Search results for: mixed method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20304

Search results for: mixed method

19914 Quadratic Convective Flow of a Micropolar Fluid in a Non-Darcy Porous Medium with Convective Boundary Condition

Authors: Ch. Ramreddy, P. Naveen, D. Srinivasacharya

Abstract:

The objective of the present study is to investigate the effect of nonlinear temperature and concentration on the mixed convective flow of micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of convective boundary condition. In order to analyze all the essential features, the transformed nonlinear conservation equations are worked out numerically by spectral method. By insisting the comparison between vertical, horizontal and inclined plates, the physical quantities of the flow and its characteristics are exhibited graphically and quantitatively with various parameters. An increase in the coupling number and inclination of angle tend to decrease the skin friction, mass transfer rate and the reverse change is there in wall couple stress and heat transfer rate. The nominal effect on the wall couple stress and skin friction is encountered whereas the significant effect on the local heat and mass transfer rates are found for high enough values of Biot number.

Keywords: convective boundary condition, micropolar fluid, non-darcy porous medium, non-linear convection, spectral method

Procedia PDF Downloads 253
19913 Application of Metaverse Service to Construct Nursing Education Theory and Platform in the Post-pandemic Era

Authors: Chen-Jung Chen, Yi-Chang Chen

Abstract:

While traditional virtual reality and augmented reality only allow for small movement learning and cannot provide a truly immersive teaching experience to give it the illusion of movement, the new technology of both content creation and immersive interactive simulation of the metaverse can just reach infinite close to the natural teaching situation. However, the mixed reality virtual classroom of metaverse has not yet explored its theory, and it is rarely implemented in the situational simulation teaching of nursing education. Therefore, in the first year, the study will intend to use grounded theory and case study methods and in-depth interviews with nursing education and information experts. Analyze the interview data to investigate the uniqueness of metaverse development. The proposed analysis will lead to alternative theories and methods for the development of nursing education. In the second year, it will plan to integrate the metaverse virtual situation simulation technology into the alternate teaching strategy in the pediatric nursing technology course and explore the nursing students' use of this teaching method as the construction of personal technology and experience. By leveraging the unique features of distinct teaching platforms and developing processes to deliver alternative teaching strategies in a nursing technology teaching environment. The aim is to increase learning achievements without compromising teaching quality and teacher-student relationships in the post-pandemic era. A descriptive and convergent mixed methods design will be employed. Sixty third-grade nursing students will be recruited to participate in the research and complete the pre-test. The students in the experimental group (N=30) agreed to participate in 4 real-time mixed virtual situation simulation courses in self-practice after class and conducted qualitative interviews after each 2 virtual situation courses; the control group (N=30) adopted traditional practice methods of self-learning after class. Both groups of students took a post-test after the course. Data analysis will adopt descriptive statistics, paired t-tests, one-way analysis of variance, and qualitative content analysis. This study addresses key issues in the virtual reality environment for teaching and learning within the metaverse, providing valuable lessons and insights for enhancing the quality of education. The findings of this study are expected to contribute useful information for the future development of digital teaching and learning in nursing and other practice-based disciplines.

Keywords: metaverse, post-pandemic era, online virtual classroom, immersive teaching

Procedia PDF Downloads 31
19912 Magneto-Hydrodynamic Mixed Convective Fluid Flow through Two Parallel Vertical Plates Channel with Hall, Chemical Reaction, and Thermal Radiation Effects

Authors: Okuyade Ighoroje Wilson Ata

Abstract:

Magneto-hydrodynamic mixed convective chemically reacting fluid flow through two parallel vertical plates channel with Hall, radiation, and chemical reaction effects are examined. The fluid is assumed to be chemically reactive, electrically conducting, magnetically susceptible, viscous, incompressible, and Newtonian; the plates are porous, electrically conductive, and heated to a high-temperature regime to generate thermal rays. The flow system is highly interactive, such that cross/double diffusion is present. The governing equations are partial differential equations transformed into ordinary differential equations using similarity transformation and solved by the method of Homotopy Perturbation. Expressions for the concentration, temperature, velocity, Nusselt number, Sherwood number, and Wall shear stress are obtained, computed, and presented graphically and tabularly. The analysis of results shows, amongst others, that an increase in the Raleigh number increases the main velocity and temperature but decreases the concentration. More so, an increase in chemical reaction rate increases the main velocity, temperature, rate of heat transfer from the terminal plate, the rate of mass transfer from the induced plate, and Wall shear stress on both the induced and terminal plates, decreasing the concentration, and the mass transfer rate from the terminal plate. Some of the obtained results are benchmarked with those of existing literature and are in consonance.

Keywords: chemical reaction, hall effect, magneto-hydrodynamic, radiation, vertical plates channel

Procedia PDF Downloads 60
19911 MHD Stagnation-Point Flow over a Plate

Authors: H. Niranjan, S. Sivasankaran

Abstract:

Heat and mass transfer near a steady stagnation point boundary layer flow of viscous incompressible fluid through porous media investigates along a vertical plate is thoroughly studied under the presence of magneto hydrodynamic (MHD) effects. The fluid flow is steady, laminar, incompressible and in two-dimensional. The nonlinear differential coupled parabolic partial differential equations of continuity, momentum, energy and specie diffusion are converted into the non-similar boundary layer equations using similarity transformation, which are then solved numerically using the Runge-Kutta method along with shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.

Keywords: MHD, porous medium, slip, convective boundary condition, stagnation point

Procedia PDF Downloads 279
19910 The Training Demands of Nursing Assistants on Urinary Incontinence in Nursing Homes: A Mixed Methods Study

Authors: Lulu Liao, Huijing Chen, Yinan Zhao, Hongting Ning, Hui Feng

Abstract:

Urinary tract infection rate is an important index of care quality in nursing homes. The aim of the study is to understand the nursing assistant's current knowledge and attitudes of urinary incontinence and to explore related stakeholders' viewpoint about urinary incontinence training. This explanatory sequential study used Knowledge, Practice, and Attitude Model (KAP) and Adult Learning Theories, as the conceptual framework. The researchers collected data from 509 nursing assistants in sixteen nursing homes in Hunan province in China. The questionnaire survey was to assess the knowledge and attitude of urinary incontinence of nursing assistants. On the basis of quantitative research and combined with focus group, training demands were identified, which nurse managers should adopt to improve nursing assistants’ professional practice ability in urinary incontinence. Most nursing assistants held the poor knowledge (14.0 ± 4.18) but had positive attitudes (35.5 ± 3.19) toward urinary incontinence. There was a significant positive correlation between urinary incontinence knowledge and nursing assistants' year of work and educational level, urinary incontinence attitude, and education level (p < 0.001). Despite a general awareness of the importance of prevention of urinary tract infections, not all nurse managers fully valued the training in urinary incontinence compared with daily care training. And the nursing assistants required simple education resources to equip them with skills to address problem about urinary incontinence. The variety of learning methods also highlighted the need for educational materials, and nursing assistants had shown a strong interest in online learning. Related education material should be developed to meet the learning need of nurse assistants and provide suitable training method for planned quality improvement in urinary incontinence.

