Search results for: least square estimates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2285

Search results for: least square estimates

1895 A Comparison of TLD Measurements to MIRD Estimates of the Dose to the Ovaries and Uterus from Tc-99m in Liver

Authors: Karim Adinehvand, Bakhtiar Azadbakht, Amin Sahebnasagh

Abstract:

Relation to high absorption fraction of Tc SESTAMIBI by internal organs in heart scan, and these organs are near to generation organs (Ovaries and uterus). In this study, Liver is specified as source organ. Method: we have set amount of absorbed fraction radiopharmaceutical in position of Liver in RANDO-phantom in form of elliptical surfaces, then absorbed dose to ovaries and uterus measured by TLD-100 that had set at position of these organs in RANDO-phantom. Calculation had done by MIRD method. Results from direct measurement and MIRD method are too similar. The absorbed dose to uterus and ovaries for Rest are 26.05µGyMBq-1, 17.23µGyMBq-1 and for Stress are 2.04µGyMBq-1, 1.35µGyMBq-1 respectively.

Keywords: absorbed dose, TLD, MIRD, RANDO-phantom, Tc-99m

Procedia PDF Downloads 565
1894 The Impact of a Leadership Change on Individuals' Behaviour and Incentives: Evidence from the Top Tier Italian Football League

Authors: Kaori Narita, Juan de Dios Tena Horrillo, Claudio Detotto

Abstract:

Decisions on replacement of leaders are of significance and high prevalence in any organization, and concerns many of its stakeholders, whether it is a leader in a political party or a CEO of a firm, as indicated by high media coverage of such events. This merits an investigation into the consequences and implications of a leadership change on the performances and behavior of organizations and their workers. Sport economics provides a fruitful field to explore these issues due to the high frequencies of managerial changes in professional sports clubs and the transparency and regularity of observations of team performance and players’ abilities. Much of the existing research on managerial change focuses on how this affects the performance of an organization. However, there is scarcely attention paid to the consequences of such events on the behavior of individuals within the organization. Changes in behavior and attitudes of a group of workers due to a managerial change could be of great interest in management science, psychology, and operational research. On the other hand, these changes cannot be observed in the final outcome of the organization, as this is affected by many other unobserved shocks, for example, the stress level of workers with the need to deal with a difficult situation. To fill this gap, this study shows the first attempt to evaluate the impact of managerial change on players’ behaviors such as attack intensity, aggressiveness, and efforts. The data used in this study is from the top tier Italian football league (“Serie A”), where an average of 13 within season replacements of head coaches were observed over the period of seasons from 2000/2001 to 2017/18. The preliminary estimation employs Pooled Ordinary Least Square (POLS) and club-season Fixed Effect (FE) in order to assess the marginal effect of having a new manager on the number of shots, corners and red/yellow cards after controlling for a home-field advantage, ex ante abilities and current positions in the league of a team and their opponent. The results from this preliminary estimation suggest that the teams do not show a significant difference in their behaviors before and after the managerial change. To build on these preliminary results, other methods, including propensity score matching and non-linear model estimates, will be used. Moreover, the study will further investigate these issues by considering other measurements of attack intensity, aggressiveness, and efforts, such as possessions, a number of fouls and the athletic performance of players, respectively. Finally, the study is going to investigate whether these results vary over the characteristics of a new head coach, for example, their age and experience as a manager and a player. Thus far, this study suggests that certain behaviours of individuals in an organisation are not immediately affected by a change in leadership. To confirm this preliminary finding and lead to a more solid conclusion, further investigation will be conducted in the aforementioned manner, and the results will be elaborated in the conference.

Keywords: behaviour, effort, manager characteristics, managerial change, sport economics

Procedia PDF Downloads 134
1893 A Dynamic Spatial Panel Data Analysis on Renter-Occupied Multifamily Housing DC

Authors: Jose Funes, Jeff Sauer, Laixiang Sun

Abstract:

This research examines determinants of multifamily housing development and spillovers in the District of Columbia. A range of socioeconomic factors related to income distribution, productivity, and land use policies are thought to influence the development in contemporary U.S. multifamily housing markets. The analysis leverages data from the American Community Survey to construct panel datasets spanning from 2010 to 2019. Using spatial regression, we identify several socioeconomic measures and land use policies both positively and negatively associated with new housing supply. We contextualize housing estimates related to race in relation to uneven development in the contemporary D.C. housing supply.

