Search results for: metastatic breast cancer
1917 A Rare Case of Metastatic Basal Cell Carcinoma
Authors: Nitesh Kumar, Eoin Twohig, jasparl cheema, Sadiq mawji, Yousif al najjar
Abstract:
Basal cell carcinoma (BCC) is the commonest cutaneous malignancy affecting humans. Despite this, distant spread is exceptionally rare. Metastatic BCC (mBCC) is estimated to occur in 0.0028 - 0.5%. it aim to illustrate with the aid of histological slides, a case of mBCC occurring in a fit and well 67-year-old. Initial diagnosis of desmoplastic BCC was made in 2006 from a scalp biopsy with the lesion then being excised. Re-excision of local recurrence was undertaken the following year. In 2014 the patient presented with an ipsilateral level 2a mass. Fine Needle Aspiration raised the suspicion of metastatic carcinoma. The patient had excision of two nodes from the left neck alongside pharyngeal tonsillectomy and tongue base biopsies. Histologically, the nodes closely resembled the immunophenotype of the initial scalp lesion. The patient subsequently had a modified radical neck dissection, and residual mBCC was excised from the left Sternocleidomastoid muscle. In 2023 the patient developed haematuria. On further investigation bilateral lung lesions on CT were noted with subsequent biopsy confirming mBCC. Spinal and renal lesions have also been found. Histopathology showed clear resemblance of the lung metastases to both those in the neck and the primary (scalp BCC) – with no squamous differentiation seen. The time span from primary to occurrence of lung metastasis (18 years) affirms the indolent and slow growing nature of BCC. This case fulfils Lattes and Kessler diagnostic criteria. High risk cases are described as those with advanced local presentation, primary tumour on the Head and Neck and locally recurrent lesions.Keywords: BCC, metastasis, rare, skin cancer
Procedia PDF Downloads 571916 Comparison of the Indocyanine Green Dye Method versus the Combined Method of Indigo Carmine Blue Dye with Indocyanine Green Fluorescence Imaging for Sentinel Lymph Node Biopsy in Breast Conservative Therapy for Early Breast Cancer
Authors: Nobuyuki Takemoto, Ai Koyanagi, Masanori Yasuda, Hiroshi Yamamoto
Abstract:
Background: Fluorescence imaging (FI) is one of the methods to identify sentinel lymph nodes (SLNs). However, the procedure is technically complicated and requires procedural skills, as SLN biopsy must be conducted in dim light conditions. As an improved version of this method, we introduced a combined method (Combined mixed dye and fluorescence; CMF) consisting of indigo carmine blue dye and FI. The direct visualization of SLNs under shadowless surgical light conditions is facilitated by the addition of the blue dye. We compared the SLN detection rates of CMF with that of the indocyanine green (ICG) dye method (ICG-D). Methods: A total of 202 patients with stage ≤ IIA breast cancer who underwent breast conservative therapy with separate incision from January 2004 to February 2017 were reviewed. Details of the two methods are as follows: (1) ICG-D: 2ml of ICG (10mg) was used and the green-stained SLNs were resected via a 3-4cm axillary incision; (2) CMF: A combination of 1ml of ICG (5mg) and 1-3ml of indigo carmine (4-12mg) was used. Using Photodynamic Eye (PDE), a 1.5-2 cm incision was made near the point of disappearance of the fluorescence and SLNs with intermediate color of blue and green were resected. Results: There were 92 ICG-D and 110 CMF cases. CMF resulted in a significantly higher detection rate than ICG-D (96.4% vs. 83.7%; p=0.003). This difference was particularly notable in those aged ≥ 60 years (98.3% vs. 74.3%) and individuals with BMI ≥ 25kg/m2 (90.3% vs. 58.3%). Conclusion: CMF is an effective method to identify SLNs which is safe, efficient, and cost-effective. Furthermore, radiation exposure can be avoided, and it can be performed in institutes without nuclear medicine facilities. CMF achieves a high SLN identification rate, and most of this procedure is feasible under shadowless surgical light conditions. CMF can reliably perform SLN biopsy even in those aged ≥ 60 years and individuals with BMI ≥ 25 kg/m2.Keywords: sentinel lymph node biopsy, identification rate, indocyanine green (ICG), indigocarmine, fluorescence
Procedia PDF Downloads 1711915 Targeting Tumour Survival and Angiogenic Migration after Radiosensitization with an Estrone Analogue in an in vitro Bone Metastasis Model
Authors: Jolene M. Helena, Annie M. Joubert, Peace Mabeta, Magdalena Coetzee, Roy Lakier, Anne E. Mercier
Abstract:
Targeting the distant tumour and its microenvironment whilst preserving bone density is important in improving the outcomes of patients with bone metastases. 2-Ethyl-3-O-sulphamoyl-estra1,3,5(10)16-tetraene (ESE-16) is an in-silico-designed 2- methoxyestradiol analogue which aimed at enhancing the parent compound’s cytotoxicity and providing a more favourable pharmacokinetic profile. In this study, the potential radiosensitization effects of ESE-16 were investigated in an in vitro bone metastasis model consisting of murine pre-osteoblastic (MC3T3-E1) and pre-osteoclastic (RAW 264.7) bone cells, metastatic prostate (DU 145) and breast (MDA-MB-231) cancer cells, as well as human umbilical vein endothelial cells (HUVECs). Cytotoxicity studies were conducted on all cell lines via spectrophotometric quantification of 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide. The experimental set-up consisted of flow cytometric analysis of cell cycle progression and apoptosis detection (Annexin V-fluorescein isothiocyanate) to determine the lowest ESE-16 and radiation doses to induce apoptosis and significantly reduce cell viability. Subsequent experiments entailed a 24-hour low-dose ESE-16-exposure followed by a single dose of radiation. Termination proceeded 2, 24 or 48 hours thereafter. The effect of the combination treatment was investigated on osteoclasts via tartrate-resistant acid phosphatase (TRAP) activity- and actin ring formation assays. Tumour cell experiments included investigation of mitotic indices via haematoxylin and eosin staining; pro-apoptotic signalling via spectrophotometric quantification of caspase 3; deoxyribonucleic acid (DNA) damage via micronuclei analysis and histone H2A.X phosphorylation (γ-H2A.X); and Western blot analyses of bone morphogenetic protein-7 and matrix metalloproteinase-9. HUVEC experiments included flow cytometric quantification of cell cycle progression and free radical production; fluorescent examination of cytoskeletal morphology; invasion and migration studies on an xCELLigence platform; and Western blot analyses of hypoxia-inducible factor 1-alpha and vascular endothelial growth factor receptor 1 and 2. Tumour cells yielded half-maximal growth inhibitory concentration (GI50) values in the nanomolar range. ESE-16 concentrations of 235 nM (DU 145) and 176 nM (MDA-MB-231) and a radiation dose of 4 Gy were found to be significant in cell cycle and apoptosis experiments. Bone and endothelial cells were exposed to the same doses as DU 145 cells. Cytotoxicity studies on bone cells reported that RAW 264.7 cells were more sensitive to the combination treatment than MC3T3-E1 cells. Mature osteoclasts were more sensitive than pre-osteoclasts with respect to TRAP activity. However, actin ring morphology was retained. The mitotic arrest was evident in tumour and endothelial cells in the mitotic index and cell cycle experiments. Increased caspase 3 activity and superoxide production indicated pro-apoptotic signalling in tumour and endothelial cells. Increased micronuclei numbers and γ-H2A.X foci indicated increased DNA damage in tumour cells. Compromised actin and tubulin morphologies and decreased invasion and migration were observed in endothelial cells. Western blot analyses revealed reduced metastatic and angiogenic signalling. ESE-16-induced radiosensitization inhibits metastatic signalling and tumour cell survival whilst preferentially preserving bone cells. This low-dose combination treatment strategy may promote the quality of life of patients with metastatic bone disease. Future studies will include 3-dimensional in-vitro and murine in-vivo models.Keywords: angiogenesis, apoptosis, bone metastasis, cancer, cell migration, cytoskeleton, DNA damage, ESE-16, radiosensitization.