Keywords: mixed methods, nursing assistants, nursing homes, urinary incontinence

Procedia PDF Downloads 118
19909 Optical and Structural Properties of ZnO Quantum Dots Functionalized with 3-Aminopropylsiloxane Prepared by Sol-gel Method

Authors: M. Pacio, H. Juárez, R. Pérez-Cuapio E. Rosendo, T. Díaz, G. García

Abstract:

In this study, zinc oxide (ZnO) quantum dots (QDs) have been prepared by a simple route. The growth parameters for ZnO QDs were systematically studied inside a SiO2 shell; this shell acts as a capping agent and also enhances stability of the nanoparticles in water. ZnO QDs in silica shell could be produced by initially synthesizing a ZnO colloid (containing ZnO nanoparticles in methanol solution) and then was mixed with 3-aminopropylsiloxane used as SiO2 precursor. ZnO QDs were deposited onto silicon substrates (100) orientation by spin-coating technique. ZnO QDs into a SiO2 shell were pre-heated at 300 °C for 10 min after each coating, that procedure was repeated five times. The films were subsequently annealing in air atmosphere at 500 °C for 2 h to remove the trapped fluid inside the amorphous silica cage. ZnO QDs showed hexagonal wurtzite structure and about 5 nm in diameter. The composition of the films at the surface and in the bulk was obtained by Secondary Ion Mass Spectrometry (SIMS), the spectra revealed the presence of Zn- and Si- related clusters associated to the chemical species in the solid matrix. Photoluminescence (PL) spectra under 325 nm of excitation only show a strong UV emission band corresponding to ZnO QDs, such emission is enhanced with annealing. Our results showed that the method is appropriate for the preparation of ZnO QDs films embedded in a SiO2 shell with high UV photoluminescence.

Keywords: ZnO QDs, sol gel, functionalization

Procedia PDF Downloads 411
19908 Item-Trait Pattern Recognition of Replenished Items in Multidimensional Computerized Adaptive Testing

Authors: Jianan Sun, Ziwen Ye

Abstract:

Multidimensional computerized adaptive testing (MCAT) is a popular research topic in psychometrics. It is important for practitioners to clearly know the item-trait patterns of administered items when a test like MCAT is operated. Item-trait pattern recognition refers to detecting which latent traits in a psychological test are measured by each of the specified items. If the item-trait patterns of the replenished items in MCAT item pool are well detected, the interpretability of the items can be improved, which can further promote the abilities of the examinees who attending the MCAT to be accurately estimated. This research explores to solve the item-trait pattern recognition problem of the replenished items in MCAT item pool from the perspective of statistical variable selection. The popular multidimensional item response theory model, multidimensional two-parameter logistic model, is assumed to fit the response data of MCAT. The proposed method uses the least absolute shrinkage and selection operator (LASSO) to detect item-trait patterns of replenished items based on the essential information of item responses and ability estimates of examinees collected from a designed MCAT procedure. Several advantages of the proposed method are outlined. First, the proposed method does not strictly depend on the relative order between the replenished items and the selected operational items, so it allows the replenished items to be mixed into the operational items in reasonable order such as considering content constraints or other test requirements. Second, the LASSO used in this research improves the interpretability of the multidimensional replenished items in MCAT. Third, the proposed method can exert the advantage of shrinkage method idea for variable selection, so it can help to check item quality and key dimension features of replenished items and saves more costs of time and labors in response data collection than traditional factor analysis method. Moreover, the proposed method makes sure the dimensions of replenished items are recognized to be consistent with the dimensions of operational items in MCAT item pool. Simulation studies are conducted to investigate the performance of the proposed method under different conditions for varying dimensionality of item pool, latent trait correlation, item discrimination, test lengths and item selection criteria in MCAT. Results show that the proposed method can accurately detect the item-trait patterns of the replenished items in the two-dimensional and the three-dimensional item pool. Selecting enough operational items from the item pool consisting of high discriminating items by Bayesian A-optimality in MCAT can improve the recognition accuracy of item-trait patterns of replenished items for the proposed method. The pattern recognition accuracy for the conditions with correlated traits is better than those with independent traits especially for the item pool consisting of comparatively low discriminating items. To sum up, the proposed data-driven method based on the LASSO can accurately and efficiently detect the item-trait patterns of replenished items in MCAT.

Keywords: item-trait pattern recognition, least absolute shrinkage and selection operator, multidimensional computerized adaptive testing, variable selection

Procedia PDF Downloads 99
19907 Minimizing Vehicular Traffic via Integrated Land Use Development: A Heuristic Optimization Approach

Authors: Babu Veeregowda, Rongfang Liu

Abstract:

The current traffic impact assessment methodology and environmental quality review process for approval of land development project are conventional, stagnant, and one-dimensional. The environmental review policy and procedure lacks in providing the direction to regulate or seek alternative land uses and sizes that exploits the existing or surrounding elements of built environment (‘4 D’s’ of development – Density, Diversity, Design, and Distance to Transit) or smart growth principles which influence the travel behavior and have a significant effect in reducing vehicular traffic. Additionally, environmental review policy does not give directions on how to incorporate urban planning into the development in ways such as incorporating non-motorized roadway elements such as sidewalks, bus shelters, and access to community facilities. This research developed a methodology to optimize the mix of land uses and sizes using the heuristic optimization process to minimize the auto dependency development and to meet the interests of key stakeholders. A case study of Willets Point Mixed Use Development in Queens, New York, was used to assess the benefits of the methodology. The approved Willets Point Mixed Use project was based on maximum envelop of size and land use type allowed by current conventional urban renewal plans. This paper will also evaluate the parking accumulation for various land uses to explore the potential for shared parking to further optimize the mix of land uses and sizes. This research is very timely and useful to many stakeholders interested in understanding the benefits of integrated land uses and its development.