Keywords: neighborhood effect, sorting, spatial spillovers, multifamily housing

Procedia PDF Downloads 101
1892 Design of a Standard Weather Data Acquisition Device for the Federal University of Technology, Akure Nigeria

Authors: Isaac Kayode Ogunlade

Abstract:

Data acquisition (DAQ) is the process by which physical phenomena from the real world are transformed into an electrical signal(s) that are measured and converted into a digital format for processing, analysis, and storage by a computer. The DAQ is designed using PIC18F4550 microcontroller, communicating with Personal Computer (PC) through USB (Universal Serial Bus). The research deployed initial knowledge of data acquisition system and embedded system to develop a weather data acquisition device using LM35 sensor to measure weather parameters and the use of Artificial Intelligence(Artificial Neural Network - ANN)and statistical approach(Autoregressive Integrated Moving Average – ARIMA) to predict precipitation (rainfall). The device is placed by a standard device in the Department of Meteorology, Federal University of Technology, Akure (FUTA) to know the performance evaluation of the device. Both devices (standard and designed) were subjected to 180 days with the same atmospheric condition for data mining (temperature, relative humidity, and pressure). The acquired data is trained in MATLAB R2012b environment using ANN, and ARIMAto predict precipitation (rainfall). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correction Square (R2), and Mean Percentage Error (MPE) was deplored as standardize evaluation to know the performance of the models in the prediction of precipitation. The results from the working of the developed device show that the device has an efficiency of 96% and is also compatible with Personal Computer (PC) and laptops. The simulation result for acquired data shows that ANN models precipitation (rainfall) prediction for two months (May and June 2017) revealed a disparity error of 1.59%; while ARIMA is 2.63%, respectively. The device will be useful in research, practical laboratories, and industrial environments.

Keywords: data acquisition system, design device, weather development, predict precipitation and (FUTA) standard device

Procedia PDF Downloads 91
1891 Robust ANOVA: An Illustrative Study in Horticultural Crop Research

Authors: Dinesh Inamadar, R. Venugopalan, K. Padmini

Abstract:

An attempt has been made in the present communication to elucidate the efficacy of robust ANOVA methods to analyze horticultural field experimental data in the presence of outliers. Results obtained fortify the use of robust ANOVA methods as there was substantiate reduction in error mean square, and hence the probability of committing Type I error, as compared to the regular approach.

Keywords: outliers, robust ANOVA, horticulture, cook distance, type I error

Procedia PDF Downloads 390
1890 In situ Real-Time Multivariate Analysis of Methanolysis Monitoring of Sunflower Oil Using FTIR

Authors: Pascal Mwenge, Tumisang Seodigeng

Abstract:

The combination of world population and the third industrial revolution led to high demand for fuels. On the other hand, the decrease of global fossil 8fuels deposits and the environmental air pollution caused by these fuels has compounded the challenges the world faces due to its need for energy. Therefore, new forms of environmentally friendly and renewable fuels such as biodiesel are needed. The primary analytical techniques for methanolysis yield monitoring have been chromatography and spectroscopy, these methods have been proven reliable but are more demanding, costly and do not provide real-time monitoring. In this work, the in situ monitoring of biodiesel from sunflower oil using FTIR (Fourier Transform Infrared) has been studied; the study was performed using EasyMax Mettler Toledo reactor equipped with a DiComp (Diamond) probe. The quantitative monitoring of methanolysis was performed by building a quantitative model with multivariate calibration using iC Quant module from iC IR 7.0 software. 15 samples of known concentrations were used for the modelling which were taken in duplicate for model calibration and cross-validation, data were pre-processed using mean centering and variance scale, spectrum math square root and solvent subtraction. These pre-processing methods improved the performance indexes from 7.98 to 0.0096, 11.2 to 3.41, 6.32 to 2.72, 0.9416 to 0.9999, RMSEC, RMSECV, RMSEP and R2Cum, respectively. The R2 value of 1 (training), 0.9918 (test), 0.9946 (cross-validation) indicated the fitness of the model built. The model was tested against univariate model; small discrepancies were observed at low concentration due to unmodelled intermediates but were quite close at concentrations above 18%. The software eliminated the complexity of the Partial Least Square (PLS) chemometrics. It was concluded that the model obtained could be used to monitor methanol of sunflower oil at industrial and lab scale.