Procedia PDF Downloads 1621914 Compartmental Model Approach for Dosimetric Calculations of ¹⁷⁷Lu-DOTATOC in Adenocarcinoma Breast Cancer Based on Animal Data
Authors: M. S. Mousavi-Daramoroudi, H. Yousefnia, S. Zolghadri, F. Abbasi-Davani
Abstract:
Dosimetry is an indispensable and precious factor in patient treatment planning; to minimize the absorbed dose in vital tissues. In this study, In accordance with the proper characteristics of DOTATOC and ¹⁷⁷Lu, after preparing ¹⁷⁷Lu-DOTATOC at the optimal conditions for the first time in Iran, radionuclidic and radiochemical purity of the solution was investigated using an HPGe spectrometer and ITLC method, respectively. The biodistribution of the compound was assayed for treatment of adenocarcinoma breast cancer in bearing BALB/c mice. The results have demonstrated that ¹⁷⁷Lu-DOTATOC is a profitable selection for therapy of the tumors. Because of the vital role of internal dosimetry before and during therapy, the effort to improve the accuracy and rapidity of dosimetric calculations is necessary. For this reason, a new method was accomplished to calculate the absorbed dose through mixing between compartmental model, animal dosimetry and extrapolated data from animal to human and using MIRD method. Despite utilization of compartmental model based on the experimental data, it seems this approach may increase the accuracy of dosimetric data, confidently.Keywords: ¹⁷⁷Lu-DOTATOC, biodistribution modeling, compartmental model, internal dosimetry
Procedia PDF Downloads 2191913 Construction of Ovarian Cancer-on-Chip Model by 3D Bioprinting and Microfluidic Techniques
Authors: Zakaria Baka, Halima Alem
Abstract:
Cancer is a major worldwide health problem that has caused around ten million deaths in 2020. In addition, efforts to develop new anti-cancer drugs still face a high failure rate. This is partly due to the lack of preclinical models that recapitulate in-vivo drug responses. Indeed conventional cell culture approach (known as 2D cell culture) is far from reproducing the complex, dynamic and three-dimensional environment of tumors. To set up more in-vivo-like cancer models, 3D bioprinting seems to be a promising technology due to its ability to achieve 3D scaffolds containing different cell types with controlled distribution and precise architecture. Moreover, the introduction of microfluidic technology makes it possible to simulate in-vivo dynamic conditions through the so-called “cancer-on-chip” platforms. Whereas several cancer types have been modeled through the cancer-on-chip approach, such as lung cancer and breast cancer, only a few works describing ovarian cancer models have been described. The aim of this work is to combine 3D bioprinting and microfluidic technics with setting up a 3D dynamic model of ovarian cancer. In the first phase, alginate-gelatin hydrogel containing SKOV3 cells was used to achieve tumor-like structures through an extrusion-based bioprinter. The desired form of the tumor-like mass was first designed on 3D CAD software. The hydrogel composition was then optimized for ensuring good and reproducible printability. Cell viability in the bioprinted structures was assessed using Live/Dead assay and WST1 assay. In the second phase, these bioprinted structures will be included in a microfluidic device that allows simultaneous testing of different drug concentrations. This microfluidic dispositive was first designed through computational fluid dynamics (CFD) simulations for fixing its precise dimensions. It was then be manufactured through a molding method based on a 3D printed template. To confirm the results of CFD simulations, doxorubicin (DOX) solutions were perfused through the dispositive and DOX concentration in each culture chamber was determined. Once completely characterized, this model will be used to assess the efficacy of anti-cancer nanoparticles developed in the Jean Lamour institute.Keywords: 3D bioprinting, ovarian cancer, cancer-on-chip models, microfluidic techniques
Procedia PDF Downloads 1961912 Automatic Identification of Pectoral Muscle
Authors: Ana L. M. Pavan, Guilherme Giacomini, Allan F. F. Alves, Marcela De Oliveira, Fernando A. B. Neto, Maria E. D. Rosa, Andre P. Trindade, Diana R. De Pina
Abstract:
Mammography is a worldwide image modality used to diagnose breast cancer, even in asymptomatic women. Due to its large availability, mammograms can be used to measure breast density and to predict cancer development. Women with increased mammographic density have a four- to sixfold increase in their risk of developing breast cancer. Therefore, studies have been made to accurately quantify mammographic breast density. In clinical routine, radiologists perform image evaluations through BIRADS (Breast Imaging Reporting and Data System) assessment. However, this method has inter and intraindividual variability. An automatic objective method to measure breast density could relieve radiologist’s workload by providing a first aid opinion. However, pectoral muscle is a high density tissue, with similar characteristics of fibroglandular tissues. It is consequently hard to automatically quantify mammographic breast density. Therefore, a pre-processing is needed to segment the pectoral muscle which may erroneously be quantified as fibroglandular tissue. The aim of this work was to develop an automatic algorithm to segment and extract pectoral muscle in digital mammograms. The database consisted of thirty medio-lateral oblique incidence digital mammography from São Paulo Medical School. This study was developed with ethical approval from the authors’ institutions and national review panels under protocol number 3720-2010. An algorithm was developed, in Matlab® platform, for the pre-processing of images. The algorithm uses image processing tools to automatically segment and extract the pectoral muscle of mammograms. Firstly, it was applied thresholding technique to remove non-biological information from image. Then, the Hough transform is applied, to find the limit of the pectoral muscle, followed by active contour method. Seed of active contour is applied in the limit of pectoral muscle found by Hough transform. An experienced radiologist also manually performed the pectoral muscle segmentation. Both methods, manual and automatic, were compared using the Jaccard index and Bland-Altman statistics. The comparison between manual and the developed automatic method presented a Jaccard similarity coefficient greater than 90% for all analyzed images, showing the efficiency and accuracy of segmentation of the proposed method. The Bland-Altman statistics compared both methods in relation to area (mm²) of segmented pectoral muscle. The statistic showed data within the 95% confidence interval, enhancing the accuracy of segmentation compared to the manual method. Thus, the method proved to be accurate and robust, segmenting rapidly and freely from intra and inter-observer variability. It is concluded that the proposed method may be used reliably to segment pectoral muscle in digital mammography in clinical routine. The segmentation of the pectoral muscle is very important for further quantifications of fibroglandular tissue volume present in the breast.Keywords: active contour, fibroglandular tissue, hough transform, pectoral muscle
Procedia PDF Downloads 3501911 Correlation Between Different Radiological Findings and Histopathological diagnosis of Breast Diseases: Retrospective Review Conducted Over Sixth Years in King Fahad University Hospital in Eastern Province, Saudi Arabia
Authors: Sadeem Aljamaan, Reem Hariri, Rahaf Alghamdi, Batool Alotaibi, Batool Alsenan, Lama Althunayyan, Areej Alnemer
Abstract:
The aim of this study is to correlate between radiological findings and histopathological results in regard to the breast imaging-reporting and data system scores, size of breast masses, molecular subtypes and suspicious radiological features, as well as to assess the concordance rate in histological grade between core biopsy and surgical excision among breast cancer patients, followed by analyzing the change of concordance rate in relation to neoadjuvant chemotherapy in a Saudi population. A retrospective review was conducted over 6-year period (2017-2022) on all breast core biopsies of women preceded by radiological investigation. Chi-squared test (χ2) was performed on qualitative data, the Mann-Whitney test for quantitative non-parametric variables, and the Kappa test for grade agreement. A total of 641 cases were included. Ultrasound, mammography, and magnetic resonance imaging demonstrated diagnostic accuracies of 85%, 77.9% and 86.9%; respectively. magnetic resonance imaging manifested the highest sensitivity (72.2%), and the lowest was for ultrasound (61%). Concordance in tumor size with final excisions was best in magnetic resonance imaging, while mammography demonstrated a higher tendency of overestimation (41.9%), and ultrasound showed the highest underestimation (67.7%). The association between basal-like molecular subtypes and the breast imaging-reporting and data system score 5 classifications was statistically significant only for magnetic resonance imaging (p=0.04). Luminal subtypes demonstrated a significantly higher percentage of speculation in mammography. Breast imaging-reporting and data system score 4 manifested a substantial number of benign pathologies in all the 3 modalities. A fair concordance rate (k= 0.212 & 0.379) was demonstrated between excision and the preceding core biopsy grading with and without neoadjuvant therapy, respectively. The results demonstrated a down-grading in cases post-neoadjuvant therapy. In cases who did not receive neoadjuvant therapy, underestimation of tumor grade in biopsy was evident. In summary, magnetic resonance imaging had the highest sensitivity, specificity, positive predictive value and accuracy of both diagnosis and estimation of tumor size. Mammography demonstrated better sensitivity than ultrasound and had the highest negative predictive value, but ultrasound had better specificity, positive predictive value and accuracy. Therefore, the combination of different modalities is advantageous. The concordance rate of core biopsy grading with excision was not impacted by neoadjuvant therapy.Keywords: breast cancer, mammography, MRI, neoadjuvant, pathology, US
Procedia PDF Downloads 821910 Non-Steroidal Microtubule Disrupting Analogues Induce Programmed Cell Death in Breast and Lung Cancer Cell Lines
Authors: Marcel Verwey, Anna M. Joubert, Elsie M. Nolte, Wolfgang Dohle, Barry V. L. Potter, Anne E. Theron
Abstract:
A tetrahydroisoquinolinone (THIQ) core can be used to mimic the A,B-ring of colchicine site-binding microtubule disruptors such as 2-methoxyestradiol in the design of anti-cancer agents. Steroidomimeric microtubule disruptors were synthesized by introducing C'2 and C'3 of the steroidal A-ring to C'6 and C'7 of the THIQ core and by introducing a decorated hydrogen bond acceptor motif projecting from the steroidal D-ring to N'2. For this in vitro study, four non-steroidal THIQ-based analogues were investigated and comparative studies were done between the non-sulphamoylated compound STX 3450 and the sulphamoylated compounds STX 2895, STX 3329 and STX 3451. The objective of this study was to investigate the modes of cell death induced by these four THIQ-based analogues in A549 lung carcinoma epithelial cells and metastatic breast adenocarcinoma MDA-MB-231 cells. Cytotoxicity studies to determine the half maximal growth inhibitory concentrations were done using spectrophotometric quantification via crystal violet staining and lactate dehydrogenase (LDH) assays. Microtubule integrity and morphologic changes of exposed cells were investigated using polarization-optical transmitted light differential interference contrast microscopy, transmission electron microscopy and confocal microscopy. Flow cytometric quantification was used to determine apoptosis induction and the effect that THIQ-based analogues have on cell cycle progression. Signal transduction pathways were elucidated by quantification of the mitochondrial membrane integrity, cytochrome c release and caspase 3, -6 and -8 activation. Induction of autophagic cell death by the THIQ-based analogues was investigated by morphological assessment of fluorescent monodansylcadaverine (MDC) staining of acidic vacuoles and by quantifying aggresome formation via flow cytometry. Results revealed that these non-steroidal microtubule disrupting analogues inhibited 50% of cell growth at nanomolar concentrations. Immunofluorescence microscopy indicated microtubule depolarization and the resultant mitotic arrest was further confirmed through cell cycle analysis. Apoptosis induction via the intrinsic pathway was observed due to depolarization of the mitochondrial membrane, induction of cytochrome c release as well as, caspase 3 activation. Potential involvement of programmed cell death type II was observed due to the presence of acidic vacuoles and aggresome formation. Necrotic cell death did not contribute significantly, indicated by stable LDH levels. This in vitro study revealed the induction of the intrinsic apoptotic pathway as well as possible involvement of autophagy after exposure to these THIQ-based analogues in both MDA-MB-231- and A549 cells. Further investigation of this series of anticancer drugs still needs to be conducted to elucidate the temporal, mechanistic and functional crosstalk mechanisms between the two observed programmed cell deaths pathways.Keywords: apoptosis, autophagy, cancer, microtubule disruptor
Procedia PDF Downloads 2531909 Triple Case Phantom Tumor of Lungs
Authors: Angelis P. Barlampas
Abstract:
Introduction: The term phantom lung mass describes the ovoid collection of fluid within the interlobular fissure, which initially creates the impression of a mass. The problem of correct differential diagnosis is great, especially in plain radiography. A case is presented with three nodular pulmonary foci, the shape, location, and density of which, as well as the presence of chronic loculated pleural effusions, suggest the presence of multiple phantom tumors of the lung. Purpose: The aim of this paper is to draw the attention of non-experienced and non-specialized physicians to the existence of benign findings that mimic pathological conditions and vice versa. The careful study of a radiological examination and the comparison with previous exams or further control protect against quick wrong conclusions. Methods: A hospitalized patient underwent a non-contrast CT scan of the chest as part of the general control of her situation. Results: Computed tomography revealed pleural effusions, some of them loculated, increased cardiothoracic index, as well as the presence of three nodular foci, one in the left lung and two in the right with a maximum density of up to 18 Hounsfield units and a mean diameter of approximately five centimeters. Two of them are located in the characteristical anatomical position of the major interlobular fissure. The third one is located in the area of the right lower lobe’s posterior basal part, and it presents the same characteristics as the previous ones and is likely to be a loculated fluid collection, within an auxiliary interlobular fissure or a cyst, in the context of the patient's more general pleural entrapments and loculations. The differential diagnosis of nodular foci based on their imaging characteristics includes the following: a) rare metastatic foci with low density (liposarcoma, mucous tumors of the digestive or genital system, necrotic metastatic foci, metastatic renal cancer, etc.), b) necrotic multiple primary lung tumor locations (squamous epithelial cancer, etc. ), c) hamartomas of the lung, d) fibrotic tumors of the interlobular fissures, e) lipoid pneumonia, f) fluid concentrations within the interlobular fissures, g) lipoma of the lung, h) myelolipomas of the lung. Conclusions: The collection of fluid within the interlobular fissure of the lung can give the false impression of a lung mass, particularly on plain chest radiography. In the case of computed tomography, the ability to measure the density of a lesion, combined with the provided high anatomical details of the location and characteristics of the lesion, can lead relatively easily to the correct diagnosis. In cases of doubt or image artifacts, comparison with previous or subsequent examinations can resolve any disagreements, while in rare cases, intravenous contrast may be necessary.Keywords: phantom mass, chest CT, pleural effusion, cancer