Keywords: traffic impact, mixed use, optimization, trip generation

Procedia PDF Downloads 189
19906 Educational Innovation and ICT: Before and during 21st Century

Authors: Carlos Monge López, Patricia Gómez Hernández

Abstract:

Educational innovation is a quality factor of teaching-learning processes and institutional accreditation. There is an increasing of these change processes, especially after 2000. However, the publications about this topic are more associated with ICTs in currently century. The main aim of the study was to determine the tendency of educational innovations around ICTs. The used method was mixed research design (content analysis, review of scientific literature and descriptive, comparative and correlation study) with 649 papers. In summary, the results indicated that, progressively, the educational innovation is associated with ICTs, in comparison with this type of change processes without ICTs. In conclusion, although this tendency, scientific literature must divulgate more kinds of pedagogical innovation with the aim of deepening in other new resources.

Keywords: descriptive study, knowledge society, pedagogical innovation, technologies

Procedia PDF Downloads 462
19905 Synthesis and Characterization of Mixed ligand complexes of Bipyridyl and Glycine with Different Counter Anions as Functional Antioxidant Enzyme Mimics

Authors: Mohamed M. Ibrahim, Gaber A. M. Mersal, Salih Al-Juaid, Samir A. El-Shazly

Abstract:

A series of mixed ligand complexes, viz., [Cu(BPy)(Gly)X]Y {X = Cl (1), Y = 0; X = 0, Y = ClO4- (2); X = H2O, Y = NO3- (3); X = H2O, Y = CH3COO- (4); and [Cu(BPy)(Gly)-(H2O)]2(SO4) (5) have been synthesized. Their structures and properties were characterized by elemental analysis, thermal analaysis, IR, UV–vis, and ESR spectroscopy, as well as electrochemical measurements including cyclic voltammetry, electrical molar conductivity, and magnetic moment measurements. Complexes 1 and 2 formed slightly distorted square-pyramidal coordination geometries of CuN3OCl and CuN3O2, respectively in which the N,O-donor glycine and N,N-donor bipyridyl bind at the basal plane with chloride ion or water as the axial ligand. Complex 3 shows square planar CuN3O coordination geometry, which exhibits chemically significant hydrogen bonding interactions besides showing coordination polymer formation. The superoxide dismutase and catalase-like activities of all complexes were tested and were found to be promising candidates as durable electron-transfer catalyst being close to the efficiency of the mimicking enzymes displaying either catalase or tyrosinase activity to serve for complete reactive oxygen species (ROS) detoxification, both with respect to superoxide radicals and related peroxides. The DNA binding interaction with super coiled pGEM-T plasmid DNA was investigated by using spectral (absorption and emission) titration and electrochemical techniques. The results revealed that DNA intercalate with complexes 1 and 2 through the groove binding mode. The calculated intrinsic binding constant (Kb) of 1 and 2 were 4.71 and 2.429 × 105 M−1, respectively. Gel electrophoresis study reveals the fact that both complexes cleave super coiled pGEM-T plasmid DNA to nicked and linear forms in the absence of any additives. On the other hand, the interaction of both complexes with DNA, the quasi-reversible CuII/CuI redox couple slightly improves its reversibility with considerable decrease in current intensity. All the experimental results indicate that the bipyridyl mixed copper(II) complex (1) intercalate more effectively into the DNA base pairs.

Keywords: enzyme mimics, mixed ligand complexes, X-ray structures, antioxidant, DNA-binding, DNA cleavage

Procedia PDF Downloads 521
19904 Effect of Doping on Band Gap of Zinc Oxide and Degradation of Methylene Blue and Industrial Effluent

Authors: V. P. Borker, K. S. Rane, A. J. Bhobe, R. S. Karmali

Abstract:

Effluent of dye industries contains chemicals and organic dyes. Sometimes they are thrown in the water bodies without any treatment. This leads to environmental pollution and is detrimental to flora and fauna. Semiconducting oxide zinc oxide with wide bandgap 3.37 eV is used as a photocatalyst in degrading organic dyes using UV radiations. It generates electron-hole pair on exposure to UV light. If degradation is aimed at solar radiations, bandgap of zinc oxide is to be reduced so as to utilize visible radiation. Thus, in present study, zinc oxide, ZnO is synthesized from zinc oxalate, N doped zinc oxide, ZnO₁₋ₓNₓ from hydrazinated zinc oxalate, cadmium doped zinc oxide Zn₀.₉Cd₀.₁₀ and magnesium-doped zinc oxide Zn₀.₉Mg₀.₁₀ from mixed metal oxalate and hydrazinated mixed metal oxalate. The precursors were characterized by FTIR. They were decomposed to form oxides and XRD were recorded. The compounds were monophasic. Bandgap was calculated using Diffuse Reflectance Spectrum. The bandgap of ZnO was reduced to 3.24 because of precursor method of synthesis leading large surface area. The bandgap of Zn₀.₉Cd₀.₁₀ was 3.11 eV and that of Zn₀.₉Mg₀.₁₀ 3.41 eV. The lowest value was of ZnO₁₋ₓNₓ 3.09 eV. These oxides were used to degrade methylene blue, a model dye in sunlight. ZnO₁₋ₓNₓ was also used to degrade effluent of industry manufacturing colours, crayons and markers. It was observed that ZnO₁₋ₓNₓ acts as a good photocatalyst for degradation of methylene blue. It can degrade the solution within 120 minutes. Similarly, diluted effluent was decolourised using this oxide. Some colours were degraded using ZnO. Thus, the use of these two oxides could mineralize effluent. Lesser bandgap leads to more electro hole pair thus helps in the formation of hydroxyl ion radicals. These radicals attack the dye molecule, fragmentation takes place and it is mineralised.