Keywords: biodiesel, calibration, chemometrics, methanolysis, multivariate analysis, transesterification, FTIR

Procedia PDF Downloads 148
1889 Phasor Measurement Unit Based on Particle Filtering

Authors: Rithvik Reddy Adapa, Xin Wang

Abstract:

Phasor Measurement Units (PMUs) are very sophisticated measuring devices that find amplitude, phase and frequency of various voltages and currents in a power system. Particle filter is a state estimation technique that uses Bayesian inference. Particle filters are widely used in pose estimation and indoor navigation and are very reliable. This paper studies and compares four different particle filters as PMUs namely, generic particle filter (GPF), genetic algorithm particle filter (GAPF), particle swarm optimization particle filter (PSOPF) and adaptive particle filter (APF). Two different test signals are used to test the performance of the filters in terms of responsiveness and correctness of the estimates.

Keywords: phasor measurement unit, particle filter, genetic algorithm, particle swarm optimisation, state estimation

Procedia PDF Downloads 8
1888 A Multi Function Myocontroller for Upper Limb Prostheses

Authors: Ayad Asaad Ibrahim

Abstract:

Myoelectrically controlled prostheses are becoming more and more popular, for below-elbow amputation, the wrist flexor and extensor muscle group, while for above-elbow biceps and triceps brachii muscles are used for control of the prosthesis. A two site multi-function controller is presented. Two stainless steel bipolar electrode pairs are used to monitor the activities in both muscles. The detected signals are processed by new pre-whitening technique to identify the accurate tension estimation in these muscles. These estimates will activate the relevant prosthesis control signal, with a time constant of 200 msec. It is ensured that the tension states in the control muscle to activate a particular prosthesis function are similar to those used to activate normal functions in the natural hand. This facilitates easier training.

Keywords: prosthesis, biosignal processing, pre-whitening, myoelectric controller

Procedia PDF Downloads 363
1887 Valuing Cultural Ecosystem Services of Natural Treatment Systems Using Crowdsourced Data

Authors: Andrea Ghermandi

Abstract:

Natural treatment systems such as constructed wetlands and waste stabilization ponds are increasingly used to treat water and wastewater from a variety of sources, including stormwater and polluted surface water. The provision of ancillary benefits in the form of cultural ecosystem services makes these systems unique among water and wastewater treatment technologies and greatly contributes to determine their potential role in promoting sustainable water management practices. A quantitative analysis of these benefits, however, has been lacking in the literature. Here, a critical assessment of the recreational and educational benefits in natural treatment systems is provided, which combines observed public use from a survey of managers and operators with estimated public use as obtained using geotagged photos from social media as a proxy for visitation rates. Geographic Information Systems (GIS) are used to characterize the spatial boundaries of 273 natural treatment systems worldwide. Such boundaries are used as input for the Application Program Interfaces (APIs) of two popular photo-sharing websites (Flickr and Panoramio) in order to derive the number of photo-user-days, i.e., the number of yearly visits by individual photo users in each site. The adequateness and predictive power of four univariate calibration models using the crowdsourced data as a proxy for visitation are evaluated. A high correlation is found between photo-user-days and observed annual visitors (Pearson's r = 0.811; p-value < 0.001; N = 62). Standardized Major Axis (SMA) regression is found to outperform Ordinary Least Squares regression and count data models in terms of predictive power insofar as standard verification statistics – such as the root mean square error of prediction (RMSEP), the mean absolute error of prediction (MAEP), the reduction of error (RE), and the coefficient of efficiency (CE) – are concerned. The SMA regression model is used to estimate the intensity of public use in all 273 natural treatment systems. System type, influent water quality, and area are found to statistically affect public use, consistently with a priori expectations. Publicly available information regarding the home location of the sampled visitors is derived from their social media profiles and used to infer the distance they are willing to travel to visit the natural treatment systems in the database. Such information is analyzed using the travel cost method to derive monetary estimates of the recreational benefits of the investigated natural treatment systems. Overall, the findings confirm the opportunities arising from an integrated design and management of natural treatment systems, which combines the objectives of water quality enhancement and provision of cultural ecosystem services through public use in a multi-functional approach and compatibly with the need to protect public health.

