Search results for: neural regeneration
1916 iPSCs More Effectively Differentiate into Neurons on PLA Scaffolds with High Adhesive Properties for Primary Neuronal Cells
Authors: Azieva A. M., Yastremsky E. V., Kirillova D. A., Patsaev T. D., Sharikov R. V., Kamyshinsky R. A., Lukanina K. I., Sharikova N. A., Grigoriev T. E., Vasiliev A. L.
Abstract:
Adhesive properties of scaffolds, which predominantly depend on the chemical and structural features of their surface, play the most important role in tissue engineering. The basic requirements for such scaffolds are biocompatibility, biodegradation, high cell adhesion, which promotes cell proliferation and differentiation. In many cases, synthetic polymers scaffolds have proven advantageous because they are easy to shape, they are tough, and they have high tensile properties. The regeneration of nerve tissue still remains a big challenge for medicine, and neural stem cells provide promising therapeutic potential for cell replacement therapy. However, experiments with stem cells have their limitations, such as low level of cell viability and poor control of cell differentiation. Whereas the study of already differentiated neuronal cell culture obtained from newborn mouse brain is limited only to cell adhesion. The growth and implantation of neuronal culture requires proper scaffolds. Moreover, the polymer scaffolds implants with neuronal cells could demand specific morphology. To date, it has been proposed to use numerous synthetic polymers for these purposes, including polystyrene, polylactic acid (PLA), polyglycolic acid, and polylactide-glycolic acid. Tissue regeneration experiments demonstrated good biocompatibility of PLA scaffolds, despite the hydrophobic nature of the compound. Problem with poor wettability of the PLA scaffold surface could be overcome in several ways: the surface can be pre-treated by poly-D-lysine or polyethyleneimine peptides; roughness and hydrophilicity of PLA surface could be increased by plasma treatment, or PLA could be combined with natural fibers, such as collagen or chitosan. This work presents a study of adhesion of both induced pluripotent stem cells (iPSCs) and mouse primary neuronal cell culture on the polylactide scaffolds of various types: oriented and non-oriented fibrous nonwoven materials and sponges – with and without the effect of plasma treatment and composites with collagen and chitosan. To evaluate the effect of different types of PLA scaffolds on the neuronal differentiation of iPSCs, we assess the expression of NeuN in differentiated cells through immunostaining. iPSCs more effectively differentiate into neurons on PLA scaffolds with high adhesive properties for primary neuronal cells.Keywords: PLA scaffold, neurons, neuronal differentiation, stem cells, polylactid
Procedia PDF Downloads 851915 Effect of Locally Injected Mesenchymal Stem Cells on Bone Regeneration of Rat Calvaria Defects
Authors: Gileade P. Freitas, Helena B. Lopes, Alann T. P. Souza, Paula G. F. P. Oliveira, Adriana L. G. Almeida, Paulo G. Coelho, Marcio M. Beloti, Adalberto L. Rosa
Abstract:
Bone tissue presents great capacity to regenerate when injured by trauma, infectious processes, or neoplasia. However, the extent of injury may exceed the inherent tissue regeneration capability demanding some kind of additional intervention. In this scenario, cell therapy has emerged as a promising alternative to treat challenging bone defects. This study aimed at evaluating the effect of local injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs) on bone regeneration of rat calvaria defects. BM-MSCs and AT-MSCs were isolated and characterized by expression of surface markers; cell viability was evaluated after injection through a 21G needle. Defects of 5 mm in diameter were created in calvaria and after two weeks a single injection of BM-MSCs, AT-MSCs or vehicle-PBS without cells (Control) was carried out. Cells were tracked by bioluminescence and at 4 weeks post-injection bone formation was evaluated by micro-computed tomography (μCT) and histology, nanoindentation, and through gene expression of bone remodeling markers. The data were evaluated by one-way analysis of variance (p≤0.05). BM-MSCs and AT-MSCs presented characteristics of mesenchymal stem cells, kept viability after passing through a 21G needle and remained in the defects until day 14. In general, injection of both BM-MSCs and AT-MSCs resulted in higher bone formation compared to Control. Additionally, this bone tissue displayed elastic modulus and hardness similar to the pristine calvaria bone. The expression of all evaluated genes involved in bone formation was upregulated in bone tissue formed by BM-MSCs compared to AT-MSCs while genes involved in bone resorption were upregulated in AT-MSCs-formed bone. We show that cell therapy based on the local injection of BM-MSCs or AT-MSCs is effective in delivering viable cells that displayed local engraftment and induced a significant improvement in bone healing. Despite differences in the molecular cues observed between BM-MSCs and AT-MSCs, both cells were capable of forming bone tissue at comparable amounts and properties. These findings may drive cell therapy approaches toward the complete bone regeneration of challenging sites.Keywords: cell therapy, mesenchymal stem cells, bone repair, cell culture