Keywords: cadmium doped zinc oxide, dye degradation, dye effluent degradation, N doped zinc oxide, zinc oxide

Procedia PDF Downloads 142
19903 Sewer Culvert Installation Method to Accommodate Underground Construction in an Urban Area with Narrow Streets

Authors: Osamu Igawa, Hiroshi Kouchiwa, Yuji Ito

Abstract:

In recent years, a reconstruction project for sewer pipelines has been progressing in Japan with the aim of renewing old sewer culverts. However, it is difficult to secure a sufficient base area for shafts in an urban area because many streets are narrow with a complex layout. As a result, construction in such urban areas is generally very demanding. In urban areas, there is a strong requirement for a safe, reliable and economical construction method that does not disturb the public’s daily life and urban activities. With this in mind, we developed a new construction method called the 'shield switching type micro-tunneling method' which integrates the micro-tunneling method and shield method. In this method, pipeline is constructed first for sections that are gently curved or straight using the economical micro-tunneling method, and then the method is switched to the shield method for sections with a sharp curve or a series of curves without establishing an intermediate shaft. This paper provides the information, features and construction examples of this newly developed method.

Keywords: micro-tunneling method, secondary lining applied RC segment, sharp curve, shield method, switching type

Procedia PDF Downloads 376
19902 Flow over an Exponentially Stretching Sheet with Hall and Cross-Diffusion Effects

Authors: Srinivasacharya Darbhasayanam, Jagadeeshwar Pashikanti

Abstract:

This paper analyzes the Soret and Dufour effects on mixed convection flow, heat and mass transfer from an exponentially stretching surface in a viscous fluid with Hall Effect. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations. The nonlinear coupled ordinary differential equations are reduced to a system of linear differential equations using the successive linearization method and then solved the resulting linear system using the Chebyshev pseudo spectral method. The numerical results for the velocity components, temperature and concentration are presented graphically. The obtained results are compared with the previously published results, and are found to be in excellent agreement. It is observed from the present analysis that the primary and secondary velocities and concentration are found to be increasing, and temperature is decreasing with the increase in the values of the Soret parameter. An increase in the Dufour parameter increases both the primary and secondary velocities and temperature and decreases the concentration.

Keywords: Exponentially stretching sheet, Hall current, Heat and Mass transfer, Soret and Dufour Effects

Procedia PDF Downloads 188
19901 Reliability Enhancement by Parameter Design in Ferrite Magnet Process

Authors: Won Jung, Wan Emri

Abstract:

Ferrite magnet is widely used in many automotive components such as motors and alternators. Magnets used inside the components must be in good quality to ensure the high level of performance. The purpose of this study is to design input parameters that optimize the ferrite magnet production process to ensure the quality and reliability of manufactured products. Design of Experiments (DOE) and Statistical Process Control (SPC) are used as mutual supplementations to optimize the process. DOE and SPC are quality tools being used in the industry to monitor and improve the manufacturing process condition. These tools are practically used to maintain the process on target and within the limits of natural variation. A mixed Taguchi method is utilized for optimization purpose as a part of DOE analysis. SPC with proportion data is applied to assess the output parameters to determine the optimal operating conditions. An example of case involving the monitoring and optimization of ferrite magnet process was presented to demonstrate the effectiveness of this approach. Through the utilization of these tools, reliable magnets can be produced by following the step by step procedures of proposed framework. One of the main contributions of this study was producing the crack free magnets by applying the proposed parameter design.

Keywords: ferrite magnet, crack, reliability, process optimization, Taguchi method

Procedia PDF Downloads 489
19900 Virus Diseases of Edible Seed Squash (Cucurbita pepo L.) in Aksaray Province

Authors: Serkan Yesil

Abstract:

Cucurbits (the Cucurbitaceae family) include 119 genera and 825 species distributed primarily in tropical and subtropical regions of the world. The major cultivated cucurbit species such as melon (Cucumis melo L.), cucumber (Cucumis sativus L.), squash (Cucurbita pepo L.), and watermelon (Citrullus lanatus (Thunb) Matsum.&Nakai) are important vegetable crops worldwide. Squash is grown for fresh consuming, as well as its seeds are used as a snack in Turkey like some Mediterranean countries and Germany, Hungary, Austria and China. Virus diseases are one of the most destructive diseases on squash which is grown for seeds in Aksaray province. In this study, it was aimed to determine the virus infections in major squash growing areas in Aksaray province. Totally 153 plant samples with common virus symptoms like mosaic, curling, blistering, mottling, distortion, shoestring, stunting and vine decline were collected from squash plants during 2014. In this study, DAS-ELISA method is used for identifying the virus infections on the plant samples. According to the results of the DAS-ELISA 84.96 % of plant samples were infected with Zucchini yellow mosaic Potyvirus (ZYMV), Watermelon mosaic Potyvirus-2 (WMV-2), Cucumber mosaic Cucumovirus (CMV), Papaya ringspot Potyvirus-watermelon strain (PRSV-W) and Squash mosaic Comovirus (SqMV). ZYMV was predominant in the research area with the ratio of 66.01 %. WMV-2 was the second important virus disease in the survey area, it was detected on the samples at the ratio of 57.51 %. Also, mixed infections of those virus infections were detected commonly in squash. Especially, ZYMV+WMV-2 mixed infections were common. Cucumber green mottle mosaic Tobamovirus (CGMMV) was not present in the research area.

Keywords: Aksaray, DAS-ELISA, edible seed squash, WMV-2, ZYMV

Procedia PDF Downloads 205
19899 Effects of Nitrogen Addition on Litter Decomposition and Nutrient Release in a Temperate Grassland in Northern China

Authors: Lili Yang, Jirui Gong, Qinpu Luo, Min Liu, Bo Yang, Zihe Zhang

Abstract:

Anthropogenic activities have increased nitrogen (N) inputs to grassland ecosystems. Knowledge of the impact of N addition on litter decomposition is critical to understand ecosystem carbon cycling and their responses to global climate change. The aim of this study was to investigate the effects of N addition and litter types on litter decomposition of a semi-arid temperate grassland during growing and non-growing seasons in Inner Mongolia, northern China, and to identify the relation between litter decomposition and C: N: P stoichiometry in the litter-soil continuum. Six levels of N addition were conducted: CK, N1 (0 g Nm−2 yr−1), N2 (2 g Nm−2 yr−1), N3 (5 g Nm−2 yr−1), N4 (10 g Nm−2 yr−1) and N5 (25 g Nm−2 yr−1). Litter decomposition rates and nutrient release differed greatly among N addition gradients and litter types. N addition promoted litter decomposition of S. grandis, but exhibited no significant influence on L. chinensis litter, indicating that the S. grandis litter decomposition was more sensitive to N addition than L. chinensis. The critical threshold for N addition to promote mixed litter decomposition was 10 -25g Nm−2 yr−1. N addition altered the balance of C: N: P stoichiometry between litter, soil and microbial biomass. During decomposition progress, the L. chinensis litter N: P was higher in N2-N4 plots compared to CK, while the S. grandis litter C: N was lower in N3 and N4 plots, indicating that litter N or P content doesn’t satisfy microbial decomposers with the increasing of N addition. As a result, S. grandis litter exhibited net N immobilization, while L. chinensis litter net P immobilization. Mixed litter C: N: P stoichiometry satisfied the demand of microbial decomposers, showed net mineralization during the decomposition process. With the increasing N deposition in the future, mixed litter would potentially promote C and nutrient cycling in grassland ecosystem by increasing litter decomposition and nutrient release.

Keywords: C: N: P stoichiometry, litter decomposition, nitrogen addition, nutrient release

Procedia PDF Downloads 458
19898 Direct Transient Stability Assessment of Stressed Power Systems

Authors: E. Popov, N. Yorino, Y. Zoka, Y. Sasaki, H. Sugihara

Abstract:

This paper discusses the performance of critical trajectory method (CTrj) for power system transient stability analysis under various loading settings and heavy fault condition. The method obtains Controlling Unstable Equilibrium Point (CUEP) which is essential for estimation of power system stability margins. The CUEP is computed by applying the CTrjto the boundary controlling unstable equilibrium point (BCU) method. The Proposed method computes a trajectory on the stability boundary that starts from the exit point and reaches CUEP under certain assumptions. The robustness and effectiveness of the method are demonstrated via six power system models and five loading conditions. As benchmark is used conventional simulation method whereas the performance is compared with and BCU Shadowing method.

Keywords: power system, transient stability, critical trajectory method, energy function method

Procedia PDF Downloads 358
19897 Developing Urban Design and Planning Approach to Enhance the Efficiency of Infrastructure and Public Transportation in Order to Reduce GHG Emissions

Authors: A. Rostampouryasouri, A. Maghoul, S. Tahersima

Abstract:

The rapid growth of urbanization and the subsequent increase in population in cities have resulted in the destruction of the environment to cater to the needs of citizens. The industrialization of urban life has led to the production of pollutants, which has significantly contributed to the rise of air pollution. Infrastructure can have both positive and negative effects on air pollution. The effects of infrastructure on air pollution are complex and depend on various factors such as the type of infrastructure, location, and context. This study examines the effects of infrastructure on air pollution, drawing on a range of empirical evidence from Iran and China. Our paper focus for analyzing the data is on the following concepts: 1. Urban design and planning principles and practices 2. Infrastructure efficiency and optimization strategies 3. Public transportation systems and their environmental impact 4. GHG emissions reduction strategies in urban areas 5. Case studies and best practices in sustainable urban development This paper employs a mixed methodology approach with a focus on developmental and applicative purposes. The mixed methods approach combines both quantitative and qualitative research methods to provide a more comprehensive understanding of the research topic. A group of 20 architectural specialists and experts who are proficient in the field of research, design, and implementation of green architecture projects were interviewed in a systematic and purposeful manner. The research method was based on content analysis using MAXQDA2020 software. The findings suggest that policymakers and urban planners should consider the potential impacts of infrastructure on air pollution and take measures to mitigate negative effects while maximizing positive ones. This includes adopting a nature-based approach to urban planning and infrastructure development, investing in information infrastructure, and promoting modern logistic transport infrastructure.

Keywords: GHG emissions, infrastructure efficiency, urban development, urban design

Procedia PDF Downloads 52
19896 Alleviation of Thermal Stress in Pinus ponderosa by Plant-Growth Promoting Rhizobacteria Isolated from Mixed-Conifer Forests

Authors: Kelli G. Thorup, Kristopher A. Blee

Abstract:

Climate change enhances the occurrence of extreme weather: wildfires, drought, rising summer temperatures, all of which dramatically decline forest growth and increase tree mortality in the mixed-conifer forests of Sierra Nevada, California. However, microbiota living in mutualistic relations with plant rhizospheres have been found to mitigate the effects of suboptimal environmental conditions. The goal of this research is to isolate native beneficial bacteria, plant-growth promoting rhizobacteria (PGPR), that can alleviate heat stress in Pinus ponderosa seedlings. Bacteria were isolated from the rhizosphere of Pinus ponderosa juveniles located in mixed-conifer stand and further characterized for PGP potential based on their ability to produce key growth regulatory phytohormones including auxin, cytokinin, and gibberellic acid. Out of ten soil samples taken, sixteen colonies were isolated and qualitatively confirmed to produce indole-3-acetic acid (auxin) using Salkowski’s reagent. Future testing will be conducted to quantitatively assess phytohormone production in bacterial isolates. Furthermore, bioassays will be performed to determine isolates abilities to increase tolerance in heat-stressed Pinus ponderosa seedlings. Upon completion of this research, a PGPR could be utilized to support the growth and transplantation of conifer seedlings as summer temperatures continue to rise due to the effects of climate change.

Keywords: conifer, heat-stressed, phytohormones, Pinus ponderosa, plant-growth promoting rhizobacteria

Procedia PDF Downloads 96
19895 Consideration of Failed Fuel Detector Location through Computational Flow Dynamics Analysis on Primary Cooling System Flow with Two Outlets

Authors: Sanghoon Bae, Hanju Cha

Abstract:

Failed fuel detector (FFD) in research reactor is a very crucial instrument to detect the anomaly from failed fuels in the early stage around primary cooling system (PCS) outlet prior to the decay tank. FFD is considered as a mandatory sensor to ensure the integrity of fuel assemblies and mitigate the consequence from a failed fuel accident. For the effective function of FFD, the location of them should be determined by contemplating the effect from coolant flow around two outlets. For this, the analysis on computational flow dynamics (CFD) should be first performed how the coolant outlet flow including radioactive materials from failed fuels are mixed and discharged through the outlet plenum within certain seconds. The analysis result shows that the outlet flow is well mixed regardless of the position of failed fuel and ultimately illustrates the effect of detector location.

