.

Keywords: head movement restriction, spine kinematics, lifting, lowering, stepwise segmentation

Procedia PDF Downloads 244
10725 T-S Fuzzy Modeling Based on Power Coefficient Limit Nonlinearity Applied to an Isolated Single Machine Load Frequency Deviation Control

Authors: R. S. Sheu, H. Usman, M. S. Lawal

Abstract:

Takagi-Sugeno (T-S) fuzzy model based control of a load frequency deviation in a single machine with limit nonlinearity on power coefficient is presented in the paper. Two T-S fuzzy rules with only rotor angle variable as input in the premise part, and linear state space models in the consequent part involving characteristic matrices determined from limits set on the power coefficient constant are formulated, state feedback control gains for closed loop control was determined from the formulated Linear Matrix Inequality (LMI) with eigenvalue optimization scheme for asymptotic and exponential stability (speed of esponse). Numerical evaluation of the closed loop object was carried out in Matlab. Simulation results generated of both the open and closed loop system showed the effectiveness of the control scheme in maintaining load frequency stability.

Keywords: T-S fuzzy model, state feedback control, linear matrix inequality (LMI), frequency deviation control

Procedia PDF Downloads 397
10724 PWM Based Control of Dstatcom for Voltage Sag, Swell Mitigation in Distribution Systems

Authors: A. Assif

Abstract:

This paper presents the modeling of a prototype distribution static compensator (D-STATCOM) for voltage sag and swell mitigation in an unbalanced distribution system. Here the concept that an inverter can be used as generalized impedance converter to realize either inductive or capacitive reactance has been used to mitigate power quality issues of distribution networks. The D-STATCOM is here supposed to replace the widely used StaticVar Compensator (SVC). The scheme is based on the Voltage Source Converter (VSC) principle. In this model PWM based control scheme has been implemented to control the electronic valves of VSC. Phase shift control Algorithm method is used for converter control. The D-STATCOM injects a current into the system to mitigate the voltage sags. In this paper the modeling of D¬STATCOM has been designed using MATLAB SIMULINIC. Accordingly, simulations are first carried out to illustrate the use of D-STATCOM in mitigating voltage sag in a distribution system. Simulation results prove that the D-STATCOM is capable of mitigating voltage sag as well as improving power quality of a system.

Keywords: D-STATCOM, voltage sag, voltage source converter (VSC), phase shift control

Procedia PDF Downloads 343
10723 Stability and Performance Improvement of a Two-Degree-of-Freedom Robot under Interaction Using the Impedance Control

Authors: Seyed Reza Mirdehghan, Mohammad Reza Haeri Yazdi

Abstract:

In this paper, the stability and the performance of a two-degree-of-freedom robot under an interaction with a unknown environment has been investigated. The time when the robot returns to its initial position after an interaction and the primary resistance of the robot against the impact must be reduced. Thus, the applied torque on the motor will be reduced. The impedance control is an appropriate method for robot control in these conditions. The stability of the robot at interaction moment was transformed to be a robust stability problem. The dynamic of the unknown environment was modeled as a weight function and the stability of the robot under an interaction with the environment has been investigated using the robust control concept. To improve the performance of the system, a force controller has been designed which the normalized impedance after interaction has been reduced. The resistance of the robot has been considered as a normalized cost function and its value was 0.593. The results has showed reduction of resistance of the robot against impact and the reduction of convergence time by lower than one second.

Keywords: impedance control, control system, robots, interaction

Procedia PDF Downloads 430
10722 Self-Tuning-Filter and Fuzzy Logic Control for Shunt Active Power Filter

Authors: Kaddari Faiza, Mazari Benyounes, Mihoub Youcef, Safa Ahmed

Abstract:

Active filtering of electric power has now become a mature technology for reactive power and harmonic compensation caused by the proliferation of power electronics devices used for industrial, commercial and residential purposes. The aim of this study is to enhance the power quality by improving the performances of shunt active power filter in harmonic mitigation to obtain sinusoidal source currents with very weak ripples. A power circuit configuration and control scheme for shunt active power filter are described with an improved method for harmonics compensation using self-tuning-filter for harmonics identification and fuzzy logic control to generate reference current. Simulation results (using MATLAB/SIMULINK) illustrates the compensation characteristics of the proposed control strategy. Analysis of these results proves the feasibility and effectiveness of this method to improve the power quality and also show the performances of fuzzy logic control which provides flexibility, high precision and fast response. The total harmonic distortion (THD %) for the simulations found to be within the recommended imposed IEEE 519-1992 harmonic standard.