Procedia PDF Downloads 551908 The Role Support Groups Play in Decreasing Depression and PTSD in Cancer Survivors: A Literature Review
Authors: Julianne Macmullen
Abstract:
Due to advances in technology and early detection and treatment of cancer, many cancer patients are surviving longer than five years post-diagnosis. Most cancer patients suffer from depression, anxiety, and post-traumatic stress disorder (PTSD) at some point during diagnosis, treatment, and survivorship. A subgroup of patients will continue to suffer from depression and PTSD and require early intervention. Support groups provide patients with the emotional and informational support they require while also giving survivors a sense of community, friendship, and purpose. This type of support is recognized by researchers to improve the quality of life while also decreasing depression and PTSD symptoms. The gaps in the literature include cultural diversity, minorities, and support groups involving cancer types other than breast cancer. Another gap in the literature includes the perceptions of cancer patients as well as longitudinal studies to determine the relationships between support groups and decreased depression and PTSD rates over time. Future research is required to fill the gaps in the literature mentioned previously. Future research is also needed to analyze the difference in age groups and different types of support groups such as professionally-led, peer-led, and online. Implications for practice involve providers assessing for the symptoms of depression and PTSD in order to offer prompt treatment and support services to those patients. In conclusion, social support by way of support groups improves the quality of life, gives survivors a sense of purpose to help others while also gaining the support they need, and reduces the rate of depressive episodes related to PTSD.Keywords: cancer survivor, survivorship, post-traumatic stress disorder (PTSD), depression, support groups
Procedia PDF Downloads 1761907 Comparison of 18F-FDG and 11C-Methionine PET-CT for Assessment of Response to Neoadjuvant Chemotherapy in Locally Advanced Breast Carcinoma
Authors: Sonia Mahajan Dinesh, Anant Dinesh, Madhavi Tripathi, Vinod Kumar Ramteke, Rajnish Sharma, Anupam Mondal
Abstract:
Background: Neo-adjuvant chemotherapy plays an important role in treatment of breast cancer by decreasing the tumour load and it offers an opportunity to evaluate response of primary tumour to chemotherapy. Standard anatomical imaging modalities are unable to accurately reflect the response to chemotherapy until several cycles of drug treatment have been completed. Metabolic imaging using tracers like 18F-fluorodeoxyglucose (FDG) as a marker of glucose metabolism or amino acid tracers like L-methyl-11C methionine (MET) have potential role for the measurement of treatment response. In this study, our objective was to compare these two PET tracers for assessment of response to neoadjuvant chemotherapy, in locally advanced breast carcinoma. Methods: In our prospective study, 20 female patients with histology proven locally advanced breast carcinoma underwent PET-CT imaging using FDG and MET before and after three cycles of neoadjuvant chemotherapy (CAF regimen). Thereafter, all patients were taken for MRM and the resected specimen was sent for histo-pathological analysis. Tumour response to the neoadjuvant chemotherapy was evaluated by PET-CT imaging using PERCIST criteria and correlated with histological results. Responses calculated were compared for statistical significance using paired t- test. Results: Mean SUVmax for primary lesion in FDG PET and MET PET was 15.88±11.12 and 5.01±2.14 respectively (p<0.001) and for axillary lymph nodes was 7.61±7.31 and 2.75±2.27 respectively (p=0.001). Statistically significant response in primary tumour and axilla was noted on both FDG and MET PET after three cycles of NAC. Complete response in primary tumour was seen in only 1 patient in FDG and 7 patients in MET PET (p=0.001) whereas there was no histological complete resolution of tumor in any patient. Response to therapy in axillary nodes noted on both PET scans were similar (p=0.45) and correlated well with histological findings. Conclusions: For the primary breast tumour, FDG PET has a higher sensitivity and accuracy than MET PET and for axilla both have comparable sensitivity and specificity. FDG PET shows higher target to background ratios so response is better predicted for primary breast tumour and axilla. Also, FDG-PET is widely available and has the advantage of a whole body evaluation in one study.Keywords: 11C-methionine, 18F-FDG, breast carcinoma, neoadjuvant chemotherapy
Procedia PDF Downloads 5101906 Identification of Clinical Characteristics from Persistent Homology Applied to Tumor Imaging
Authors: Eashwar V. Somasundaram, Raoul R. Wadhwa, Jacob G. Scott
Abstract:
The use of radiomics in measuring geometric properties of tumor images such as size, surface area, and volume has been invaluable in assessing cancer diagnosis, treatment, and prognosis. In addition to analyzing geometric properties, radiomics would benefit from measuring topological properties using persistent homology. Intuitively, features uncovered by persistent homology may correlate to tumor structural features. One example is necrotic cavities (corresponding to 2D topological features), which are markers of very aggressive tumors. We develop a data pipeline in R that clusters tumors images based on persistent homology is used to identify meaningful clinical distinctions between tumors and possibly new relationships not captured by established clinical categorizations. A preliminary analysis was performed on 16 Magnetic Resonance Imaging (MRI) breast tissue segments downloaded from the 'Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis' (I-SPY TRIAL or ISPY1) collection in The Cancer Imaging Archive. Each segment represents a patient’s breast tumor prior to treatment. The ISPY1 dataset also provided the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status data. A persistent homology matrix up to 2-dimensional features was calculated for each of the MRI segmentation. Wasserstein distances were then calculated between all pairwise tumor image persistent homology matrices to create a distance matrix for each feature dimension. Since Wasserstein distances were calculated for 0, 1, and 2-dimensional features, three hierarchal clusters were constructed. The adjusted Rand Index was used to see how well the clusters corresponded to the ER/PR/HER2 status of the tumors. Triple-negative cancers (negative status for all three receptors) significantly clustered together in the 2-dimensional features dendrogram (Adjusted Rand Index of .35, p = .031). It is known that having a triple-negative breast tumor is associated with aggressive tumor growth and poor prognosis when compared to non-triple negative breast tumors. The aggressive tumor growth associated with triple-negative tumors may have a unique structure in an MRI segmentation, which persistent homology is able to identify. This preliminary analysis shows promising results in the use of persistent homology on tumor imaging to assess the severity of breast tumors. The next step is to apply this pipeline to other tumor segment images from The Cancer Imaging Archive at different sites such as the lung, kidney, and brain. In addition, whether other clinical parameters, such as overall survival, tumor stage, and tumor genotype data are captured well in persistent homology clusters will be assessed. If analyzing tumor MRI segments using persistent homology consistently identifies clinical relationships, this could enable clinicians to use persistent homology data as a noninvasive way to inform clinical decision making in oncology.Keywords: cancer biology, oncology, persistent homology, radiomics, topological data analysis, tumor imaging