Keywords: computational flow dynamics (CFD), failed fuel detector (FFD), fresh fuel assembly (FFA), spent fuel assembly (SFA)

Procedia PDF Downloads 224
19894 Optimization Model for Support Decision for Maximizing Production of Mixed Fresh Fruit Farms

Authors: Andrés I. Ávila, Patricia Aros, César San Martín, Elizabeth Kehr, Yovana Leal

Abstract:

Planning models for fresh products is a very useful tool for improving the net profits. To get an efficient supply chain model, several functions should be considered to get a complete simulation of several operational units. We consider a linear programming model to help farmers to decide if it is convenient to choose what area should be planted for three kinds of export fruits considering their future investment. We consider area, investment, water, productivity minimal unit, and harvest restrictions to develop a monthly based model to compute the average income in five years. Also, conditions on the field as area, water availability, and initial investment are required. Using the Chilean costs and dollar-peso exchange rate, we can simulate several scenarios to understand the possible risks associated to this market. Also, this tool help to support decisions for government and individual farmers.

Keywords: mixed integer problem, fresh fruit production, support decision model, agricultural and biosystems engineering

Procedia PDF Downloads 413
19893 Measuring of the Volume Ratio of Two Immiscible Liquids Using Electrical Impedance Tomography

Authors: Jiri Primas, Michal Malik, Darina Jasikova, Michal Kotek, Vaclav Kopecky

Abstract:

Authors of this paper discuss the measuring of volume ratio of two immiscible liquids in the homogenous mixture using the industrial Electrical Impedance Tomography (EIT) system ITS p2+. In the first part of the paper, the principle of EIT and the basic theory of conductivity of mixture of two components are stated. In the next part, the experiment with water and olive oil mixed with Rushton turbine is described, and the measured results are used to verify the theory. In the conclusion, the results are discussed in detail, and the accuracy of the measuring method and its advantages are also mentioned.

Keywords: conductivity, electrical impedance tomography, homogenous mixture, mixing process

Procedia PDF Downloads 372
19892 The Analysis of Swales Model (Cars Model) in the UMT Final Year Engineering Students

Authors: Kais Amir Kadhim

Abstract:

Context: The study focuses on the rhetorical structure of chapters in engineering final year projects, specifically the Introduction chapter, written by UMT (University of Marine Technology) engineering students. Existing research has explored the use of genre-based approaches to analyze the writing of final year projects in various disciplines. Research Aim: The aim of this study is to investigate the rhetorical structure of Introduction chapters in engineering final year projects by UMT students. The study aims to identify the frequency of communicative moves and their constituent steps within the Introduction chapters, as well as understand how students justify their research projects. Methodology: The research design will utilize a mixed method approach, combining both quantitative and qualitative methods. Forty Introduction chapters from two different fields in UMT engineering undergraduate programs will be selected for analysis. Findings: The study intends to identify the types of moves present in the Introduction chapters of engineering final year projects by UMT students. Additionally, it aims to determine if these moves and steps are obligatory, conventional, or optional. Theoretical Importance: The study draws upon Bunton's modified CARS (Creating a Research Space) model, which is a conceptual framework used for analyzing the introduction sections of theses. By applying this model, the study contributes to the understanding of the rhetorical structure of Introduction chapters in engineering final year projects. Data Collection: The study will collect data from forty Introduction chapters of engineering final year projects written by UMT engineering students. These chapters will be selected from two different fields within UMT's engineering undergraduate programs. Analysis Procedures: The analysis will involve identifying and categorizing the communicative moves and their constituent steps within the Introduction chapters. The study will utilize both quantitative and qualitative analysis methods to examine the frequency and nature of these moves. Question Addressed: The study aims to address the question of how UMT engineering students structure and justify their research projects within the Introduction chapters of their final year projects. Conclusion: The study aims to contribute to the knowledge of rhetorical structure in engineering final year projects by investigating the Introduction chapters written by UMT engineering students. By using a mixed method research design and applying the modified CARS model, the study intends to identify the types of moves and steps employed by students and explore their justifications for their research projects. The findings have the potential to enhance the understanding of effective academic writing in engineering disciplines.

Keywords: cohesive markers, learning, meaning, students

Procedia PDF Downloads 51
19891 Comparative Assessment of hCG with Estrogen in Increasing Pregnancy Rate in Mixed Parity Buffaloes

Authors: Sanan Raza, Tariq Abbas, Ahmad Yar Qamar, Muhammad Younus, Hamayun Khan, Mujahid Zafar

Abstract:

Water Buffaloes contribute significantly in Asian agriculture. The objective of this study was to evaluate the efficacy of two synchronization protocols in enhancing pregnancy rate in 105 mixed parity buffaloes particularly in summer season. Buffaloes are seasonal breeders showing more fertility from October to January in subtropical environment of Pakistan. In current study 105 lactating buffaloes of mixed parity were used having normal estrous cycle, age ranging 5-9 years, weighing between 400-650 kg, BCS 4 ± 0.5 (1-5) and lactation varied from first to 5th. Experimental animals were divided into three groups based on corpus leteummorphometry. Morphometry of C.L was done using rectal population and ultrasonography. All animals were injected 25mg of PGi.m. (Cloprostenol). In Group-1 (n=35) hCG was administered at follicular size of 10mm having scanned after detection of heat. Similarly Group-2 (n=35) received 25 mg EB i.m (Estradiol Benzoate) after confirmation of follicular size of 10mm with ultrasound. Likewise, buffaloes of Group-3 (n=35) were administered normal saline respectively using as control. All buffaloes of three groups were inseminated after 12h of hCG, EB, and normal saline administration respectively. Pregnancy was assessed by ultrasound at 18th and 45th day post insemination. Pregnancy rates at 18th day were 38.2%, 34.5%, and 27.3% for G1, G2, and G3 respectively indicating that hCG and EB administered groups have no difference in results except control group having lower conception rate than both groups respectively. Similarly on 42nd day, these were 40.4%, 32.7% for G1 and G2 which are significantly higher than G3= 26.6 (control Group). Also, hCG and EB treated buffaloes have more probability of pregnancy than control group. Based on the findings of current study, it seems reasonable that the use of hCG and EB has been associated with improving pregnancy rates in non-breeding season of buffaloes.