Procedia PDF Downloads 1841914 Data Clustering in Wireless Sensor Network Implemented on Self-Organization Feature Map (SOFM) Neural Network
Authors: Krishan Kumar, Mohit Mittal, Pramod Kumar
Abstract:
Wireless sensor network is one of the most promising communication networks for monitoring remote environmental areas. In this network, all the sensor nodes are communicated with each other via radio signals. The sensor nodes have capability of sensing, data storage and processing. The sensor nodes collect the information through neighboring nodes to particular node. The data collection and processing is done by data aggregation techniques. For the data aggregation in sensor network, clustering technique is implemented in the sensor network by implementing self-organizing feature map (SOFM) neural network. Some of the sensor nodes are selected as cluster head nodes. The information aggregated to cluster head nodes from non-cluster head nodes and then this information is transferred to base station (or sink nodes). The aim of this paper is to manage the huge amount of data with the help of SOM neural network. Clustered data is selected to transfer to base station instead of whole information aggregated at cluster head nodes. This reduces the battery consumption over the huge data management. The network lifetime is enhanced at a greater extent.Keywords: artificial neural network, data clustering, self organization feature map, wireless sensor network
Procedia PDF Downloads 5181913 Training a Neural Network Using Input Dropout with Aggressive Reweighting (IDAR) on Datasets with Many Useless Features
Authors: Stylianos Kampakis
Abstract:
This paper presents a new algorithm for neural networks called “Input Dropout with Aggressive Re-weighting” (IDAR) aimed specifically at datasets with many useless features. IDAR combines two techniques (dropout of input neurons and aggressive re weighting) in order to eliminate the influence of noisy features. The technique can be seen as a generalization of dropout. The algorithm is tested on two different benchmark data sets: a noisy version of the iris dataset and the MADELON data set. Its performance is compared against three other popular techniques for dealing with useless features: L2 regularization, LASSO and random forests. The results demonstrate that IDAR can be an effective technique for handling data sets with many useless features.Keywords: neural networks, feature selection, regularization, aggressive reweighting
Procedia PDF Downloads 4581912 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network
Authors: Li Hui, Riyadh Hindi
Abstract:
Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network
Procedia PDF Downloads 671911 Solar Liquid Desiccant Regenerator for Two Stage KCOOH Based Fresh Air Dehumidifier
Authors: M. V. Rane, Tareke Tekia
Abstract:
Liquid desiccant based fresh air dehumidifiers can be gainfully deployed for air-conditioning, agro-produce drying and in many industrial processes. Regeneration of liquid desiccant can be done using direct firing, high temperature waste heat or solar energy. Solar energy is clean and available in abundance; however, it is costly to collect. A two stage liquid desiccant fresh air dehumidification system can offer Coefficient of Performance (COP), in the range of 1.6 to 2 for comfort air conditioning applications. High COP helps reduce the size and cost of collectors required. Performance tests on high temperature regenerator of a two stage liquid desiccant fresh air dehumidifier coupled with seasonally tracked flat plate like solar collector will be presented in this paper. The two stage fresh air dehumidifier has four major components: High Temperature Regenerator (HTR), Low Temperature Regenerator (LTR), High and Low Temperature Solution Heat Exchangers and Fresh Air Dehumidifier (FAD). This open system can operate at near atmospheric pressure in all the components. These systems can be simple, maintenance-free and scalable. Environmentally benign, non-corrosive, moderately priced Potassium Formate, KCOOH, is used as a liquid desiccant. Typical KCOOH concentration in the system is expected to vary between 65 and 75%. Dilute liquid desiccant at 65% concentration exiting the fresh air dehumidifier will be pumped and preheated in solution heat exchangers before entering the high temperature solar regenerator. In the solar collector, solution will be regenerated to intermediate concentration of 70%. Steam and saturated solution exiting the solar collector array will be separated. Steam at near atmospheric pressure will then be used to regenerate the intermediate concentration solution up to