Procedia PDF Downloads 1351905 Production of Single-Chain Antibodies against Common Epitopes of ErbB1 and ErbB2 Using Phage Display Antibody Library
Authors: Gholamreza Hashemitabr, Reza Valadan, Alireza Rafiei, Mohammad Reza Bassami
Abstract:
Breast cancer is the most common malignancy among women worldwide. Cancer cells use a complex multilayer network of epidermal growth factor receptors (EGFRs) signaling pathways to support their survival and growth. The overlapping networks of EGFRs signaling pathways account for the failure of most ErbB-targeted therapies. The aim of this study was to enrich a pool of recombinant antibody fragments against common epitopes of ErbB1 and ErbB2 in order to simultaneous blockade of ErbBs signaling pathways. ErbB1 and ErbB2 were expressed stably in VERO cells. Selection of recombinant antibodies was performed on live cells expressing either of ErbB1 and ErbB2 receptors using subtractive phage display approach. The results of PCR and DNA fingerprinting in the last round of panning showed that most clones contained insert (80% and 85% for ErbB1 and ErbB2 respectively) with an identical restriction pattern. The selected clones showed positive reaction to both ErbB1 and ErbB2 receptors in phage-ELISA test. Furthermore, the resulting soluble antibody fragments recognized common epitopes of both immunoprecipitated ErbB1 and ErbB2 in western blot. Additionally, the antibodies directed against the dimerization domain of ErbB1 demonstrated a significant absorbance in EGF-stimulated VERO/ErbB1 cells than non-stimulated cells (1.91 and 1.09 respectively). Moreover, the results of dimerization inhibition test showed that these antibodies blocked ErbB1 and ErbB2 dimerization on the surface of ErbB1 and ErbB2 expressing VERO cells. Regarding the importance of pan-ErbB approach to cancer therapy, the antibodies developed here might provide novel therapeutics for simultaneous blockade of ErbBs signaling pathways.Keywords: breast cancer, single-chain antibody, ErbB1, ErbB2, epitope
Procedia PDF Downloads 6481904 Antioxidant and Anticancer Activities of Ethanolic Extract from Monascus purpureus
Authors: M. Pourshirazi, M. Esmaelifar, A. Aliahmadi, F. Yazdian, A. S. Hatamian Zarami, S. J. Ashrafi
Abstract:
Medicinal fungi are the new potential source of drugs to improve the treatment of diseases with association to oxidative agents such as cancers. Monascus purpureus contains functional components potentially effective in improving human health. In the present work, ethanolic extract of Monascus purpureus (EEM) was evaluated for health improving potential mainly focusing on antioxidant and anticancer activities. Ferric ion reducing power (FRAP), scavenging of DPPH radicals and determining viability of breast carcinoma MCF-7 and cervical carcinoma HeLa cells with MTT assay were evaluated. Our data showed a significant antioxidant activity of EEM with 142.45 µg/ml inhibition concentration of 50% DPPH radicals and 2112.33 µg eq.Fe2+/mg extract of FRAP assay. These results might be caused by antioxidant components such as pigments and phenolic compounds. Further, the results demonstrated that EEM caused significant reduction in the viability of MCF-7 with IC50 of 7 µg/ml but not have good effect against viability of HeLa cells. Accordingly, Monascus purpureus is presented as a strong potential of breast cancer treatment. In further study, the mechanistic studies are needed to determine the mechanisms of anticancer activity of EEM.Keywords: Monascus purpureus, antioxidant, cancer, ethanolic extract
Procedia PDF Downloads 4151903 Content-Based Mammograms Retrieval Based on Breast Density Criteria Using Bidimensional Empirical Mode Decomposition
Authors: Sourour Khouaja, Hejer Jlassi, Nadia Feddaoui, Kamel Hamrouni
Abstract:
Most medical images, and especially mammographies, are now stored in large databases. Retrieving a desired image is considered of great importance in order to find previous similar cases diagnosis. Our method is implemented to assist radiologists in retrieving mammographic images containing breast with similar density aspect as seen on the mammogram. This is becoming a challenge seeing the importance of density criteria in cancer provision and its effect on segmentation issues. We used the BEMD (Bidimensional Empirical Mode Decomposition) to characterize the content of images and Euclidean distance measure similarity between images. Through the experiments on the MIAS mammography image database, we confirm that the results are promising. The performance was evaluated using precision and recall curves comparing query and retrieved images. Computing recall-precision proved the effectiveness of applying the CBIR in the large mammographic image databases. We found a precision of 91.2% for mammography with a recall of 86.8%.Keywords: BEMD, breast density, contend-based, image retrieval, mammography
Procedia PDF Downloads 2321902 Adherence to Dietary Approaches to Stop Hypertension-Style Diet and Risk of Mortality from Cancer: A Systematic Review and Meta-Analysis of Cohort Studies
Authors: Roohallah Fallah-Moshkani, Mohammad Ali Mohsenpour, Reza Ghiasvand, Hossein Khosravi-Boroujeni, Seyed Mehdi Ahmadi, Paula Brauer, Amin Salehi-Abargouei
Abstract:
Purpose: Several investigations have proposed the protective association between dietary approaches to stop hypertension (DASH) style diet and risk of cancers; however, they have led to inconsistent results. The present study aimed to systematically review the prospective cohort studies conducted in this regard and, if possible, to quantify the overall effect of using meta-analysis. Methods: PubMed, EMBASE, Scopus, and Google Scholar were searched for cohort studies published up to December 2017. Relative risks (RRs) which were reported for fully adjusted models and their confidence intervals were extracted for meta-analysis. Random effects model was incorporated to combine the RRs. Results: Sixteen studies were eligible to be included in the systematic review from which 8 reports were conducted on the effect of DASH on the risk of mortality from all cancer types, four on the risk of colorectal cancer, and three on the risk of colon and rectal cancer. Four studies examined the association with other cancers (breast, hepatic, endometrial, and lung cancer). Meta-analysis showed that high concordance with DASH significantly decreases the risk of all cancer types (RR=0.83, 95% confidence interval (95%CI):0.80-0.85); furthermore participants who highly adhered to the DASH had lower risk of developing colorectal (RR=0.79, 95%CI: 0.75-0.83), colon (RR=0.81, 95%CI: 0.74-0.87) and rectal (RR=0.79, 95%CI: 0.63-0.98) cancer compared to those with the lowest adherence. Conclusions: DASH-style diet should be suggested as a healthy approach to protect from cancer in the community. Prospective studies exploring the effect on other cancer types and from regions other than the United States are highly recommended.Keywords: cancer, DASH-style diet, dietary patterns, meta-analysis, systematic review
Procedia PDF Downloads 1881901 Cytotoxic Metabolites from Tagetes minuta L. Growing in Saudi Arabia
Authors: Ali A. A. Alqarni, Gamal A. Mohamed, Hossam M. Abdallah, Sabrin R. M. Ibrahim
Abstract:
Phytochemical investigation of the methanolic extract of aerial parts of Tagetes minuta L. (Family: Asteraceae) using different chromatographic techniques led to the isolation of five compounds; ecliptal (1), scopoletin (2), P-hydroxy benzoic acid (3), patuletin (4), and patuletin-7-O-β-D-glucopyranoside (5) (Figure 1). Their structures were established based on physical, chemical, and spectral data [Ultraviolet (UV), Proton ¹H, Carbon thirteen ¹³C, and Heteronuclear Multiple Bond Correlation (HMBC) NMR], as well as Electrospray Ionization Mass Spectroscopy (ESIMS) and comparison with literature data. Their cytotoxic activity was assessed towards human liver hepatocellular carcinoma (HepG2), human breast cancer (MCF-7), and human colon cancer (HCT116) cancer cell lines using sulphorhodamine B (SRB) assay. It is noteworthy that compound 1 demonstrated a significant cytotoxic potential towards HepG2, MCF7, and HCT116 cells with IC₅₀s ranging from 2.74 to 7.01 μM, compared to doxorubicin (IC₅₀ 0.18, 0.60, and 0.20 μM, respectively), whereas compounds 2, 4, and 5 showed moderate cytotoxic potential with IC50s ranging from 11.71 to 35.64 μM. However, 3 was inactive up to a concentration of 100 μM towards the three tested cancer cell lines.Keywords: Asteraceae, cytotoxicity, metabolites, Tagetes minuta
