Search results for: named data networking
25392 Survey on Big Data Stream Classification by Decision Tree
Authors: Mansoureh Ghiasabadi Farahani, Samira Kalantary, Sara Taghi-Pour, Mahboubeh Shamsi
Abstract:
Nowadays, the development of computers technology and its recent applications provide access to new types of data, which have not been considered by the traditional data analysts. Two particularly interesting characteristics of such data sets include their huge size and streaming nature .Incremental learning techniques have been used extensively to address the data stream classification problem. This paper presents a concise survey on the obstacles and the requirements issues classifying data streams with using decision tree. The most important issue is to maintain a balance between accuracy and efficiency, the algorithm should provide good classification performance with a reasonable time response.Keywords: big data, data streams, classification, decision tree
Procedia PDF Downloads 52125391 Robust and Dedicated Hybrid Cloud Approach for Secure Authorized Deduplication
Authors: Aishwarya Shekhar, Himanshu Sharma
Abstract:
Data deduplication is one of important data compression techniques for eliminating duplicate copies of repeating data, and has been widely used in cloud storage to reduce the amount of storage space and save bandwidth. In this process, duplicate data is expunged, leaving only one copy means single instance of the data to be accumulated. Though, indexing of each and every data is still maintained. Data deduplication is an approach for minimizing the part of storage space an organization required to retain its data. In most of the company, the storage systems carry identical copies of numerous pieces of data. Deduplication terminates these additional copies by saving just one copy of the data and exchanging the other copies with pointers that assist back to the primary copy. To ignore this duplication of the data and to preserve the confidentiality in the cloud here we are applying the concept of hybrid nature of cloud. A hybrid cloud is a fusion of minimally one public and private cloud. As a proof of concept, we implement a java code which provides security as well as removes all types of duplicated data from the cloud.Keywords: confidentiality, deduplication, data compression, hybridity of cloud
Procedia PDF Downloads 38125390 A Review of Machine Learning for Big Data
Authors: Devatha Kalyan Kumar, Aravindraj D., Sadathulla A.
Abstract:
Big data are now rapidly expanding in all engineering and science and many other domains. The potential of large or massive data is undoubtedly significant, make sense to require new ways of thinking and learning techniques to address the various big data challenges. Machine learning is continuously unleashing its power in a wide range of applications. In this paper, the latest advances and advancements in the researches on machine learning for big data processing. First, the machine learning techniques methods in recent studies, such as deep learning, representation learning, transfer learning, active learning and distributed and parallel learning. Then focus on the challenges and possible solutions of machine learning for big data.Keywords: active learning, big data, deep learning, machine learning
Procedia PDF Downloads 44525389 Strengthening Legal Protection of Personal Data through Technical Protection Regulation in Line with Human Rights
Authors: Tomy Prihananto, Damar Apri Sudarmadi
Abstract:
Indonesia recognizes the right to privacy as a human right. Indonesia provides legal protection against data management activities because the protection of personal data is a part of human rights. This paper aims to describe the arrangement of data management and data management in Indonesia. This paper is a descriptive research with qualitative approach and collecting data from literature study. Results of this paper are comprehensive arrangement of data that have been set up as a technical requirement of data protection by encryption methods. Arrangements on encryption and protection of personal data are mutually reinforcing arrangements in the protection of personal data. Indonesia has two important and immediately enacted laws that provide protection for the privacy of information that is part of human rights.Keywords: Indonesia, protection, personal data, privacy, human rights, encryption
Procedia PDF Downloads 18225388 Comparative Analysis between Wired and Wireless Technologies in Communications: A Review
Authors: Jafaru Ibrahim, Tonga Agadi Danladi, Haruna Sani
Abstract:
Many telecommunications industry are looking for new ways to maximize their investment in communication networks while ensuring reliable and secure information transmission. There is a variety of communications medium solutions, the two must popularly in used are wireless technology and wired options, such as copper and fiber-optic cable. Wired network has proven its potential in the olden days but nowadays wireless communication has emerged as a robust and most intellect and preferred communication technique. Each of these types of communication medium has their advantages and disadvantages according to its technological characteristics. Wired and wireless networking has different hardware requirements, ranges, mobility, reliability and benefits. The aim of the paper is to compare both the Wired and Wireless medium on the basis of various parameters such as usability, cost, efficiency, flexibility, coverage, reliability, mobility, speed, security etc.Keywords: cost, mobility, reliability, speed, security, wired, wireless