Keywords: constructed wetlands, cultural ecosystem services, ecological engineering, waste stabilization ponds

Procedia PDF Downloads 180
1886 Design of Permanent Sensor Fault Tolerance Algorithms by Sliding Mode Observer for Smart Hybrid Powerpack

Authors: Sungsik Jo, Hyeonwoo Kim, Iksu Choi, Hunmo Kim

Abstract:

In the SHP, LVDT sensor is for detecting the length changes of the EHA output, and the thrust of the EHA is controlled by the pressure sensor. Sensor is possible to cause hardware fault by internal problem or external disturbance. The EHA of SHP is able to be uncontrollable due to control by feedback from uncertain information, on this paper; the sliding mode observer algorithm estimates the original sensor output information in permanent sensor fault. The proposed algorithm shows performance to recovery fault of disconnection and short circuit basically, also the algorithm detect various of sensor fault mode.

Keywords: smart hybrid powerpack (SHP), electro hydraulic actuator (EHA), permanent sensor fault tolerance, sliding mode observer (SMO), graphic user interface (GUI)

Procedia PDF Downloads 548
1885 Welfare Dynamics and Food Prices' Changes: Evidence from Landholding Groups in Rural Pakistan

Authors: Lubna Naz, Munir Ahmad, G. M. Arif

Abstract:

This study analyzes static and dynamic welfare impacts of food price changes for various landholding groups in Pakistan. The study uses three classifications of land ownership, landless, small landowners and large landowners, for analysis. The study uses Panel Survey, Pakistan Rural Household Survey (PRHS) of Pakistan Institute of Development Economics Islamabad, of rural households from two largest provinces (Sindh and Punjab) of Pakistan. The study uses all three waves (2001, 2004 and 2010) of PRHS. This research work makes three important contributions in literature. First, this study uses Quadratic Almost Ideal Demand System (QUAIDS) to estimate demand functions for eight food groups-cereals, meat, milk and milk products, vegetables, cooking oil, pulses and other food. The study estimates food demand functions with Nonlinear Seemingly Unrelated (NLSUR), and employs Lagrange Multiplier and test on the coefficient of squared expenditure term to determine inclusion of squared expenditure term. Test results support the inclusion of squared expenditure term in the food demand model for each of landholding groups (landless, small landowners and large landowners). This study tests for endogeneity and uses control function for its correction. The problem of observed zero expenditure is dealt with a two-step procedure. Second, it creates low price and high price periods, based on literature review. It uses elasticity coefficients from QUAIDS to analyze static and dynamic welfare effects (first and second order Tylor approximation of expenditure function is used) of food price changes across periods. The study estimates compensation variation (CV), money metric loss from food price changes, for landless, small and large landowners. Third, this study compares the findings on welfare implications of food price changes based on QUAIDS with the earlier research in Pakistan, which used other specification of the demand system. The findings indicate that dynamic welfare impacts of food price changes are lower as compared to static welfare impacts for all landholding groups. The static and dynamic welfare impacts of food price changes are highest for landless. The study suggests that government should extend social security nets to landless poor and categorically to vulnerable landless (without livestock) to redress the short-term impact of food price increase. In addition, the government should stabilize food prices and particularly cereal prices in the long- run.

Keywords: QUAIDS, Lagrange multiplier, NLSUR, and Tylor approximation

Procedia PDF Downloads 364
1884 Determinants of Domestic Violence among Married Women Aged 15-49 Years in Sierra Leone by an Intimate Partner: A Cross-Sectional Study

Authors: Tesfaldet Mekonnen Estifanos, Chen Hui, Afewerki Weldezgi

Abstract:

Background: Intimate partner violence (hereafter IPV) is a major global public health challenge that tortures and disables women in the place where they are ought to be most secure within their own families. The fact that the family unit is commonly viewed as a private circle, violent acts towards women remains undermined. There are limited research and knowledge about the influencing factors linked to IPV in Sierra Leone. This study, therefore, estimates the prevalence rate and the predicting factors associated with IPV. Methods: Data were taken from Sierra-Leone Demographic and Health Survey (SDHS, 2013): the first in its form to incorporate information on domestic violence. Multistage cluster sampling research design was used, and information was gathered by a standard questionnaire. A total of 5185 respondents selected were interviewed, out of whom 870 were never been in union, thus excluded. To analyze the two dependent variables: experience of IPV, ‘ever’ and 'last 12 months prior to the survey', a total of 4315 (currently or formerly married) and 4029 women (currently in union) were included respectively. These dependent variables were constructed from the three forms of violence namely physical, emotional and sexual. Data analysis was applied using SPSS version 23, comprising three-step process. First, descriptive statistics were used to show the frequency distribution of both the outcome and explanatory variables. Second, bivariate analysis adopting chi-square test was applied to assess the individual relationship between the outcome and explanatory variables. Third, multivariate logistic regression analysis was undertaken using hierarchical modeling strategy to identify the influence of the explanatory variables on the outcome variables. Odds ratio (OR) and 95% confidence interval (CI) were utilized to examine the association of the variables considering p-values less than 0.05 statistically significant. Results: The prevalence of lifetime IPV among ever married women was 48.4%, while 39.8% of those currently married experienced IPV in the previous year preceding the survey. Women having 1 to 4 and more than 5 number of ever born babies were almost certain to encounter lifetime IPV. However, women who own a property, and those who referenced 3-5 reasons for which wife-beating is acceptable were less probably to experience lifetime IPV. Attesting parental violence, partner’s dominant marital behavior, and women afraid of their partner were the variables related to both experience of IPV ‘ever’ and ‘the previous year prior to the survey’. Respondents who concur that wife-beating is sensible in certain situations and occupations under the professional category had diminished chances of revealing IPV in the year prior to the data collection. Conclusion: This study indicated that factors significantly correlated with IPV in Sierra-Leone are mostly linked with husband related factors specifically, marital controlling behaviors. Addressing IPV in Sierra-Leone requires joint efforts that target men raise awareness to address controlling behavior and empower security in affiliations.

Keywords: husband behavior, married women, partner violence, Sierra Leone

Procedia PDF Downloads 132
1883 A Nonlocal Means Algorithm for Poisson Denoising Based on Information Geometry

Authors: Dongxu Chen, Yipeng Li

Abstract:

This paper presents an information geometry NonlocalMeans(NLM) algorithm for Poisson denoising. NLM estimates a noise-free pixel as a weighted average of image pixels, where each pixel is weighted according to the similarity between image patches in Euclidean space. In this work, every pixel is a Poisson distribution locally estimated by Maximum Likelihood (ML), all distributions consist of a statistical manifold. A NLM denoising algorithm is conducted on the statistical manifold where Fisher information matrix can be used for computing distribution geodesics referenced as the similarity between patches. This approach was demonstrated to be competitive with related state-of-the-art methods.

Keywords: image denoising, Poisson noise, information geometry, nonlocal-means

Procedia PDF Downloads 285
1882 6D Posture Estimation of Road Vehicles from Color Images

Authors: Yoshimoto Kurihara, Tad Gonsalves

Abstract:

Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.

Keywords: 6D posture estimation, image recognition, deep learning, AlexNet

Procedia PDF Downloads 155
1881 Economic Valuation of Emissions from Mobile Sources in the Urban Environment of Bogotá

Authors: Dayron Camilo Bermudez Mendoza

Abstract:

Road transportation is a significant source of externalities, notably in terms of environmental degradation and the emission of pollutants. These emissions adversely affect public health, attributable to criteria pollutants like particulate matter (PM2.5 and PM10) and carbon monoxide (CO), and also contribute to climate change through the release of greenhouse gases, such as carbon dioxide (CO2). It is, therefore, crucial to quantify the emissions from mobile sources and develop a methodological framework for their economic valuation, aiding in the assessment of associated costs and informing policy decisions. The forthcoming congress will shed light on the externalities of transportation in Bogotá, showcasing methodologies and findings from the construction of emission inventories and their spatial analysis within the city. This research focuses on the economic valuation of emissions from mobile sources in Bogotá, employing methods like hedonic pricing and contingent valuation. Conducted within the urban confines of Bogotá, the study leverages demographic, transportation, and emission data sourced from the Mobility Survey, official emission inventories, and tailored estimates and measurements. The use of hedonic pricing and contingent valuation methodologies facilitates the estimation of the influence of transportation emissions on real estate values and gauges the willingness of Bogotá's residents to invest in reducing these emissions. The findings are anticipated to be instrumental in the formulation and execution of public policies aimed at emission reduction and air quality enhancement. In compiling the emission inventory, innovative data sources were identified to determine activity factors, including information from automotive diagnostic centers and used vehicle sales websites. The COPERT model was utilized to ascertain emission factors, requiring diverse inputs such as data from the national transit registry (RUNT), OpenStreetMap road network details, climatological data from the IDEAM portal, and Google API for speed analysis. Spatial disaggregation employed GIS tools and publicly available official spatial data. The development of the valuation methodology involved an exhaustive systematic review, utilizing platforms like the EVRI (Environmental Valuation Reference Inventory) portal and other relevant sources. The contingent valuation method was implemented via surveys in various public settings across the city, using a referendum-style approach for a sample of 400 residents. For the hedonic price valuation, an extensive database was developed, integrating data from several official sources and basing analyses on the per-square meter property values in each city block. The upcoming conference anticipates the presentation and publication of these results, embodying a multidisciplinary knowledge integration and culminating in a master's thesis.

Keywords: economic valuation, transport economics, pollutant emissions, urban transportation, sustainable mobility

Procedia PDF Downloads 57
1880 Formal Institutions and Women's Electoral Participation in Four European Countries

Authors: Sophia Francesca D. Lu

Abstract:

This research tried to produce evidence that formal institutions, such as electoral and internal party quotas, can advance women’s active roles in the public sphere using the cases of four European countries: Belgium, Germany, Italy, and the Netherlands. The quantitative dataset was provided by the University of Chicago and the Inter-University Consortium of Political and Social Research based on a two-year study (2008-2010) of political parties. Belgium engages in constitutionally mandated electoral quotas. Germany, Italy and the Netherlands, on the other hand, have internal party quotas, which are voluntarily adopted by political parties. In analyzing each country’s chi-square and Pearson’s r correlation, Belgium, having an electoral quota, is the only country that was analyzed for electoral quotas. Germany, Italy and the Netherlands’ internal voluntary party quotas were correlated with women’s descriptive representations. Using chi-square analysis, this study showed that the presence of electoral quotas is correlated with an increase in the percentage of women in decision-making bodies as well as with an increase in the percentage of women in decision-making bodies. Likewise, using correlational analysis, a higher number of political parties employing internal party voluntary quotas is correlated with an increase in the percentage of women occupying seats in parliament as well as an increase in the percentage of women nominees in electoral lists of political parties. In conclusion, gender quotas, such as electoral quotas or internal party quotas, are an effective policy tool for greater women’s representation in political bodies. Political parties and governments should opt to have gender quotas, whether electoral or internal party quotas, to address the underrepresentation of women in parliament, decision-making bodies, and policy-formulation.

Keywords: electoral quota, Europe, formal institutions, institutional feminism, internal party quota, women’s electoral participation

Procedia PDF Downloads 429
1879 Abandoned Mine Methane Mitigation in the United States

Authors: Jerome Blackman, Pamela Franklin, Volha Roshchanka

Abstract:

The US coal mining sector accounts for 6% of total US Methane emissions (2021). 60% of US coal mining methane emissions come from active underground mine ventilation systems. Abandoned mines contribute about 13% of methane emissions from coal mining. While there are thousands of abandoned underground coal mines in the US, the Environmental Protection Agency (EPA) estimates that fewer than 100 have sufficient methane resources for viable methane recovery and use projects. Many abandoned mines are in remote areas far from potential energy customers and may be flooded, further complicating methane recovery. Because these mines are no longer active, recovery projects can be simpler to implement.

Keywords: abandoned mines, coal mine methane, coal mining, methane emissions, methane mitigation, recovery and use

Procedia PDF Downloads 78
1878 Estimation of Sediment Transport into a Reservoir Dam

Authors: Kiyoumars Roushangar, Saeid Sadaghian

Abstract:

Although accurate sediment load prediction is very important in planning, designing, operating and maintenance of water resources structures, the transport mechanism is complex, and the deterministic transport models are based on simplifying assumptions often lead to large prediction errors. In this research, firstly, two intelligent ANN methods, Radial Basis and General Regression Neural Networks, are adopted to model of total sediment load transport into Madani Dam reservoir (north of Iran) using the measured data and then applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang, and Toffaleti for predicting of sediment load discharge are evaluated. Based on comparison of the results, it is found that the GRNN model gives better estimates than the sediment rating curve and mentioned classic methods.