a concentration of 75% in a low temperature regenerator where moisture vaporized be released in to atmosphere. Condensed steam can be used as potable water after adding a pinch of salt and some nutrient. Warm concentrated liquid desiccant will be routed to solution heat exchanger to recycle its heat to preheat the weak liquid desiccant solution. Evacuated glass tube based seasonally tracked solar collector is used for regeneration of liquid desiccant at high temperature. Temperature of regeneration for KCOOH is 133°C at 70% concentration. The medium temperature collector was designed for temperature range of 100 to 150°C. Double wall polycarbonate top cover helps reduce top losses. Absorber integrated heat storage helps stabilize the temperature of liquid desiccant exiting the collectors during intermittent cloudy conditions, and extends the operation of the system by couple of hours beyond the sunshine hours. This solar collector is light in weight, 12 kg/m2 without absorber integrated heat storage material, and 27 kg/m2 with heat storage material. Cost of the collector is estimated to be 10,000 INR/m2. Theoretical modeling of the collector has shown that the optical efficiency is 62%. Performance test of regeneration of KCOOH will be reported.Keywords: solar, liquid desiccant, dehumidification, air conditioning, regeneration
Procedia PDF Downloads 3481910 Neural Networks-based Acoustic Annoyance Model for Laptop Hard Disk Drive
Authors: Yichao Ma, Chengsiong Chin, Wailok Woo
Abstract:
Since the last decade, there has been a rapid growth in digital multimedia, such as high-resolution media files and three-dimentional movies. Hence, there is a need for large digital storage such as Hard Disk Drive (HDD). As such, users expect to have a quieter HDD in their laptop. In this paper, a jury test has been conducted on a group of 34 people where 17 of them are students who is the potential consumer, and the remaining are engineers who know the HDD. A total 13 HDD sound samples have been selected from over hundred HDD noise recordings. These samples are selected based on an agreed subjective feeling. The samples are played to the participants using head acoustic playback system which enabled them to experience as similar as possible the same environment as have been recorded. Analysis has been conducted and the obtained results have indicated different group has different perception over the noises. Two neural network-based acoustic annoyance models are established based on back propagation neural network. Four psychoacoustic metrics, loudness, sharpness, roughness and fluctuation strength, are used as the input of the model, and the subjective evaluation results are taken as the output. The developed models are reasonably accurate in simulating both training and test samples.Keywords: hdd noise, jury test, neural network model, psychoacoustic annoyance
Procedia PDF Downloads 4391909 Wear Measuring and Wear Modelling Based On Archard, ASTM, and Neural Network Models
Authors: A. Shebani, C. Pislaru
Abstract:
Wear of materials is an everyday experience and has been observed and studied for long time. The prediction of wear is a fundamental problem in the industrial field, mainly correlated to the planning of maintenance interventions and economy. Pin-on-disc test is the most common test which is used to study the wear behaviour. In this paper, the pin-on-disc (AEROTECH UNIDEX 11) is used for the investigation of the effects of normal load and hardness of material on the wear under dry and sliding conditions. In the pin-on-disc rig, two specimens were used; one, a pin which is made of steel with a tip, is positioned perpendicular to the disc, where the disc is made of aluminium. The pin wear and disc wear were measured by using the following instruments: The Talysurf instrument, a digital microscope, and the alicona instrument; where the Talysurf profilometer was used to measure the pin/disc wear scar depth, and the alicona was used to measure the volume loss for pin and disc. After that, the Archard model, American Society for Testing and Materials model (ASTM), and neural network model were used for pin/disc wear modelling and the simulation results are implemented by using the Matlab program. This paper focuses on how the alicona can be considered as a powerful tool for wear measurements and how the neural network is an effective algorithm for wear estimation.Keywords: wear modelling, Archard Model, ASTM Model, Neural Networks Model, Pin-on-disc Test, Talysurf, digital microscope, Alicona
Procedia PDF Downloads 4611908 Artificial Neural Network in Ultra-High Precision Grinding of Borosilicate-Crown Glass
Authors: Goodness Onwuka, Khaled Abou-El-Hossein
Abstract:
Borosilicate-crown (BK7) glass has found broad application in the optic and automotive industries and the growing demands for nanometric surface finishes is becoming a necessity in such applications. Thus, it has become paramount to optimize the parameters influencing the surface roughness of this precision lens. The research was carried out on a 4-axes Nanoform 250 precision lathe machine with an ultra-high precision grinding spindle. The experiment varied the machining parameters of feed rate, wheel speed and depth of cut at three levels for different combinations using Box Behnken design of experiment and the resulting surface roughness values were measured using a Taylor Hobson Dimension XL optical profiler. Acoustic emission monitoring technique was applied at a high sampling rate to monitor the machining process while further signal processing and feature extraction methods were implemented to generate the input to a neural network algorithm. This paper highlights the training and development of a back propagation neural network prediction algorithm through careful selection of parameters and the result show a better classification accuracy when compared to a previously developed response surface model with very similar machining parameters. Hence artificial neural network algorithms provide better surface roughness prediction accuracy in the ultra-high precision grinding of BK7 glass.Keywords: acoustic emission technique, artificial neural network, surface roughness, ultra-high precision grinding
Procedia PDF Downloads 3051907 Regenerative Therapeutic Effect of Statin Nanoparticle-Loaded Adipose-Derived Stem Cells on Myocardial Infarction
Authors: Masaaki Ii, Takashi Saito, Yasuhiko Tabata, Shintaro Nemoto
Abstract:
Background: Clinical trials of autologous adipose-derived stem cell (AdSC) therapy for ischemic heart diseases (IHD) are now on-going. We have investigated the hypothesis that combination of AdSCs and statin, an agent with pleiotropic effects, could augment the therapeutic effect on myocardial infarction (MI). Methods and Results: Human AdSC functions with different doses of simvastatin-conjugated nanoparticle (STNP) uptake were evaluated by in vitro assays. STNP promoted the migration activity without changing the proliferation activity, and also up-regulated growth factors. Next, MI was induced by LAD ligation in nude mice, and the mice were assigned in the following groups 3 days after MI: 1) PBS (control), 2) NP-AdSCs (50000 cells), 3) STNP, and 4) STNP-AdSCs (50000 cells). Cardiac functional recovery assessed by echocardiography was improved at 4 weeks after surgery in STNP-AdSC group. Masson’s trichrome-stained sections revealed that LV fibrosis length was reduced, and the number of TUNEL-positive cardiomyocytes was less in STNP-AdSC group. Surprisingly, a number of de novo endogenous Nkx-2.5/GATA4 positive immature cardiomyocytes as well as massive vascular formation were observed in outer layer of infarcted myocardium despite of a few recruited/retained transfused STNP-AdSCs 4 weeks after MI in STNP-AdSC group. Finally, massive myocardial regeneration was observed 8 weeks after MI. Conclusions: Intravenously injected small number of statin nanoparticle-loaded hAdSCs exhibited a potent therapeutic effect inducing endogenous cardiac tissue regeneration.Keywords: statin, drug delivery system, stem cells, cardiac regeneration
Procedia PDF Downloads 1881906 3D Printing of Cold Atmospheric Plasma Treated Poly(ɛ-Caprolactone) for Bone Tissue Engineering
Authors: Dong Nyoung Heo, Il Keun Kwon
Abstract:
Three-dimensional (3D) technology is a promising method for bone tissue engineering. In order to enhance bone tissue regeneration, it is important to have ideal 3D constructs with biomimetic mechanical strength, structure interconnectivity, roughened surface, and the presence of chemical functionality. In this respect, a 3D printing system combined with cold atmospheric plasma (CAP) was developed to fabricate a 3D construct that has a rough surface with polar functional chemical groups. The CAP-etching process leads to oxidation of chemical groups existing on the polycaprolactone (PCL) surface without conformational change. The surface morphology, chemical composition, mean roughness of the CAP-treated PCL surfaces were evaluated. 3D printed constructs composed of CAP-treated PCL showed an effective increment in the hydrophilicity and roughness of the PCL surface. Also, an in vitro study revealed that CAP-treated 3D PCL constructs had higher cellular behaviors such as cell adhesion, cell proliferation, and osteogenic differentiation. Therefore, a 3D printing system with CAP can be a highly useful fabrication method for bone tissue regeneration.Keywords: bone tissue engineering, cold atmospheric plasma, PCL, 3D printing
Procedia PDF Downloads 1141905 Convolutional Neural Network and LSTM Applied to Abnormal Behaviour Detection from Highway Footage
Authors: Rafael Marinho de Andrade, Elcio Hideti Shiguemori, Rafael Duarte Coelho dos Santos
Abstract:
Relying on computer vision, many clever things are possible in order to make the world safer and optimized on resource management, especially considering time and attention as manageable resources, once the modern world is very abundant in cameras from inside our pockets to above our heads while crossing the streets. Thus, automated solutions based on computer vision techniques to detect, react, or even prevent relevant events such as robbery, car crashes and traffic jams can be accomplished and implemented for the sake of both logistical and surveillance improvements. In this paper, we present an approach for vehicles’ abnormal behaviors detection from highway footages, in which the vectorial data of the vehicles’ displacement are extracted directly from surveillance cameras footage through object detection and tracking with a deep convolutional neural network and inserted into a long-short term memory neural network for behavior classification. The results show that the classifications of behaviors are consistent and the same principles may be applied to other trackable objects and scenarios as well.Keywords: artificial intelligence, behavior detection, computer vision, convolutional neural networks, LSTM, highway footage
Procedia PDF Downloads 1681904 Methaheuristic Bat Algorithm in Training of Feed-Forward Neural Network for Stock Price Prediction
Authors: Marjan Golmaryami, Marzieh Behzadi
Abstract:
Recent developments in stock exchange highlight the need for an efficient and accurate method that helps stockholders make better decision. Since stock markets have lots of fluctuations during the time and different effective parameters, it is difficult to make good decisions. The purpose of this study is to employ artificial neural network (ANN) which can deal with time series data and nonlinear relation among variables to forecast next day stock price. Unlike other evolutionary algorithms which were utilized in stock exchange prediction, we trained our proposed neural network with metaheuristic bat algorithm, with fast and powerful convergence and applied it in stock price prediction for the first time. In order to prove the performance of the proposed method, this research selected a 7 year dataset from Parsian Bank stocks and after imposing data preprocessing, used 3 types of ANN (back propagation-ANN, particle swarm optimization-ANN and bat-ANN) to predict the closed price of stocks. Afterwards, this study engaged MATLAB to simulate 3 types of ANN, with the scoring target of mean absolute percentage error (MAPE). The results may be adapted to other companies stocks too.Keywords: artificial neural network (ANN), bat algorithm, particle swarm optimization algorithm (PSO), stock exchange
Procedia PDF Downloads 5491903 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification
Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi
Abstract:
Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images
Procedia PDF Downloads 901902 On the Implementation of The Pulse Coupled Neural Network (PCNN) in the Vision of Cognitive Systems
Authors: Hala Zaghloul, Taymoor Nazmy
Abstract:
One of the great challenges of the 21st century is to build a robot that can perceive and act within its environment and communicate with people, while also exhibiting the cognitive capabilities that lead to performance like that of people. The Pulse Coupled Neural Network, PCNN, is a relative new ANN model that derived from a neural mammal model with a great potential in the area of image processing as well as target recognition, feature extraction, speech recognition, combinatorial optimization, compressed encoding. PCNN has unique feature among other types of neural network, which make it a candid to be an important approach for perceiving in cognitive systems. This work show and emphasis on the potentials of PCNN to perform different tasks related to image processing. The main drawback or the obstacle that prevent the direct implementation of such technique, is the need to find away to control the PCNN parameters toward perform a specific task. This paper will evaluate the performance of PCNN standard model for processing images with different properties, and select the important parameters that give a significant result, also, the approaches towards find a way for the adaptation of the PCNN parameters to perform a specific task.Keywords: cognitive system, image processing, segmentation, PCNN kernels
Procedia PDF Downloads 2811901 Mean Monthly Rainfall Prediction at Benina Station Using Artificial Neural Networks
Authors: Hasan G. Elmazoghi, Aisha I. Alzayani, Lubna S. Bentaher
Abstract:
Rainfall is a highly non-linear phenomena, which requires application of powerful supervised data mining techniques for its accurate prediction. In this study the Artificial Neural Network (ANN) technique is used to predict the mean monthly historical rainfall data collected from BENINA station in Benghazi for 31 years, the period of “1977-2006” and the results are compared against the observed values. The specific objective to achieve this goal was to determine the best combination of weather variables to be used as inputs for the ANN model. Several statistical parameters were calculated and an uncertainty analysis for the results is also presented. The best ANN model is then applied to the data of one year (2007) as a case study in order to evaluate the performance of the model. Simulation results reveal that application of ANN technique is promising and can provide reliable estimates of rainfall.Keywords: neural networks, rainfall, prediction, climatic variables