Keywords: Active Powers Filter (APF), Self-Tuning-Filter (STF), fuzzy logic control, hysteresis-band control

Procedia PDF Downloads 739
10721 Application of Matrix Converter for the Power Control of a DFIG-Based Wind Turbine

Authors: E. Bounadja, M. O. Mahmoudi, A. Djahbar, Z. Boudjema

Abstract:

This paper presents a control approach of the doubly fed induction generator (DFIG) in conjunction with a direct AC-AC matrix converter used in generating mode. This device is intended to be implemented in a variable speed wind energy conversion system connected to the grid. Firstly, we developed a model of matrix converter, controlled by the Venturini modulation technique. In order to control the power exchanged between the stator of the DFIG and the grid, a control law is synthesized using a high order sliding mode controller. The use of this method provides very satisfactory performance for the DFIG control. The overall strategy has been validated on a 2-MW wind turbine driven a DFIG using the Matlab/Simulink.

Keywords: doubly fed induction generator (DFIG), matrix converter, high-order sliding mode controller, wind energy

Procedia PDF Downloads 523
10720 Research on Control Strategy of Differential Drive Assisted Steering of Distributed Drive Electric Vehicle

Authors: J. Liu, Z. P. Yu, L. Xiong, Y. Feng, J. He

Abstract:

According to the independence, accuracy and controllability of the driving/braking torque of the distributed drive electric vehicle, a control strategy of differential drive assisted steering was designed. Firstly, the assisted curve under different speed and steering wheel torque was developed and the differential torques were distributed to the right and left front wheels. Then the steering return ability assisted control algorithm was designed. At last, the joint simulation was conducted by CarSim/Simulink. The result indicated: the differential drive assisted steering algorithm could provide enough steering drive-assisted under low speed and improve the steering portability. Along with the increase of the speed, the provided steering drive-assisted decreased. With the control algorithm, the steering stiffness of the steering system increased along with the increase of the speed, which ensures the driver’s road feeling. The control algorithm of differential drive assisted steering could avoid the understeer under low speed effectively.

Keywords: differential assisted steering, control strategy, distributed drive electric vehicle, driving/braking torque

Procedia PDF Downloads 478
10719 Dissemination of Knowledge on Quality Control for Upgrading Product Standards for Small and Micro Community Enterprises

Authors: Niyom Suwandej

Abstract:

This research paper investigated the opinions of small and micro community enterprises from Jom Pluak Subdistrict, Bangkhontee District, Samut Songkram Province towards product quality control, and the findings are aimed to disseminate knowledge on quality control for upgrading product standards for small and micro community enterprises. The study employed both qualitative and quantitative methods, in which there were 23 samples in the study. The study was divided into 2 steps which were (1) studying the opinions of the respondents towards the community’s product quality control and upgrading product standards; (2) creating development guidance for product quality control and upgrading product standards for small and micro community enterprise. The demographic findings revealed female respondents as the majority, with most above 50 years of age and married. Most had more than 15 years of working experience. The education level reported by most respondents was primary school or lower followed by secondary school or lower with most respondents was vocational certificate level. Most respondents had the highest level of satisfaction with the existing condition of product quality control knowledge management. Pertaining to opinions on the guidance of knowledge creation for product quality control for small and micro community enterprise, the respondents were willing to apply the knowledge in upgrading their product standards. For the opinions of knowledge creation for product quality control and product standards, the respondents had the highest level of satisfaction. Guidance of knowledge creation for product quality control and product standards for small and micro community enterprises received the highest level of satisfaction from the respondents. Furthermore they had knowledge and comprehension in product quality control and product standards and could apply the knowledge in improving the quality of their production and product standards for small and micro community enterprises.

Keywords: product quality control, product standards, community enterprise, marketing management

Procedia PDF Downloads 469
10718 Autonomous Flight Control for Multirotor by Alternative Input Output State Linearization with Nested Saturations

Authors: Yong Eun Yoon, Eric N. Johnson, Liling Ren

Abstract:

Multirotor is one of the most popular types of small unmanned aircraft systems and has already been used in many areas including transport, military, surveillance, and leisure. Together with its popularity, the needs for proper flight control is growing because in most applications it is required to conduct its missions autonomously, which is in many aspects based on autonomous flight control. There have been many studies about the flight control for multirotor, but there is still room for enhancements in terms of performance and efficiency. This paper presents an autonomous flight control method for multirotor based on alternative input output linearization coupled with nested saturations. With alternative choice of the output of the multirotor flight control system, we can reduce computational cost regarding Lie algebra, and the linearized system can be stabilized with the introduction of nested saturations with real poles of our own design. Stabilization of internal dynamics is also based on the nested saturations and accompanies the determination of part of desired states. In particular, outer control loops involving state variables which originally are not included in the output of the flight control system is naturally rendered through this internal dynamics stabilization. We can also observe that desired tilting angles are determined by error dynamics from outer loops. Simulation results show that in any tracking situations multirotor stabilizes itself with small time constants, preceded by tuning process for control parameters with relatively low degree of complexity. Future study includes control of piecewise linear behavior of multirotor with actuator saturations, and the optimal determination of desired states while tracking multiple waypoints.

Keywords: automatic flight control, input output linearization, multirotor, nested saturations

Procedia PDF Downloads 228
10717 Determine the Effectiveness of Group Therapy with Reality Therapy Approach to Reduce Symptoms of Anxiety, Increase Self-esteem, and Internal Control in Infertile Women

Authors: Fatemeh Alsadat Borhani, Hassan Heydari, Mansour Abdi

Abstract:

The purpose of this study to determine the effectiveness of group therapy with approach reality therapy in reducing symptoms of anxiety and increased self- esteem and internal control of infertile women. The population of this study is all infertile women in Qom city in 2012 that with the use of purposeful sampling, 32 individuals were selected as sample. 16 individuals of infertile women in the control group and 16 infertile women in the experimental group is replaced. The research design was of type quasi-experimental with design pretest-posttest with control group. Thus, infertile women were randomly appointed in the experimental and control groups. Also, in this study data through normalized questionnaires, the Beck Anxiety scale, Rotter's Locus of control inventory, Cooper Smith self-esteem inventory was collected. For analysis of data, descriptive statistics, mean, standard deviation and inferential statistics, one way analysis of covariance model with SPSS version 20 software was used. The findings indicated that intervention of the group therapy with approach reality therapy in experimental group reduced symptoms of anxiety and mutually increased self-esteem and internal control in infertile women of experimental group.

Keywords: reality therapy, infertile women, anxiety, self esteem, internal control

Procedia PDF Downloads 574
10716 A Preliminary Study on the Effects of Equestrian and Basketball Exercises in Children with Autism

Authors: Li Shuping, Shu Huaping, Yi Chaofan, Tao Jiang

Abstract:

Equestrian practice is often considered having a unique effect on improving symptoms in children with autism. This study evaluated and measured the changes in daily behavior, morphological, physical function, and fitness indexes of two group children with autism by means of 12 weeks of equestrian and basketball exercises. 19 clinically diagnosed children with moderate/mild autism were randomly divided into equestrian group (9 children, age=10.11±1.90y) and basketball group (10 children, age=10.70±2.16y). Both the equestrian and basketball groups practiced twice a week for 45 to 60 minutes each time. Three scales, the Autism Behavior Checklist (ABC), the Childhood Autism Rating Scale (CARS) and the Clancy Autism Behavior Scale (CABS) were used to assess their human behavior and psychology. Four morphological, seven physical function and fitness indicators were measured to evaluate the effects of the two exercises on the children’s body. The evaluations were taken by every four weeks ( pre-exercise, the 4th week, the 8th week and 12th week (post exercise). The result showed that the total scores of ABC, CARS and CABS, the dimension scores of ABC on the somatic motor, language and life self-care obtained after exercise were significantly lower than those obtained before 12 week exercises in both groups. The ABC feeling dimension scores of equestrian group and ABC communication dimension score of basketball group were significantly lower,and The upper arm circumference, sitting forward flexion, 40 second sit-up, 15s lateral jump, vital capacity, and single foot standing of both groups were significantly higher than that of before exercise.. The BMI of equestrian group was significantly reduced. The handgrip strength of basketball group was significantly increased. In conclusion, both types of exercises could improve daily behavior, morphological, physical function, and fitness indexes of the children with autism. However, the behavioral psychological scores, body morphology and function indicators and time points were different in the middle and back of the two interventions.But the indicators and the timing of the improvement were different. To the group of equestrian, the improvement of the flexibility occurred at week 4, the improvement of the sensory perception, control and use their own body, and promote the development of core strength endurance, coordination and cardiopulmonary function occurred at week 8,and the improvement of core strength endurance, coordination and cardiopulmonary function occurred at week 12. To the group of basketball, the improvement of the hand strength, balance, flexibility and cardiopulmonary function occurred at week 4, the improvement of the self-care ability and language expression ability, and core strength endurance and coordination occurred at week 8, the improvement of the control and use of their own body and social interaction ability occurred at week 12. In comparison of the exercise effects, the equestrian exercise improved the physical control and application ability appeared earlier than that of basketball group. Basketball exercise improved the language expression ability, self-care ability, balance ability and cardiopulmonary function of autistic children appeared earlier than that of equestrian group.