Keywords: sediment transport, dam reservoir, RBF, GRNN, prediction

Procedia PDF Downloads 496
1877 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation

Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang

Abstract:

Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.

Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation

Procedia PDF Downloads 68
1876 The Impact of Board Characteristics on Firm Performance: Evidence from Banking Industry in India

Authors: Manmeet Kaur, Madhu Vij

Abstract:

The Board of Directors in a firm performs the primary role of an internal control mechanism. This Study seeks to understand the relationship between internal governance and performance of banks in India. The research paper investigates the effect of board structure (proportion of nonexecutive directors, gender diversity, board size and meetings per year) on the firm performance. This paper evaluates the impact of corporate governance mechanisms on bank’s financial performance using panel data for 28 listed banks in National Stock Exchange of India for the period of 2008-2014. Returns on Asset, Return on Equity, Tobin’s Q and Net Interest Margin were used as the financial performance indicators. To estimate the relationship among governance and bank performance initially the Study uses Pooled Ordinary Least Square (OLS) Estimation and Generalized Least Square (GLS) Estimation. Then a well-developed panel Generalized Method of Moments (GMM) Estimator is developed to investigate the dynamic nature of performance and governance relationship. The Study empirically confirms that two-step system GMM approach controls the problem of unobserved heterogeneity and endogeneity as compared to the OLS and GLS approach. The result suggests that banks with small board, boards with female members, and boards that meet more frequently tend to be more efficient and subsequently have a positive impact on performance of banks. The study offers insights to policy makers interested in enhancing the quality of governance of banks in India. Also, the findings suggest that board structure plays a vital role in the improvement of corporate governance mechanism for financial institutions. There is a need to have efficient boards in banks to improve the overall health of the financial institutions and the economic development of the country.

Keywords: board of directors, corporate governance, GMM estimation, Indian banking

Procedia PDF Downloads 260
1875 Advertising Incentives of National Brands against Private Labels: The Case of OTC Heartburn Drugs

Authors: Lu Liao

Abstract:

The worldwide expansion of private labels over the past two decades not only transformed the choice sets of consumers but also forced manufacturers of national brands to design new marketing strategies to maintain their market positions. This paper empirically analyzes the impact of private labels on advertising incentives of national brands. The paper first develops a consumer demand model that incorporates spillover effects of advertising and finds positive spillovers of national brands’ advertising on demand for private label products. With the demand estimates, the researcher simulates the equilibrium prices and advertising levels for leading national brands in a counterfactual where private labels are eliminated to quantify the changes in national brands’ advertising incentives in response to the rise of private labels.

Keywords: advertising, demand estimation, spillover effect, structural model

Procedia PDF Downloads 23
1874 Financial Regulations and Insolvency Risk: Empirical Evidence from Commercial Banks of Pakistan

Authors: Shumaila Zeb

Abstract:

The proposed study aims to investigate insolvency risk of commercial banks of Pakistan. Furthermore, it empirically estimates the effect of already implemented financial regulations on the insolvency risk of banks. To carry out the empirical analysis, a balanced bank-level panel data covering the period 2008-2016 is used. The Z-score is used for calculating the insolvency risk of each bank. The panel regression is used to investigate the relationship between financial regulations and insolvency risk of banks. The empirics reveal that the financial regulations enforced by State Bank of Pakistan have significant impacts on the insolvency risk of banks. The results further indicate that loan ratio and reserve ratio are positively and significantly related to the insolvency risk of banks.