Keywords: buffalo, hCG, EB, pregnancy rate, follicle, insemination

Procedia PDF Downloads 776
19890 Optimal Design of Storm Water Networks Using Simulation-Optimization Technique

Authors: Dibakar Chakrabarty, Mebada Suiting

Abstract:

Rapid urbanization coupled with changes in land use pattern results in increasing peak discharge and shortening of catchment time of concentration. The consequence is floods, which often inundate roads and inhabited areas of cities and towns. Management of storm water resulting from rainfall has, therefore, become an important issue for the municipal bodies. Proper management of storm water obviously includes adequate design of storm water drainage networks. The design of storm water network is a costly exercise. Least cost design of storm water networks assumes significance, particularly when the fund available is limited. Optimal design of a storm water system is a difficult task as it involves the design of various components, like, open or closed conduits, storage units, pumps etc. In this paper, a methodology for least cost design of storm water drainage systems is proposed. The methodology proposed in this study consists of coupling a storm water simulator with an optimization method. The simulator used in this study is EPA’s storm water management model (SWMM), which is linked with Genetic Algorithm (GA) optimization method. The model proposed here is a mixed integer nonlinear optimization formulation, which takes care of minimizing the sectional areas of the open conduits of storm water networks, while satisfactorily conveying the runoff resulting from rainfall to the network outlet. Performance evaluations of the developed model show that the proposed method can be used for cost effective design of open conduit based storm water networks.

Keywords: genetic algorithm (GA), optimal design, simulation-optimization, storm water network, SWMM

Procedia PDF Downloads 217
19889 Ni Mixed Oxides Type-Spinel for Energy: Application in Dry Reforming of Methane for Syngas (H2 and CO) Production

Authors: Bedarnia Ishak

Abstract:

In the recent years, the dry reforming of methane has received considerable attention from an environmental view point because it consumes and eliminates two gases (CH4 and CO2) responsible for global warming by greenhouse effect. Many catalysts containing noble metal (Rh, Ru, Pd, Pt and Ir) or transition metal (Ni, Co and Fe) have been reported to be active in this reaction. Compared to noble metals, Ni-materials are cheap but very easily deactivated by coking. Ni-based mixed oxides structurally well-defined like perovskites and spinels are being studied because they possibly make solid solutions and allow to vary the composition and thus the performances properties. In this work, nano-sized nickel ferrite oxides are synthesized using three different methods: Co-precipitation (CP), hydrothermal (HT) and sol gel (SG) methods and characterized by XRD, Raman, XPS, BET, TPR, SEM-EDX and TEM-EDX. XRD patterns of all synthesized oxides showed the presence of NiFe2O4 spinel, confirmed by Raman spectroscopy. Hematite was present only in CP sample. Depending on the synthesis method, the surface area, particle size, as well as the surface Ni/Fe atomic ratio (XPS) and the behavior upon reduction varied. The materials were tested in methane dry reforming with CO2 at 1 atm and 650-800 °C. The catalytic activity of the spinel samples was not very high (XCH4 = 5-20 mol% and XCO2 = 25-40 mol %) when no pre-reduction step was carried out. A significant contribution of RWGS explained the low values of H2/CO ratio obtained. The reoxidation step of the catalyst carried out after reaction showed little amounts of coke deposition. The reducing pretreatment was particularly efficient in the case of SG (XCH4 = 80 mol% and XCO2 = 92 mol%, at 800 °C), with H2/CO > 1. In conclusion, the influence of preparation was strong for most samples and the catalytic behavior could be interpreted by considering the distribution of cations among octahedral (Oh) and tetrahedral (Td) sites as in (Ni2+1-xFe3+x) Td (Ni2+xFe3+2-x) OhO2-4 influenced the reducibility of materials and thus their catalytic performance.

Keywords: NiFe2O4, dry reforming of methane, spinel oxide, oxide zenc

Procedia PDF Downloads 257
19888 Utilizing Laser Cutting Method in Men's' Custom-Made Casualwear

Authors: M A. Habit, S. A. Syed-Sahil, A. Bahari

Abstract:

Abstract—Laser cutting is a method of manufacturing process that uses laser in order to cut materials. It provides and ensures extreme accuracy which has a clean cut effect, CO2 laser dominate this application due to their good- quality beam combined with high output power. It comes with a small scale and it has a limitation in cutting sizes of materials, therefore it is more appropriate for custom- made products. The same laser cutting machine is also capable in cutting fine material such as fine silk, cotton, leather, polyester, etc. Lack of explorations and knowledge besides being unaware about this technology had caused many of the designers not to use this laser cutting method in their collections. The objectives of this study are: 1) To identify the potential of laser cutting technique in Custom-Made Garments for men’s casual wear: 2) To experiment the laser cutting technique in custom made garments: 3) To offer guidelines and formula for men’s custom- made casualwear designs with aesthetic value. In order to achieve the objectives, this research has been conducted by using mixed methods which are interviews with two (2) local experts in the apparel manufacturing industries and interviews via telephone with five (5) local respondents who are local emerging fashion designers, the questionnaires were distributed to one hundred (100) respondents around Klang Valley, in order to gain the information about their understanding and awareness regarding laser cutting technology. The experiment was conducted by using natural and man- made fibers. As a conclusion, all of the objectives had been achieved in producing custom-made men’s casualwear and with the production of these attires it will help to educate and enhance the innovation in fine technology. Therefore, there will be a good linkage and collaboration between the design experts and the manufacturing companies.