Procedia PDF Downloads 47025387 Anti-Social Media: Implications of Social Media in the Form of Stressors on Our Daily Lives
Authors: Aimen Batool Bint-E-Rashid, Huma Irfan
Abstract:
This research aims to investigate the role of social media (Snapchat, Facebook, Twitter, etc.) in our daily lives and its implication on our everyday routine in the form of stressors. The study has been validated by a social media survey with 150 social media users belonging to various age groups. The study explores how social media can make an individual anti-social in his or her life offline. To explain the phenomenon, we have proposed and evaluated a model based on social media usage and stressors including burnout and social overload. Results, through correlation and regression tests, have revealed that with increase in social media usage, social overload and burnout also increases. Evidence for the fact that excessive social media usage causes social overload and burnout has been provided in the study.Keywords: burnout, emotional exhaustion, fatigue, stressors, social networking, social media, social overload
Procedia PDF Downloads 20725386 Growth of New Media Advertising
Authors: Palwinder Bhatia
Abstract:
As all know new media is a broad term in media studies that emerged in the latter part of the 20th century which refers to on-demand access to content any time, anywhere, on any digital device, as well as interactive user feedback, creative participation and community formation around the media content. The role of new media in advertisement is impeccable these days. It becomes the cheap and best way of advertising. Another important promise of new media is the democratization of the creation, publishing, distribution and consumption of media content. New media brings a revolution in about every field. It makes bridge between customer and companies. World make a global village with the only help of new media. Advertising helps in shaping the consumer behavior and effect on consumer psychology, sociology, social anthropology and economics. People do comments and like the particular brands on the networking sites which create mesmerism impact on the behavior of customer. Recent study did by Times of India shows that 64% of Facebook users have liked a brand on Facebook.Keywords: film, visual, culture, media, advertisement
Procedia PDF Downloads 28225385 Advances on the Understanding of Sequence Convergence Seen from the Perspective of Mathematical Working Spaces
Authors: Paula Verdugo-Hernandez, Patricio Cumsille
Abstract:
We analyze a first-class on the convergence of real number sequences, named hereafter sequences, to foster exploration and discovery of concepts through graphical representations before engaging students in proving. The main goal was to differentiate between sequences and continuous functions-of-a-real-variable and better understand concepts at an initial stage. We applied the analytic frame of mathematical working spaces, which we expect to contribute to extending to sequences since, as far as we know, it has only developed for other objects, and which is relevant to analyze how mathematical work is built systematically by connecting the epistemological and cognitive perspectives, and involving the semiotic, instrumental, and discursive dimensions.Keywords: convergence, graphical representations, mathematical working spaces, paradigms of real analysis, real number sequences
Procedia PDF Downloads 14325384 Modeling Thin Shell Structures by a New Flat Shell Finite Element
Authors: Djamal Hamadi, Ashraf Ayoub, Ounis Abdelhafid, Chebili Rachid
Abstract:
In this paper, a new computationally-efficient rectangular flat shell finite element named 'ACM_RSBEC' is presented. The formulated element is obtained by superposition of a new rectangular membrane element 'RSBEC' based on the strain approach and the well known plate bending element 'ACM'. This element can be used for the analysis of thin shell structures, no matter how the geometrical shape might be. Tests on standard problems have been examined. The convergence of the new formulated element is also compared to other types of quadrilateral shell elements. The presented shell element ‘ACM_RSBEC’ has been demonstrated to be effective and useful in analysing thin shell structures.Keywords: finite element, flat shell element, strain based approach, static condensation
Procedia PDF Downloads 42925383 The Various Legal Dimensions of Genomic Data
Authors: Amy Gooden
Abstract:
When human genomic data is considered, this is often done through only one dimension of the law, or the interplay between the various dimensions is not considered, thus providing an incomplete picture of the legal framework. This research considers and analyzes the various dimensions in South African law applicable to genomic sequence data – including property rights, personality rights, and intellectual property rights. The effective use of personal genomic sequence data requires the acknowledgement and harmonization of the rights applicable to such data.Keywords: artificial intelligence, data, law, genomics, rights
Procedia PDF Downloads 13825382 A New Protocol Ensuring Users' Privacy in Pervasive Environment
Authors: Mohammed Nadir Djedid, Abdallah Chouarfia