Procedia PDF Downloads 4891900 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network
Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar
Abstract:
Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network
Procedia PDF Downloads 1091899 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study
Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui
Abstract:
In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas
Procedia PDF Downloads 3471898 Artificial Neural Networks Controller for Active Power Filter Connected to a Photovoltaic Array
Authors: Rachid Dehini, Brahim Berbaoui
Abstract:
The main objectives of shunt active power filter (SAPF) is to preserve the power system from unwanted harmonic currents produced by nonlinear loads, as well as to compensate the reactive power. The aim of this paper is to present a (PAPF) supplied by the Photovoltaic cells ,in such a way that the (PAPF) feeds the linear and nonlinear loads by harmonics currents and the excess of the energy is injected into the power system. In order to improve the performances of conventional (PAPF) This paper also proposes artificial neural networks (ANN) for harmonics identification and DC link voltage control. The simulation study results of the new (SAPF) identification technique are found quite satisfactory by assuring good filtering characteristics and high system stability.Keywords: SAPF, harmonics current, photovoltaic cells, MPPT, artificial neural networks (ANN)
Procedia PDF Downloads 3331897 Applying Neural Networks for Solving Record Linkage Problem via Fuzzy Description Logics
Authors: Mikheil Kalmakhelidze
Abstract:
Record linkage (RL) problem has become more and more important in recent years due to the growing interest towards big data analysis. The problem can be formulated in a very simple way: Given two entries a and b of a database, decide whether they represent the same object or not. There are two classical deterministic and probabilistic ways of solving the RL problem. Using simple Bayes classifier in many cases produces useful results but sometimes they show to be poor. In recent years several successful approaches have been made towards solving specific RL problems by neural network algorithms including single layer perception, multilayer back propagation network etc. In our work, we model the RL problem for specific dataset of student applications in fuzzy description logic (FDL) where linkage of specific pair (a,b) depends on the truth value of corresponding formula A(a,b) in a canonical FDL model. As a main result, we build neural network for deciding truth value of FDL formulas in a canonical model and thus link RL problem to machine learning. We apply the approach to dataset with 10000 entries and also compare to classical RL solving approaches. The results show to be more accurate than standard probabilistic approach.Keywords: description logic, fuzzy logic, neural networks, record linkage
Procedia PDF Downloads 2741896 Hysteresis Modeling in Iron-Dominated Magnets Based on a Deep Neural Network Approach
Authors: Maria Amodeo, Pasquale Arpaia, Marco Buzio, Vincenzo Di Capua, Francesco Donnarumma
Abstract:
Different deep neural network architectures have been compared and tested to predict magnetic hysteresis in the context of pulsed electromagnets for experimental physics applications. Modelling quasi-static or dynamic major and especially minor hysteresis loops is one of the most challenging topics for computational magnetism. Recent attempts at mathematical prediction in this context using Preisach models could not attain better than percent-level accuracy. Hence, this work explores neural network approaches and shows that the architecture that best fits the measured magnetic field behaviour, including the effects of hysteresis and eddy currents, is the nonlinear autoregressive exogenous neural network (NARX) model. This architecture aims to achieve a relative RMSE of the order of a few 100 ppm for complex magnetic field cycling, including arbitrary sequences of pseudo-random high field and low field cycles. The NARX-based architecture is compared with the state-of-the-art, showing better performance than the classical operator-based and differential models, and is tested on a reference quadrupole magnetic lens used for CERN particle beams, chosen as a case study. The training and test datasets are a representative example of real-world magnet operation; this makes the good result obtained very promising for future applications in this context.Keywords: deep neural network, magnetic modelling, measurement and empirical software engineering, NARX