Keywords: custom-made, fashion, laser cut, men’s wear

Procedia PDF Downloads 418
19887 Ni Mixed Oxides Type-Spinel for Energy: Application in Dry Reforming of Methane for Syngas (H2 & Co) Production

Authors: Bouhenni Mohamed Saif El Islam

Abstract:

In the recent years, the dry reforming of methane has received considerable attention from an environmental view point because it consumes and eliminates two gases (CH4 and CO2) responsible for global warming by greenhouse effect. Many catalysts containing noble metal (Rh, Ru, Pd, Pt and Ir) or transition metal (Ni, Co and Fe) have been reported to be active in this reaction. Compared to noble metals, Ni-materials are cheap but very easily deactivated by coking. Ni-based mixed oxides structurally well-defined like perovskites and spinels are being studied because they possibly make solid solutions and allow to vary the composition and thus the performances properties. In this work, nano-sized nickel ferrite oxides are synthesized using three different methods: Co-precipitation (CP), hydrothermal (HT) and sol gel (SG) methods and characterized by XRD, Raman, XPS, BET, TPR, SEM-EDX and TEM-EDX. XRD patterns of all synthesized oxides showed the presence of NiFe2O4 spinel, confirmed by Raman spectroscopy. Hematite was present only in CP sample. Depending on the synthesis method, the surface area, particle size, as well as the surface Ni/Fe atomic ratio (XPS) and the behavior upon reduction varied. The materials were tested in methane dry reforming with CO2 at 1 atm and 650-800 °C. The catalytic activity of the spinel samples was not very high (XCH4 = 5-20 mol% and XCO2 = 25-40 mol %) when no pre-reduction step was carried out. A significant contribution of RWGS explained the low values of H2/CO ratio obtained. The reoxidation step of the catalyst carried out after reaction showed little amounts of coke deposition. The reducing pretreatment was particularly efficient in the case of SG (XCH4 = 80 mol% and XCO2 = 92 mol%, at 800 °C), with H2/CO > 1. In conclusion, the influence of preparation was strong for most samples and the catalytic behavior could be interpreted by considering the distribution of cations among octahedral (Oh) and tetrahedral (Td) sites as in (Ni2+1-xFe3+x)Td (Ni2+xFe3+2-x)OhO2-4 influenced the reducibility of materials and thus their catalytic performance.

Keywords: NiFe2O4, dry reforming of methane, spinel oxide, XCO2

Procedia PDF Downloads 353
19886 Empirical Orthogonal Functions Analysis of Hydrophysical Characteristics in the Shira Lake in Southern Siberia

Authors: Olga S. Volodko, Lidiya A. Kompaniets, Ludmila V. Gavrilova

Abstract:

The method of empirical orthogonal functions is the method of data analysis with a complex spatial-temporal structure. This method allows us to decompose the data into a finite number of modes determined by empirically finding the eigenfunctions of data correlation matrix. The modes have different scales and can be associated with various physical processes. The empirical orthogonal function method has been widely used for the analysis of hydrophysical characteristics, for example, the analysis of sea surface temperatures in the Western North Atlantic, ocean surface currents in the North Carolina, the study of tropical wave disturbances etc. The method used in this study has been applied to the analysis of temperature and velocity measurements in saline Lake Shira (Southern Siberia, Russia). Shira is a shallow lake with the maximum depth of 25 m. The lake Shira can be considered as a closed water site because of it has one small river providing inflow and but it has no outflows. The main factor that causes the motion of fluid is variable wind flows. In summer the lake is strongly stratified by temperature and saline. Long-term measurements of the temperatures and currents were conducted at several points during summer 2014-2015. The temperature has been measured with an accuracy of 0.1 ºC. The data were analyzed using the empirical orthogonal function method in the real version. The first empirical eigenmode accounts for 70-80 % of the energy and can be interpreted as temperature distribution with a thermocline. A thermocline is a thermal layer where the temperature decreases rapidly from the mixed upper layer of the lake to much colder deep water. The higher order modes can be interpreted as oscillations induced by internal waves. The currents measurements were recorded using Acoustic Doppler Current Profilers 600 kHz and 1200 kHz. The data were analyzed using the empirical orthogonal function method in the complex version. The first empirical eigenmode accounts for about 40 % of the energy and corresponds to the Ekman spiral occurring in the case of a stationary homogeneous fluid. Other modes describe the effects associated with the stratification of fluids. The second and next empirical eigenmodes were associated with dynamical modes. These modes were obtained for a simplified model of inhomogeneous three-level fluid at a water site with a flat bottom.

Keywords: Ekman spiral, empirical orthogonal functions, data analysis, stratified fluid, thermocline

Procedia PDF Downloads 118
19885 Effect of Retention Time on Kitchen Wastewater Treatment Using Mixed Algal-Bacterial Consortia

Authors: Keerthi Katam, Abhinav B. Tirunaghari, Vinod Vadithya, Toshiyuki Shimizu, Satoshi Soda, Debraj Bhattacharyya

Abstract:

Researchers worldwide are increasingly focusing on the removal of carbon and nutrient from wastewater using algal-bacterial hybrid systems. Algae produce oxygen during photosynthesis, which is taken up by heterotrophic bacteria for mineralizing organic carbon to carbon dioxide. This phenomenon reduces the net mechanical aeration requirement of aerobic biological wastewater treatment processes. Consequently, the treatment cost is also reduced. Microalgae also participate in the treatment process by taking up nutrient (N, P) from wastewater. Algal biomass, if harvested, can generate value-added by-products. The aim of the present study was to compare the performance of two systems - System A (mixed microalgae and bacteria) and System B (diatoms and bacteria) in treating kitchen wastewater (KWW). The test reactors were operated at five different solid retention times (SRTs) -2, 4, 6, 8, and 10-days in draw-and-fill mode. The KWW was collected daily from the dining hall-kitchen area of the Indian Institute of Technology Hyderabad. The influent and effluent samples were analyzed for total organic carbon (TOC), total nitrogen (TN) using TOC-L analyzer. A colorimetric method was used to analyze anionic surfactant. Phosphorus (P) and chlorophyll were measured by following standard methods. The TOC, TN, and P of KWW were in the range of 113.5 to 740 mg/L, 2 to 22.8 mg/L, and 1 to 4.5 mg/L, respectively. Both the systems gave similar results with 85% of TOC removal and 60% of TN removal at 10-d SRT. However, the anionic surfactant removal in System A was 99% and 60% in System B. The chlorophyll concentration increased with an increase in SRT in both the systems. At 2-d SRT, no chlorophyll was observed in System B, whereas 0.5 mg/L was observed in System A. At 10-d SRT, the chlorophyll concentration in System A was 7.5 mg/L, whereas it was 4.5 mg/L in System B. Although both the systems showed similar performance in treatment, the increase in chlorophyll concentration suggests that System A demonstrated a better algal-bacterial symbiotic relationship in treating KWW than System B.

Keywords: diatoms, microalgae, retention time, wastewater treatment

Procedia PDF Downloads 102