Abstract:
Transparency of the system and its integration into the natural environment of the user are some of the important features of pervasive computing. But these characteristics that are considered as the strongest points of pervasive systems are also their weak points in terms of the user’s privacy. The privacy in pervasive systems involves more than the confidentiality of communications and concealing the identity of virtual users. The physical presence and behavior of the user in the pervasive space cannot be completely hidden and can reveal the secret of his/her identity and affect his/her privacy. This paper shows that the application of major techniques for protecting the user’s privacy still insufficient. A new solution named Shadow Protocol is proposed, which allows the users to authenticate and interact with the surrounding devices within an ubiquitous computing environment while preserving their privacy.Keywords: pervasive systems, identification, authentication, privacy
Procedia PDF Downloads 48225381 Drivers, Patterns and Economic Consequences of Cities’ Globalization
Authors: Denis Ushakov
Abstract:
Cities are the main actors of global production and trade, and dominant share of international business activity is now concentrating within a frame of global urban net. This trend transforms mechanisms and patterns of market economy institutes’ (such as competition, division of labor, international movement of capital and labor force) functioning; stimulates an appearance of new economical (development of rural areas), social (urbanization) and political (political and economical unity of the big countries) problems. All these reasons identified relevance and importance of purpose of this study – to consider a modern role of cities’ business systems in the global economy, to identify sources for global urban competitive advantages, to clear inter-cities economic relationships and patterns of cities’ positioning within a frame of global net.Keywords: globalization, urban business system, global city, transnationalization, networking
Procedia PDF Downloads 30125380 Big Brain: A Single Database System for a Federated Data Warehouse Architecture
Authors: X. Gumara Rigol, I. Martínez de Apellaniz Anzuola, A. Garcia Serrano, A. Franzi Cros, O. Vidal Calbet, A. Al Maruf
Abstract:
Traditional federated architectures for data warehousing work well when corporations have existing regional data warehouses and there is a need to aggregate data at a global level. Schibsted Media Group has been maturing from a decentralised organisation into a more globalised one and needed to build both some of the regional data warehouses for some brands at the same time as the global one. In this paper, we present the architectural alternatives studied and why a custom federated approach was the notable recommendation to go further with the implementation. Although the data warehouses are logically federated, the implementation uses a single database system which presented many advantages like: cost reduction and improved data access to global users allowing consumers of the data to have a common data model for detailed analysis across different geographies and a flexible layer for local specific needs in the same place.Keywords: data integration, data warehousing, federated architecture, Online Analytical Processing (OLAP)
Procedia PDF Downloads 23625379 Economic Policy to Promote small and Medium-sized Enterprises in Georgia in the Post-Pandemic Period
Authors: Gulnaz Erkomaishvili
Abstract:
Introduction: The paper assesses the impact of the COVID-19 pandemic on the activities of small and medium-sized enterprises in Georgia, identifies their problems, and analyzes the state economic policy measures. During the pandemic, entrepreneurs named the imposition of restrictions, access to financial resources, shortage of qualified personnel, high tax rates, unhealthy competition in the market, etc. as the main challenges. The Georgian government has had to take special measures to mitigate the crisis impact caused by the pandemic. For example - in 2020, they mobilized more than 1,6 billion Gel for various eventsto support entrepreneurs. Small and medium-sized entrepreneurship development strategy is presented based on the research; Corresponding conclusions are made, and recommendations are developed. Objectives: The object of research is small and medium-sized enterprises and economic-political decisions aimed at their promotion.Methodology: This paper uses general and specific methods, in particular, analysis, synthesis, induction, deduction, scientific abstraction, comparative and statistical methods, as well as experts’ evaluation. In-depth interviews with experts were conducted to determine quantitative and qualitative indicators; Publications of the National Statistics Office of Georgia are used to determine the regularity between analytical and statistical estimations. Also, theoretical and applied research of international organizations and scientist-economists are used. Contributions: The COVID-19pandemic has had a significant impact on small and medium-sized enterprises. For them, Lockdown is a major challenge. Total sales volume decreased. At the same time, the innovative capabilities of enterprises and the volume of sales in remote channels have increased. As for the assessment of state support measures by small and medium-sizedentrepreneurs, despite the existence