Keywords: intervention, children with autism, equestrain, basketball

Procedia PDF Downloads 68
10715 Trajectory Tracking Control for Quadrotor Helicopter by Controlled Lagrangian Method

Authors: Ce Liu, Wei Huo

Abstract:

A nonlinear trajectory tracking controller for quadrotor helicopter based on controlled Lagrangian (CL) method is proposed in this paper. A Lagrangian system with virtual angles as generated coordinates rather than Euler angles is developed. Based on the model, the matching conditions presented by nonlinear partial differential equations are simplified and explicitly solved. Smooth tracking control laws and the range of control parameters are deduced based on the controlled energy of closed-loop system. Besides, a constraint condition for reference accelerations is deduced to identify the trackable reference trajectories by the proposed controller and to ensure the stability of the closed-loop system. The proposed method in this paper does not rely on the division of the quadrotor system, and the design of the control torques does not depend on the thrust as in backstepping or hierarchical control method. Simulations for a quadrotor model demonstrate the feasibility and efficiency of the theoretical results.

Keywords: quadrotor, trajectory tracking control, controlled lagrangians, underactuated system

Procedia PDF Downloads 120
10714 A Simplified Model of the Control System with PFM

Authors: Bekmurza H. Aitchanov, Sholpan K. Aitchanova, Olimzhon A. Baimuratov, Aitkul N. Aldibekova

Abstract:

This work considers the automated control system (ACS) of milk quality during its magnetic field processing. For achieving high level of quality control methods were applied transformation of complex nonlinear systems in a linearized system with a less complex structure. Presented ACS is adjustable by seven parameters: mass fraction of fat, mass fraction of dry skim milk residues (DSMR), density, mass fraction of added water, temperature, mass fraction of protein, acidity.

Keywords: fluids magnetization, nuclear magnetic resonance, automated control system, dynamic pulse-frequency modulator, PFM, nonlinear systems, structural model

Procedia PDF Downloads 375
10713 Bioactive Chemical Markers Based Strategy for Quality Control of Herbal Medicines

Authors: Zhenzhong Yang

Abstract:

Herbal medicines are important supplements to chemical drugs and usually consist of a complex mixture of constituents. The current quality control strategy of herbal medicines is mainly based on chemical markers, which largely failed to owe to the markers, not reflecting the herbal medicines’ multiple mechanisms of action. Herein, a bioactive chemical markers based strategy was proposed and applied to the quality assessment and control of herbal medicines. This strategy mainly includes the comprehensive chemical characterization of herbal medicines, bioactive chemical markers identification, and related quantitative analysis methods development. As a proof-of-concept, this strategy was applied to a Panax notoginseng derived herbal medicine. The bioactive chemical markers based strategy offers a rational approach for quality assessment and control of herbal medicines.

Keywords: bioactive chemical markers, herbal medicines, quality assessment, quality control

Procedia PDF Downloads 179
10712 Development of 35kV SF6 Phase-Control Circuit Breaker Equipped with EFDA

Authors: Duanlei Yuan, Guangchao Yan, Zhanqing Chen, Xian Cheng

Abstract:

This paper mainly focuses on the problem that high voltage circuit breaker’s closing and opening operation at random phase brings harmful electromagnetic transient effects on the power system. To repress the negative transient effects, a 35 kV SF6 phase-control circuit breaker equipped with electromagnetic force driving actuator is designed in this paper. Based on the constructed mathematical and structural models, the static magnetic field distribution and dynamic properties of the under loading actuator are simulated. The prototype of 35 kV SF6 phase-control circuit breaker is developed based on theories analysis and simulation. Tests are carried on to verify the operating reliability of the prototype. The developed circuit breaker can control its operating speed intelligently and switches with phase selection. Results of the tests and simulation prove that the phase-control circuit breaker is feasible for industrial applications.

Keywords: phase-control, circuit breaker, electromagnetic force driving actuator, tests and simulation

Procedia PDF Downloads 396