Procedia PDF Downloads 1631900 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography
Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai
Abstract:
Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics
Procedia PDF Downloads 961899 Synthesis and Biological Activity Evaluation of U Complexes
Authors: Mohammad Kazem Mohammadi
Abstract:
The use of anticancer agents forms an important part of the treatment of cancer of various types. Uranyl Complexes with DPHMP ligand have been used for the prevention and treatment of cancers. U(IV) metal complexes prepared by reaction of uranyl salt UO2 (NO3)2.6H2O with DPHMP in dry acetonitrile. Characterization of the ligand and its complexes was made by microanalyses, FT-IR, 1H NMR, 13C NMR and UV–Visible spectroscopy. These new complex showed excellent antitumor activity against two kinds of cancer cells that that are HT29:Haman colon adenocarcinoma cell line and T47D:human breast adenocarcinoma cell line.Keywords: uranyl complexes, DPHMP ligand, antitumor activity, HT29, T47D
Procedia PDF Downloads 4691898 ESDN Expression in the Tumor Microenvironment Coordinates Melanoma Progression
Authors: Roberto Coppo, Francesca Orso, Daniela Dettori, Elena Quaglino, Lei Nie, Mehran M. Sadeghi, Daniela Taverna
Abstract:
Malignant melanoma is currently the fifth most common cancer in the white population and it is fatal in its metastatic stage. Several research studies in recent years have provided evidence that cancer initiation and progression are driven by genetic alterations of the tumor and paracrine interactions between tumor and microenvironment. Scattered data show that the Endothelial and Smooth muscle cell-Derived Neuropilin-like molecule (ESDN) controls cell proliferation and movement of stroma and tumor cells. To investigate the role of ESDN in the tumor microenvironment during melanoma progression, murine melanoma cells (B16 or B16-F10) were injected in ESDN knockout mice in order to evaluate how the absence of ESDN in stromal cells could influence melanoma progression. While no effect was found on primary tumor growth, increased cell extravasation and lung metastasis formation was observed in ESDN knockout mice compared to wild type controls. In order to understand how cancer cells cross the endothelial barrier during metastatic dissemination in an ESDN-null microenvironment, structure, and permeability of lung blood vessels were analyzed. Interestingly, ESDN knockout mice showed structurally altered and more permeable vessels compared to wild type animals. Since cell surface molecules mediate the process of tumor cell extravasation, the expression of a panel of extravasation-related ligands and receptors was analyzed. Importantly, modulations of N-cadherin, E-selectin, ICAM-1 and VAP-1 were observed in ESDN knockout endothelial cells, suggesting the presence of a favorable tumor microenvironment which facilitates melanoma cell extravasation and metastasis formation in the absence of ESDN. Furthermore, a potential contribution of immune cells in tumor dissemination was investigated. An increased recruitment of macrophages in the lungs of ESDN knockout mice carrying subcutaneous B16-F10 tumors was found. In conclusion, our data suggest a functional role of ESDN in the tumor microenvironment during melanoma progression and the identification of the mechanisms that regulate tumor cell extravasation could lead to the development of new therapies to reduce metastasis formation.Keywords: melanoma, tumor microenvironment, extravasation, cell surface molecules
Procedia PDF Downloads 3331897 Role of Imaging in Predicting the Receptor Positivity Status in Lung Adenocarcinoma: A Chapter in Radiogenomics
Authors: Sonal Sethi, Mukesh Yadav, Abhimanyu Gupta
Abstract:
The upcoming field of radiogenomics has the potential to upgrade the role of imaging in lung cancer management by noninvasive characterization of tumor histology and genetic microenvironment. Receptor positivity like epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) genotyping are critical in lung adenocarcinoma for treatment. As conventional identification of receptor positivity is an invasive procedure, we analyzed the features on non-invasive computed tomography (CT), which predicts the receptor positivity in lung adenocarcinoma. Retrospectively, we did a comprehensive study from 77 proven lung adenocarcinoma patients with CT images, EGFR and ALK receptor genotyping, and clinical information. Total 22/77 patients were receptor-positive (15 had only EGFR mutation, 6 had ALK mutation, and 1 had both EGFR and ALK mutation). Various morphological characteristics and metastatic distribution on CT were analyzed along with the clinical information. Univariate and multivariable logistic regression analyses were used. On multivariable logistic regression analysis, we found spiculated margin, lymphangitic spread, air bronchogram, pleural effusion, and distant metastasis had a significant predictive value for receptor mutation status. On univariate analysis, air bronchogram and pleural effusion had significant individual predictive value. Conclusions: Receptor positive lung cancer has characteristic imaging features compared with nonreceptor positive lung adenocarcinoma. Since CT is routinely used in lung cancer diagnosis, we can predict the receptor positivity by a noninvasive technique and would follow a more aggressive algorithm for evaluation of distant metastases as well as for the treatment.Keywords: lung cancer, multidisciplinary cancer care, oncologic imaging, radiobiology
Procedia PDF Downloads 1361896 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification
Authors: Ian Omung'a
Abstract:
Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision
Procedia PDF Downloads 931895 Tumor-Biological Characteristics of Invasive Lobular Carcinoma
Authors: Sabine Danzinger, Nora Hielscher, Miriam Izso, Johanna Metzler, Carmen Trinkl, Christian Pfeifer, Kristina Tendl-Schulz, Christian F. Singer
Abstract:
The objective of this study is to analyze the characteristics of invasive lobular carcinoma (ILC) compared with invasive ductal carcinoma (IDC) and to investigate the impact of histology on axillary lymph node (ALN) involvement in luminal A subtype tumors. Methods: We retrospectively analyzed patients diagnosed with ILC or IDC from 2012 to 2016 who underwent surgery. Patients constituted 493 primary early breast cancer cases (82 ILC; 411 IDC). Results: Compared with IDC, ILC tumors were significantly more likely to be grade 2, estrogen receptor- (ER) positive (þ), have a lower proliferation rate (Ki67 <14%), and a higher patholog- ical T stage (pT2–4). The luminal A subtype was significantly more common in ILC compared with IDC. In a multivariate regression model, grade 2, ERþ, progesterone receptor-positive, pT2, and pT3 were significantly associated with ILC. Additionally, with the luminal A subtype, ALN involvement (pathological node stage (pN)1–3) was significantly more frequent with ILC versus IDC. Conclusions: Our data suggests that grade 2, positive hormone receptor status, and higher pathological T stage are associated with ILC. With the luminal A subtype, ALN involvement was more frequent with ILC versus IDC.Keywords: breast cancer, lobular histology, tumor biology, hormone receptor, ki67
Procedia PDF Downloads 81894 Apoptosis Activity of Persea declinata (Bl.) Kosterm Bark Methanolic Crude Extract
Authors: P. Narrima, C. Y. Looi, M. A. Mohd, H. M. Ali
Abstract:
Persea declinata (Bl.) Kosterm is a member of the Lauraceae family, widely distributed in Southeast Asia. It is from the same genus with avocado (Persea americana Mill), which is widely consumed as food and for medicinal purposes. In the present study, we examined the anticancer properties of Persea declinata (Bl.) Kosterm bark methanolic crude extract (PDM). PDM exhibited a potent antiproliferative effect in MCF-7 human breast cancer cells, with an IC50 value of 16.68 µg/mL after 48h of treatment. We observed that PDM caused cell cycle arrest and subsequent apoptosis in MCF-7 cells, as exhibited by increased population at G0/G1 phase, higher lactate dehydrogenase (LDH) release, and DNA fragmentation. Mechanistic studies showed that PDM caused significant elevation in ROS production, leading to perturbation of mitochondrial membrane potential, cell permeability, and activation of caspases-3/7. On the other hand, real-time PCR and Western blot analysis showed that PDM treatment increased the expression of the proapoptotic molecule, Bax, but decreased the expression of prosurvival proteins, Bcl-2 and Bcl-xL, in a dose-dependent manner. These findings imply that PDM could inhibit proliferation in MCF-7 cells via cell cycle arrest and apoptosis induction, indicating its potential as a therapeutic agent worthy of further development.Keywords: antiproliferative, apoptosis, MCF-7 human breast cancer, Persea declinata
Procedia PDF Downloads 2431893 Binding Mechanism of Synthesized 5β-Dihydrocortisol and 5β-Dihydrocortisol Acetate with Human Serum Albumin to Understand Their Role in Breast Cancer
Authors: Monika Kallubai, Shreya Dubey, Rajagopal Subramanyam
Abstract:
Our study is all about the biological interactions of synthesized 5β-dihydrocortisol (Dhc) and 5β-dihydrocortisol acetate (DhcA) molecules with carrier protein Human Serum Albumin (HSA). The cytotoxic study was performed on breast cancer cell line (MCF-7) normal human embryonic kidney cell line (HEK293), the IC50 values for MCF-7 cells were 28 and 25 µM, respectively, whereas no toxicity in terms of cell viability was observed with HEK293 cell line. The further experiment proved that Dhc and DhcA induced 35.6% and 37.7% early apoptotic cells and 2.5%, 2.9% late apoptotic cells respectively. Morphological observation of cell death through TUNEL assay revealed that Dhc and DhcA induced apoptosis in MCF-7 cells. The complexes of HSA–Dhc and HSA–DhcA were observed as static quenching, and the binding constants (K) was 4.7±0.03×104 M-1 and 3.9±0.05×104 M-1, and their binding free energies were found to be -6.4 and -6.16 kcal/mol, respectively. The displacement studies confirmed that lidocaine 1.4±0.05×104 M-1 replaced Dhc, and phenylbutazone 1.5±0.05×104 M-1 replaced by DhcA, which explains domain I and domain II are the binding sites for Dhc and DhcA. Further, CD results revealed that the secondary structure of HSA was altered in the presence of Dhc and DhcA. Furthermore, the atomic force microscopy and transmission electron microscopy showed that the dimensions like height and molecular sizes of the HSA–Dhc and HSA–DhcA complex were larger compared to HSA alone. Detailed analysis through molecular dynamics simulations also supported the greater stability of HSA–Dhc and HSA–DhcA complexes, and root-mean-square-fluctuation interpreted the binding site of Dhc as domain IB and domain IIA for DhcA. This information is valuable for the further development of steroid derivatives with improved pharmacological significance as novel anti-cancer drugs.Keywords: apoptosis, dihydrocortisol, fluorescence quenching, protein conformations
Procedia PDF Downloads 1311892 Microencapsulation of Probiotic and Evaluation for Viability, Antimicrobial Property and Cytotoxic Activities of its Postbiotic Metabolites on MCF-7 Breast Cancer Cell Line
Authors: Nkechi V. Enwuru, Bullum Nkeki, Elizabeth A. Adekoya, Olumide A. Adebesin, Rebecca F. Peters, Victoria A. Aikhomu, Mendie E. U.
Abstract:
Background: Probiotics are live microbial feed supplement beneficial for host. Probiotics and their postbiotic products have been used to prevent or treat various health conditions. However, the products cell viability is often low due to harsh conditions subjected during processing, handling, storage, and gastrointestinal transit. These strongly influence probiotics’ benefits; thus, viability is essential for probiotics to produce health benefits for the host. Microencapsulation is a promising technique with considerable effects on probiotic survival. The study is aimed to formulate a microencapsulated probiotic and evaluate its viability, antimicrobial efficacy, and cytotoxic activity of its postbiotic on the MCF-7 breast cancer cell line. Method: Human and animal raw milk were sampled for lactic acid bacteria. The isolated bacteria were identified using conventional and VITEK 2 systems. The identified lactic acid bacterium was encapsulated using spray-dried and extrusion methods. The free, encapsulated, and chitosan-coated encapsulated probiotics were tested for viability in simulated-gastric intestinal (SGI) fluid and different storage conditions at refrigerated (4oC) and room (25oC) temperatures. The disintegration time and weight uniformity of the spray-dried hard gelatin capsules were tested. The antimicrobial property of free and encapsulated probiotics was tested against enteric pathogenic isolates from antiretroviral therapy (ART) treated HIV-positive patients. The postbiotic of the free cells was extracted, and its cytotoxic effect on the MCF-7 breast cancer cell line was tested through an MTT assay. Result: The Lactobacillus plantarum was isolated from animal raw milk. Zero-size hard gelatin L. plantarum capsules with granules within a size range of 0.71–1.00 mm diameter was formulated. The disintegration time ranges from 2.14±0.045 to 2.91±0.293 minutes, while the average weight is 502.1mg. Simulated gastric solution significantly affected viability of both free and microcapsules. However, the encapsulated cells were more protected and viable due to impermeability in the microcapsules. Furthermore, the viability of free cells stored at 4oC and 25oC were less than 4 log CFU/g and 6 log CFU/g respectively after 12 weeks. However, the microcapsules stored at 4oC achieved the highest viability among the free and microcapsules stored at 25oC and the free cells stored at 4oC. Encapsulated cells were released in the simulated gastric fluid, viable and effective against the enteric pathogens tested. However, chitosan-coated calcium alginate encapsulated probiotics significantly inhibited Shigella flexneri, Candida albicans, and Escherichia coli. The Postbiotic Metabolites (PM) of L. plantarum produced a cytotoxic effect on the MCF-7 breast cancer cell line. The postbiotic showed significant cytotoxic activity similar to 5FU, a standard antineoplastic agent. The inhibition concentration of 50% growth (IC50) of postbiotic metabolite K3 is low and consistent with the IC50 of the positive control (Cisplatin). Conclusions: Lactobacillus plantarum postbiotic exhibited a cytotoxic effect on the MCF-7 breast cancer cell line and could be used as combined adjuvant therapy in breast cancer management. The microencapsulation technique protects the probiotics, improving their viability and delivery to the gastrointestinal tract. Chitosan enhances antibacterial efficacy; thus, chitosan-coated microencapsulated L. plantarum probiotics could be more effective and used as a combined therapy in HIV management of opportunistic enteric infection.Keywords: probiotics, encapsulation, gastrointestinal conditions, antimicrobial effect, postbiotic, cytotoxicity effect
Procedia PDF Downloads 1231891 Up-regulation of KRT14 Promotes EMT in Basal Muscle-invasive Bladder Cancer through IGF2BP1/FTO Dependence on Methyladenosine-modified SNAI1
Authors: Shirui Huang, Wei Chen, Chuanshu Huang
Abstract:
Basal muscle-invasive bladder cancer (BMIBC) is considered one of the subtypes of BC with the highest metastatic rate and the poorest prognosis. Therefore, elucidating the mechanisms underlying BMIBC metastasis and identifying novel precision therapeutic targets are current research hotspots and challenges to cancer researchers. Through a series of in vitro and in vivo functional experiments, we have identified the crucial role of KRT14 in the high invasiveness and adverse prognosis of BMIBC. We found that the K294 site within the IGF2BP1-KH2 domain is responsible for reading the conserved genetic information carried by D226/E227 in the KRT14 nuclear export signal (NES). Activation of the KRT14-IGF2BP1 signaling axis is essential for IGF2BP1-mediated stabilization of SNAI1 mRNA through FTO modification. Additionally, IGF2BP1 forms a positive feedback loop by stabilizing its own mRNA, thereby accelerating the invasion and metastasis of BMIBC. Collectively, our study identifies the KRT14/IGF2BP1/FTO/Snail signaling axis as an essential regulatory mechanism associated with poor prognosis in BMIBC, providing a theoretical basis for KRT14 and its downstream regulated molecules as therapeutic targets for BMIBC and the development of corresponding targeted therapies.Keywords: BMIBC, KRT4, IFGF2BP1, DNA methylation
Procedia PDF Downloads 81890 Toward Understanding the Glucocorticoid Receptor Network in Cancer
Authors: Swati Srivastava, Mattia Lauriola, Yuval Gilad, Adi Kimchi, Yosef Yarden
Abstract:
The glucocorticoid receptor (GR) has been proposed to play important, but incompletely understood roles in cancer. Glucocorticoids (GCs) are widely used as co-medication of various carcinomas, due to their ability to reduce the toxicity of chemotherapy. Furthermore, GR antagonism has proven to be a strategy to treat triple negative breast cancer and castration-resistant prostate cancer. These observations suggest differential GR involvement in cancer subtypes. The goal of our study has been to elaborate the current understanding of GR signaling in tumor progression and metastasis. Our study involves two cellular models, non-tumorigenic breast epithelial cells (MCF10A) and Ewing sarcoma cells (CHLA9). In our breast cell model, the results indicated that the GR agonist dexamethasone inhibits EGF-induced mammary cell migration, and this effect was blocked when cells were stimulated with a GR antagonist, namely RU486. Microarray analysis for gene expression revealed that the mechanism underlying inhibition involves dexamenthasone-mediated repression of well-known activators of EGFR signaling, alongside with enhancement of several EGFR’s negative feedback loops. Because GR mainly acts primarily through composite response elements (GREs), or via a tethering mechanism, our next aim has been to find the transcription factors (TFs) which can interact with GR in MCF10A cells.The TF-binding motif overrepresented at the promoter of dexamethasone-regulated genes was predicted by using bioinformatics. To validate the prediction, we performed high-throughput Protein Complementation Assays (PCA). For this, we utilized the Gaussia Luciferase PCA strategy, which enabled analysis of protein-protein interactions between GR and predicted TFs of mammary cells. A library comprising both nuclear receptors (estrogen receptor, mineralocorticoid receptor, GR) and TFs was fused to fragments of GLuc, namely GLuc(1)-X, X-GLuc(1), and X-GLuc(2), where GLuc(1) and GLuc(2) correspond to the N-terminal and C-terminal fragments of the luciferase gene.The resulting library was screened, in human embryonic kidney 293T (HEK293T) cells, for all possible interactions between nuclear receptors and TFs. By screening all of the combinations between TFs and nuclear receptors, we identified several positive interactions, which were strengthened in response to dexamethasone and abolished in response to RU486. Furthermore, the interactions between GR and the candidate TFs were validated by co-immunoprecipitation in MCF10A and in CHLA9 cells. Currently, the roles played by the uncovered interactions are being evaluated in various cellular processes, such as cellular proliferation, migration, and invasion. In conclusion, our assay provides an unbiased network analysis between nuclear receptors and other TFs, which can lead to important insights into transcriptional regulation by nuclear receptors in various diseases, in this case of cancer.Keywords: epidermal growth factor, glucocorticoid receptor, protein complementation assay, transcription factor
Procedia PDF Downloads 2271889 Reliable Soup: Reliable-Driven Model Weight Fusion on Ultrasound Imaging Classification
Authors: Shuge Lei, Haonan Hu, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Yan Tong
Abstract:
It remains challenging to measure reliability from classification results from different machine learning models. This paper proposes a reliable soup optimization algorithm based on the model weight fusion algorithm Model Soup, aiming to improve reliability by using dual-channel reliability as the objective function to fuse a series of weights in the breast ultrasound classification models. Experimental results on breast ultrasound clinical datasets demonstrate that reliable soup significantly enhances the reliability of breast ultrasound image classification tasks. The effectiveness of the proposed approach was verified via multicenter trials. The results from five centers indicate that the reliability optimization algorithm can enhance the reliability of the breast ultrasound image classification model and exhibit low multicenter correlation.Keywords: breast ultrasound image classification, feature attribution, reliability assessment, reliability optimization
Procedia PDF Downloads 851888 Knowledge Level of Mothers in Wet Nursery and Breast Milk Banking
Authors: Seyda Can, Meryem Unulu
Abstract:
Objective: Breast milk is the most fundamental nutritional element for the healthy growth and development of newborns as they supply all the necessary components. Various obstacles such as diseases of mother and child, allergies of the baby, and insufficient breastmilk affect breast-feeding adversely. The wet nursery or breast milk banking is the most important source in providing the nutrients closest to the ideal for the newborn. Despite increasing opinions about its benefits, breast milk banking practice is controversial because of reasons such as ethical problems, traditional beliefs and attitudes, security concerns of families and lack of knowledge. It is thought that the results of this study will create the data for studies to raise the awareness of the society regarding wet nursery, and milk banks. Method: The study was planned and performed in descriptive type. The population of the study consists of mothers that gave birth between October-November 2017 in a public hospital in Turkey, and the sample consisted of 205 mothers chosen by improbable sampling method from the population and accepted to participate in the study. While gathering data, a survey consisting of 33 questions designed to determine the socio-demographic characteristics and their views on wet nursery and breast milk banking. Written ethical committee and institution permit was taken. Before the interview, participants were informed about the purpose and content of the study and oral permit was taken. Result: When the distribution of 205 mothers according to their individual characteristics, it was detected that their age average was 28,16±5,23 and 63,4 of mothers (n=130) had normal delivery. It was determined that clear majority of mothers, 75,6% (n=155) had no breast-feeding problems and 75,1% (n=154) fed the baby only with breast milk. It was detected that 18,5% (n=38) would accept a stranger to be a wet nurse and 60% (n=123) would donate milk if there is a breast milk bank. It was detected 33,2 % (n=68) of participant mothers want to make use of breast milk bank if there is a situation that prevents breast feeding, 38,5 % (n=79) of mothers think breast milk bank would be problematic religiously. Statistical difference was detected between the educational status of women and the rate of wanting breast milk bank practice. As the educational status of mothers increased, their rate of wanting breast milk bank practice increased. Conclusion: It is essential that every baby is breastfed by its mother primarily. However, when this is not possible, in order to implement wet nursery and breast milk banking as an extension of national breast-feeding policy, regulations need to be made and worries should be eased. Also, organizing training programs are also really important to raise awareness of the society and mothers.Keywords: breast feeding, breast milk, milk banks, wet nursery
Procedia PDF Downloads 167