of support programs, a large number of entrepreneurs still do not evaluate the measures taken by the state positively. Among the desirable measures to be taken by the state, which would improve the activities of small and medium-sized entrepreneurs, who negatively or largely negatively assessed the activity of the state, named: tax incentives/exemption from certain taxes at the initial stage; Need for periodic trainings/organization of digital technologies, marketing training courses to improve the qualification of employees; Logic and adequacy of criteria when awarding grants and funding; Facilitating the finding of investors; Less bureaucracy, etc.Keywords: small and medium enterprises, small and medium entrepreneurship, economic policy for small and medium entrepreneurship development, government regulations in Georgia, COVID-19 pandemic
Procedia PDF Downloads 15525378 Exploring Disengaging and Engaging Behavior of Doctoral Students
Authors: Salome Schulze
Abstract:
The delay of students in completing their dissertations is a worldwide problem. At the University of South Africa where this research was done, only about a third of the students complete their studies within the required period of time. This study explored the reasons why the students interrupted their studies, and why they resumed their research at a later stage. If this knowledge could be utilised to improve the throughput of doctoral students, it could have significant economic benefits for institutions of higher education while at the same time enhancing their academic prestige. To inform the investigation, attention was given to key theories concerning the learning of doctoral students, namely the situated learning theory, the social capital theory and the self-regulated learning theory, based on the social cognitive theory of learning. Ten students in the faculty of Education were purposefully selected on the grounds of their poor progress, or of having been in the system for too long. The collection of the data was in accordance with a Finnish study, since the two studies had the same aims, namely to investigate student engagement and disengagement. Graphic elicitation interviews, based on visualisations were considered appropriate to collect the data. This method could stimulate the reflection and recall of the participants’ ‘stories’ with very little input from the interviewer. The interviewees were requested to visualise, on paper, their journeys as doctoral students from the time when they first registered. They were to indicate the significant events that occurred and which facilitated their engagement or disengagement. In the interviews that followed, they were requested to elaborate on these motivating or challenging events by explaining when and why they occurred, and what prompted them to resume their studies. The interviews were tape-recorded and transcribed verbatim. Information-rich data were obtained containing visual metaphors. The data indicated that when the students suffered a period of disengagement, it was sometimes related to a lack of self-regulated learning, in particular, a lack of autonomy, and the inability to manage their time effectively. When the students felt isolated from the academic community of practice disengagement also occurred. This included poor guidance by their supervisors, which accordingly deprived them of significant social capital. The study also revealed that situational factors at home or at work were often the main reasons for the students’ procrastinating behaviour. The students, however, remained in the system. They were motivated towards a renewed engagement with their studies if they were self-regulated learners, and if they felt a connectedness with the academic community of practice because of positive relationships with their supervisors and of participation in the activities of the community (e.g., in workshops or conferences). In support of their learning, networking with significant others who were sources of information provided the students with the necessary social capital. Generally, institutions of higher education cannot address the students’ personal issues directly, but they can deal with key institutional factors in order to improve the throughput of doctoral students. It is also suggested that graphic elicitation interviews be used more often in social research that investigates the learning and development of the students.Keywords: doctoral students, engaging and disengaging experiences, graphic elicitation interviews, student procrastination
Procedia PDF Downloads 19325377 A Review Paper on Data Mining and Genetic Algorithm
Authors: Sikander Singh Cheema, Jasmeen Kaur
Abstract:
In this paper, the concept of data mining is summarized and its one of the important process i.e KDD is summarized. The data mining based on Genetic Algorithm is researched in and ways to achieve the data mining Genetic Algorithm are surveyed. This paper also conducts a formal review on the area of data mining tasks and genetic algorithm in various fields.Keywords: data mining, KDD, genetic algorithm, descriptive mining, predictive mining
Procedia PDF Downloads 59125376 Data-Mining Approach to Analyzing Industrial Process Information for Real-Time Monitoring
Authors: Seung-Lock Seo
Abstract:
This work presents a data-mining empirical monitoring scheme for industrial processes with partially unbalanced data. Measurement data of good operations are relatively easy to gather, but in unusual special events or faults it is generally difficult to collect process information or almost impossible to analyze some noisy data of industrial processes. At this time some noise filtering techniques can be used to enhance process monitoring performance in a real-time basis. In addition, pre-processing of raw process data is helpful to eliminate unwanted variation of industrial process data. In this work, the performance of various monitoring schemes was tested and demonstrated for discrete batch process data. It showed that the monitoring performance was improved significantly in terms of monitoring success rate of given process faults.Keywords: data mining, process data, monitoring, safety, industrial processes
Procedia PDF Downloads 40025375 Production of Oral Vowels by Chinese Learners of Portuguese: Problems and Didactic Implications
Authors: Adelina Castelo
Abstract:
The increasing number of learners of Portuguese as Foreign Language in China justifies the need to define the phonetic profile of these learners and to design didactic materials that are adjusted to their specific problems in pronunciation. Different aspects of this topic have been studied, but the production of oral vowels still needs to be investigated. This study aims: (i) to identify the problems the Chinese learners of Portuguese experience in the pronunciation of oral vowels; (ii) to discuss the didactic implications drawn from those problems. The participants were eight native speakers of Mandarin Chinese that had been learning Portuguese in College for almost a year. They named pictured objects and their oral productions were recorded and phonetically transcribed. The selection of the objects to name took into account some linguistic variables (e.g. stress pattern, syllable structure, presence of the Portuguese oral vowels in different word positions according to stress location). The results are analysed in two ways: the impact of linguistic variables on the success rate in the vowels' production; the replacement strategies used in the non-target productions. Both analyses show that the Chinese learners of Portuguese (i) have significantly more difficulties with the mid vowels as well as the high central vowel and (ii) do not master the vowel height feature. These findings contribute to define the phonetic profile of these learners in terms of oral vowel production. Besides, they have important didactic implications for the pronunciation teaching to these specific learners. Those implications are discussed and exemplified.Keywords: Chinese learners, learners’ phonetic profile, linguistic variables, Portuguese as foreign language, production data, pronunciation teaching, oral vowels
Procedia PDF Downloads 22325374 The Effect of Transactional Analysis Group Training on Self-Knowledge and Its Ego States (The Child, Parent, and Adult): A Quasi-Experimental Study Applied to Counselors of Tehran
Authors: Mehravar Javid, Sadrieh Khajavi Mazanderani, Kelly Gleischman, Zoe Andris
Abstract:
The present study was conducted with the aim of investigating the effectiveness of transactional analysis group training on self-knowledge and Its dimensions (self, child, and adult) in counselors working in public and private high schools in Tehran. Counseling has become an important job for society, and there is a need for consultants in organizations. Providing better and more efficient counseling is one of the goals of the education system. The personal characteristics of counselors are important for the success of the therapy. In TA, humans have three ego states, which are named parent, adult, and child, and the main concept in the transactional analysis is self-state, which means a stable feeling and pattern of thinking related to behavioral patterns. Self-knowledge, considered a prerequisite to effective communication, fosters psychological growth, and recognizing it, is pivotal for emotional development, leading to profound insights. The research sample included 30 working counselors (22 women and 8 men) in the academic year 2019-2020 who achieved the lowest scores on the self-knowledge questionnaire. The research method was quasi-experimental with a control group (15 people in the experimental group and 15 people in the control group). The research tool was a self-awareness questionnaire with 29 questions and three subscales (child, parent, and adult Ego state). The experimental group was exposed to transactional analysis training for 10 once-weekly 2-hour sessions; the questionnaire was implemented in both groups (post-test). Multivariate covariance analysis was used to analyze the data. The data showed that the level of self-awareness of counselors who received transactional analysis training is higher than that of counselors who did not receive any training (p<0.01). The result obtained from this analysis shows that transactional analysis training is an effective therapy for enhancing self-knowledge and its subscales (Adult ego state, Parent ego state, and Child ego state). Teaching transactional analysis increases self-knowledge, and self-realization and helps people to achieve independence and remove irresponsibility to improve intra-personal and interpersonal relationships.Keywords: ego state, group, transactional analysis, self-knowledge
Procedia PDF Downloads 7425373 QCARNet: Networks for Quality-Adaptive Compression Artifact
Authors: Seung Ho Park, Young Su Moon, Nam Ik Cho