Procedia PDF Downloads 1311895 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem
Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq
Abstract:
High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch
Procedia PDF Downloads 1901894 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky
Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio
Abstract:
This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.Keywords: contour orientation histogram, meteors, night sky, RSC neural classifier, stars
Procedia PDF Downloads 1401893 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model
Authors: A. Clementking, C. Jothi Venkateswaran
Abstract:
Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining
Procedia PDF Downloads 4781892 Removal of Rhodamine B from Aqueous Solution Using Natural Clay by Fixed Bed Column Method
Abstract:
The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removal of such compounds at such low levels is a difficult problem. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. The focus of this research was to evaluate the adsorption potential of the raw clay in removing rhodamine B from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height, and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 8.5. Experiments were carried out at different bed heights (5 - 20 cm), influent flow rates (1.6- 8 mL/min) and influent rhodamine B concentrations (20 - 80 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of rhodamine B from aqueous solution. Uptake of rhodamine B through a fixed-bed column was dependent on the bed depth, influent rhodamine B concentration, and flow rate.Keywords: adsorption, breakthrough curve, clay, fixed bed column, rhodamine b, regeneration
Procedia PDF Downloads 2761891 Micropropagation and in vitro Conservation via Slow Growth Techniques of Prunus webbii (Spach) Vierh: An Endangered Plant Species in Albania
Authors: Valbona Sota, Efigjeni Kongjika
Abstract:
Wild almond is a woody species, which is difficult to propagate either generatively by seed or by vegetative methods (grafting or cuttings) and also considered as Endangered (EN) in Albania based on IUCN criteria. As a wild relative of cultivated fruit trees, this species represents a source of genetic variability and can be very important in breeding programs and cultivation. For this reason, it would be of interest to use an effective method of in vitro mid-term conservation, which involves strategies to slow plant growth through physicochemical alterations of in vitro growth conditions. Multiplication of wild almond was carried out using zygotic embryos, as primary explants, with the purpose to develop a successful propagation protocol. Results showed that zygotic embryos can proliferate through direct or indirect organogenesis. During subculture, stage was obtained a great number of new plantlets identical to mother plants derived from the zygotic embryos. All in vitro plantlets obtained from subcultures underwent in vitro conservation by minimal growth in low temperature (4ºC) and darkness. The efficiency of this technique was evaluated for 3, 6, and 10 months of conservation period. Maintenance in these conditions reduced micro cuttings growth. Survival and regeneration rates for each period were evaluated and resulted that the maximal time of conservation without subculture on 4ºC was 10 months, but survival and regeneration rates were significantly reduced, specifically 15.6% and 7.6%. An optimal period of conservation in these conditions can be considered the 5-6 months storage, which can lead to 60-50% of survival and regeneration rates. This protocol may be beneficial for mass propagation, mid-term conservation, and for genetic manipulation of wild almond.Keywords: micropropagation, minimal growth, storage, wild almond
Procedia PDF Downloads 1281890 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network
Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala
Abstract:
There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.Keywords: artificial neural network, high performance concrete, rebound hammer, strength prediction
Procedia PDF Downloads 1581889 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs
Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye
Abstract:
This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label
Procedia PDF Downloads 1291888 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks
Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia
Abstract:
This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.Keywords: image forensics, computer graphics, classification, deep learning, convolutional neural networks
Procedia PDF Downloads 3381887 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks
Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz
Abstract:
Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.Keywords: customer relationship management, churn prediction, telecom industry, deep learning, artificial neural networks
Procedia PDF Downloads 148