Abstract:
We propose a convolution neural network (CNN) for quality adaptive compression artifact reduction named QCARNet. The proposed method is different from the existing discriminative models that learn a specific model at a certain quality level. The method is composed of a quality estimation CNN (QECNN) and a compression artifact reduction CNN (CARCNN), which are two functionally separate CNNs. By connecting the QECNN and CARCNN, each CARCNN layer is able to adaptively reduce compression artifacts and preserve details depending on the estimated quality level map generated by the QECNN. We experimentally demonstrate that the proposed method achieves better performance compared to other state-of-the-art blind compression artifact reduction methods.Keywords: compression artifact reduction, deblocking, image denoising, image restoration
Procedia PDF Downloads 13925372 A Survey of Semantic Integration Approaches in Bioinformatics
Authors: Chaimaa Messaoudi, Rachida Fissoune, Hassan Badir
Abstract:
Technological advances of computer science and data analysis are helping to provide continuously huge volumes of biological data, which are available on the web. Such advances involve and require powerful techniques for data integration to extract pertinent knowledge and information for a specific question. Biomedical exploration of these big data often requires the use of complex queries across multiple autonomous, heterogeneous and distributed data sources. Semantic integration is an active area of research in several disciplines, such as databases, information-integration, and ontology. We provide a survey of some approaches and techniques for integrating biological data, we focus on those developed in the ontology community.Keywords: biological ontology, linked data, semantic data integration, semantic web
Procedia PDF Downloads 44925371 Analysis of Teachers' Self Efficacy in Terms of Emotional Intelligence
Authors: Ercan Yilmaz, Ali Murat Sünbül
Abstract:
The aim of the study is to investigate teachers’ self-efficacy with regards to their emotional intelligence. The relational model was used in the study. The participant of the study included 194 teachers from secondary schools in Konya, Turkey. In order to assess teachers’ emotional intelligence, “Trait Emotional Intelligence Questionnaire-short Form was implemented. For teachers’ self-efficacy, “Teachers’ Sense of Self-Efficacy Scale” was used. As a result of the study, a significant relationship is available between teachers’ sense of self-efficacy and their emotional intelligence. Teachers’ emotional intelligence enucleates approximate eighteen percent of the variable in dimension named teachers’ self-efficacy for the students’ involvement. About nineteen percent of the variable in dimension “self-efficacy for teaching strategies is represented through emotional intelligence. Teachers’ emotional intelligence demonstrates about seventeen percent of variable aimed at classroom management.Keywords: teachers, self-efficacy, emotional intelligence, education
Procedia PDF Downloads 45425370 Systematic Evaluation of Convolutional Neural Network on Land Cover Classification from Remotely Sensed Images
Authors: Eiman Kattan, Hong Wei
Abstract:
In using Convolutional Neural Network (CNN) for classification, there is a set of hyperparameters available for the configuration purpose. This study aims to evaluate the impact of a range of parameters in CNN architecture i.e. AlexNet on land cover classification based on four remotely sensed datasets. The evaluation tests the influence of a set of hyperparameters on the classification performance. The parameters concerned are epoch values, batch size, and convolutional filter size against input image size. Thus, a set of experiments were conducted to specify the effectiveness of the selected parameters using two implementing approaches, named pertained and fine-tuned. We first explore the number of epochs under several selected batch size values (32, 64, 128 and 200). The impact of kernel size of convolutional filters (1, 3, 5, 7, 10, 15, 20, 25 and 30) was evaluated against the image size under testing (64, 96, 128, 180 and 224), which gave us insight of the relationship between the size of convolutional filters and image size. To generalise the validation, four remote sensing datasets, AID, RSD, UCMerced and RSCCN, which have different land covers and are publicly available, were used in the experiments. These datasets have a wide diversity of input data, such as number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in both training and testing. The results have shown that increasing the number of epochs leads to a higher accuracy rate, as expected. However, the convergence state is highly related to datasets. For the batch size evaluation, it has shown that a larger batch size slightly decreases the classification accuracy compared to a small batch size. For example, selecting the value 32 as the batch size on the RSCCN dataset achieves the accuracy rate of 90.34 % at the 11th epoch while decreasing the epoch value to one makes the accuracy rate drop to 74%. On the other extreme, setting an increased value of batch size to 200 decreases the accuracy rate at the 11th epoch is 86.5%, and 63% when using one epoch only. On the other hand, selecting the kernel size is loosely related to data set. From a practical point of view, the filter size 20 produces 70.4286%. The last performed image size experiment shows a dependency in the accuracy improvement. However, an expensive performance gain had been noticed. The represented conclusion opens the opportunities toward a better classification performance in various applications such as planetary remote sensing.Keywords: CNNs, hyperparamters, remote sensing, land cover, land use
Procedia PDF Downloads 16625369 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture
Authors: Thrivikraman Aswathi, S. Advaith
Abstract:
As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.Keywords: GAN, transformer, classification, multivariate time series
Procedia PDF Downloads 13025368 Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault
Authors: Lakshmi Prayaga, Chandra Prayaga. Aaron Wade, Gopi Shankar Mallu, Harsha Satya Pola
Abstract:
Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN.Keywords: synthetic data generation, generative adversarial networks, conditional tabular GAN, Gaussian copula
Procedia PDF Downloads 8225367 Online Information Seeking: A Review of the Literature in the Health Domain
Authors: Sharifah Sumayyah Engku Alwi, Masrah Azrifah Azmi Murad
Abstract:
The development of the information technology and Internet has been transforming the healthcare industry. The internet is continuously accessed to seek for health information and there are variety of sources, including search engines, health websites, and social networking sites. Providing more and better information on health may empower individuals, however, ensuring a high quality and trusted health information could pose a challenge. Moreover, there is an ever-increasing amount of information available, but they are not necessarily accurate and up to date. Thus, this paper aims to provide an insight of the models and frameworks related to online health information seeking of consumers. It begins by exploring the definition of information behavior and information seeking to provide a better understanding of the concept of information seeking. In this study, critical factors such as performance expectancy, effort expectancy, and social influence will be studied in relation to the value of seeking health information. It also aims to analyze the effect of age, gender, and health status as the moderator on the factors that influence online health information seeking, i.e. trust and information quality. A preliminary survey will be carried out among the health professionals to clarify the research problems which exist in the real world, at the same time producing a conceptual framework. A final survey will be distributed to five states of Malaysia, to solicit the feedback on the framework. Data will be analyzed using SPSS and SmartPLS 3.0 analysis tools. It is hoped that at the end of this study, a novel framework that can improve online health information seeking is developed. Finally, this paper concludes with some suggestions on the models and frameworks that could improve online health information seeking.Keywords: information behavior, information seeking, online health information, technology acceptance model, the theory of planned behavior, UTAUT
Procedia PDF Downloads 27425366 Tools and Techniques in Risk Assessment in Public Risk Management Organisations
Authors: Atousa Khodadadyan, Gabe Mythen, Hirbod Assa, Beverley Bishop
Abstract:
Risk assessment and the knowledge provided through this process is a crucial part of any decision-making process in the management of risks and uncertainties. Failure in assessment of risks can cause inadequacy in the entire process of risk management, which in turn can lead to failure in achieving organisational objectives as well as having significant damaging consequences on populations affected by the potential risks being assessed. The choice of tools and techniques in risk assessment can influence the degree and scope of decision-making and subsequently the risk response strategy. There are various available qualitative and quantitative tools and techniques that are deployed within the broad process of risk assessment. The sheer diversity of tools and techniques available to practitioners makes it difficult for organisations to consistently employ the most appropriate methods. This tools and techniques adaptation is rendered more difficult in public risk regulation organisations due to the sensitive and complex nature of their activities. This is particularly the case in areas relating to the environment, food, and human health and safety, when organisational goals are tied up with societal, political and individuals’ goals at national and international levels. Hence, recognising, analysing and evaluating different decision support tools and techniques employed in assessing risks in public risk management organisations was considered. This research is part of a mixed method study which aimed to examine the perception of risk assessment and the extent to which organisations practise risk assessment’ tools and techniques. The study adopted a semi-structured questionnaire with qualitative and quantitative data analysis to include a range of public risk regulation organisations from the UK, Germany, France, Belgium and the Netherlands. The results indicated the public risk management organisations mainly use diverse tools and techniques in the risk assessment process. The primary hazard analysis; brainstorming; hazard analysis and critical control points were described as the most practiced risk identification techniques. Within qualitative and quantitative risk analysis, the participants named the expert judgement, risk probability and impact assessment, sensitivity analysis and data gathering and representation as the most practised techniques.Keywords: decision-making, public risk management organisations, risk assessment, tools and techniques
Procedia PDF Downloads 28225365 Parental Involvement in Schooling of Female Students and its Impact on Their Achievement at Elementary Level
Authors: Aroona Hashmi
Abstract:
Parental Involvement is a strategic key to both traditional and contemporary way of ‘face-to-face’ schooling, including public/private schools and home schooling. Present research is destined to find out whether this connection happens in Pakistani schools, a land which faces educational hurdles. This study aims to find out the parental involvement in schooling of female students and its impact on their achievement at elementary level. In this study quantitative research approach is used. Survey is conducted by utilizing reliable and valid instrument named as Parental Involvement Project Questionnaire (PIP). A stratified random sampling technique applied to select twenty schools in total from District Lahore. Schools were selected from public and private sectors. All selected schools were registered with Punjab Examination Commission (PEC), therefore standardized tests are conducted by PEC for class 8 every year in Punjab province, Pakistan. In total 1000 students and their 1000 parents constituted the sample. Data were analyzed by using SPSS version 17. T-test and Regression was applied to independent samples to test the null hypotheses. The result of this study indicated that parents of female students showed more involvement as compared to parents of male students at elementary level. There was significant difference in the impact of parental involvement on achievement of female students and male students i.e. there was more impact of parental involvement found on achievement of female students as compared to male students.Keywords: parental involvement, achievement, schooling, elementary level, PEC
Procedia PDF Downloads 36925364 Evaluating the Satisfaction of Chinese Consumers toward Influencers at TikTok
Authors: Noriyuki Suyama
Abstract:
The progress and spread of digitalization have led to the provision of a variety of new services. The recent progress in digitization can be attributed to rapid developments in science and technology. First, the research and diffusion of artificial intelligence (AI) has made dramatic progress. Around 2000, the third wave of AI research, which had been underway for about 50 years, arrived. Specifically, machine learning and deep learning were made possible in AI, and the ability of AI to acquire knowledge, define the knowledge, and update its own knowledge in a quantitative manner made the use of big data practical even for commercial PCs. On the other hand, with the spread of social media, information exchange has become more common in our daily lives, and the lending and borrowing of goods and services, in other words, the sharing economy, has become widespread. The scope of this trend is not limited to any industry, and its momentum is growing as the SDGs take root. In addition, the Social Network Service (SNS), a part of social media, has brought about the evolution of the retail business. In the past few years, social network services (SNS) involving users or companies have especially flourished. The People's Republic of China (hereinafter referred to as "China") is a country that is stimulating enormous consumption through its own unique SNS, which is different from the SNS used in developed countries around the world. This paper focuses on the effectiveness and challenges of influencer marketing by focusing on the influence of influencers on users' behavior and satisfaction with Chinese SNSs. Specifically, Conducted was the quantitative survey of Tik Tok users living in China, with the aim of gaining new insights from the analysis and discussions. As a result, we found several important findings and knowledge.Keywords: customer satisfaction, social networking services, influencer marketing, Chinese consumers’ behavior
Procedia PDF Downloads 8925363 An Audit of Climate Change and Sustainability Teaching in Medical School
Authors: M. Tiachachat, M. Mihoubi
Abstract:
The Bell polynomials are special polynomials in combinatorial analysis that have a wide range of applications in mathematics. They have interested many authors. The exponential partial Bell polynomials have been well reduced to some special combinatorial sequences. Numerous researchers had already been interested in the above polynomials, as evidenced by many articles in the literature. Inspired by this work, in this work, we propose a family of special polynomials named after the 2-successive partial Bell polynomials. Using the combinatorial approach, we prove the properties of these numbers, derive several identities, and discuss some special cases. This family includes well-known numbers and polynomials such as Stirling numbers, Bell numbers and polynomials, and so on. We investigate their properties by employing generating functionsKeywords: 2-associated r-Stirling numbers, the exponential partial Bell polynomials, generating function, combinatorial interpretation
Procedia PDF Downloads 110