Keywords: insolvency risk, Z-score, financial regulations, banks

Procedia PDF Downloads 198
1873 Investigation of Scaling Laws for Stiffness and strength in Bioinspired Glass Sponge Structures Produced by Fused Filament Fabrication

Authors: Hassan Beigi Rizi, Harold Auradou, Lamine Hattali

Abstract:

Various industries, including civil engineering, automotive, aerospace, and biomedical fields, are currently seeking novel and innovative high-performance lightweight materials to reduce energy consumption. Inspired by the structure of Euplectella Aspergillum Glass Sponges (EA-sponge), 2D unit cells were created and fabricated using a Fused Filament Fabrication (FFF) process with Polylactic acid (PLA) filaments. The stiffness and strength of bio-inspired EA-sponge lattices were investigated both experimentally and numerically under uniaxial tensile loading and are compared to three standard square lattices with diagonal struts (Designs B and C) and non-diagonal struts (Design D) reinforcements. The aim is to establish predictive scaling laws models and examine the deformation mechanisms involved. The results indicated that for the EA-sponge structure, the relative moduli and yield strength scaled linearly with relative density, suggesting that the deformation mechanism is stretching-dominated. The Finite element analysis (FEA), with periodic boundary conditions for volumetric homogenization, confirms these trends and goes beyond the experimental limits imposed by the FFF printing process. Therefore, the stretching-dominated behavior, investigated from 0.1 to 0.5 relative density, demonstrate that the study of EA-sponge structure can be exploited for the realization of square lattice topologies that are stiff and strong and have attractive potential for lightweight structural applications. However, the FFF process introduces an accuracy limitation, with approximately 10% error, making it challenging to print structures with a relative density below 0.2. Future work could focus on exploring the impact of different printing materials on the performance of EA-sponge structures.

Keywords: bio-inspiration, lattice structures, fused filament fabrication, scaling laws

Procedia PDF Downloads 5
1872 Status of Alien Invasive Trees on the Grassland Plateau in Nyika National Park

Authors: Andrew Kanzunguze, Sopani Sichinga, Paston Simkoko, George Nxumayo, Cosmas, V. B. Dambo

Abstract:

Early detection of plant invasions is a necessary prerequisite for effective invasive plant management in protected areas. This study was conducted to determine the distribution and abundance of alien invasive trees in Nyika National Park (NNP). Data on species' presence and abundance were collected from belt transects (n=31) in a 100 square kilometer area on the central plateau. The data were tested for normality using the Shapiro-Wilk test; Mann-Whitney test was carried out to compare frequencies and abundances between the species, and geographical information systems were used for spatial analyses. Results revealed that Black Wattle (Acacia mearnsii), Mexican Pine (Pinus patula) and Himalayan Raspberry (Rubus ellipticus) were the main alien invasive trees on the plateau. A. mearnsii was localized in the areas where it was first introduced, whereas P. patula and R. ellipticus were spread out beyond original points of introduction. R. ellipticus occurred as dense, extensive (up to 50 meters) thickets on the margins of forest patches and pine stands, whilst P. patula trees were frequent in the valleys, occurring most densely (up to 39 stems per 100 square meters) south-west of Chelinda camp on the central plateau with high variation in tree heights. Additionally, there were no significant differences in abundance between R. ellipticus (48) and P. patula (48) in the study area (p > 0.05) It was concluded that R. ellipticus and P. patula require more attention as compared to A. mearnsii. Howbeit, further studies into the invasion ecology of both P. patula and R. ellipticus on the Nyika plateau are highly recommended so as to assess the threat posed by the species on biodiversity, and recommend appropriate conservation measures in the national park.

Keywords: alien-invasive trees, Himalayan raspberry, Nyika National Park, Mexican pine

Procedia PDF Downloads 204
1871 Work Related and Psychosocial Risk Factors for Musculoskeletal Disorders among Workers in an Automated flexible Assembly Line in India

Authors: Rohin Rameswarapu, Sameer Valsangkar

Abstract:

Background: Globally, musculoskeletal disorders are the largest single cause of work-related illnesses accounting for over 33% of all newly reported occupational illnesses. Risk factors for MSD need to be delineated to suggest means for amelioration. Material and methods: In this current cross-sectional study, the prevalence of MSDs among workers in an electrical company assembly line, the socio-demographic and job characteristics associated with MSD were obtained through a semi-structured questionnaire. A quantitative assessment of the physical risk factors through the Rapid Upper Limb Assessment (RULA) tool, and measurement of psychosocial risk factors through a Likert scale was obtained. Statistical analysis was conducted using Epi-info software and descriptive and inferential statistics including chi-square and unpaired t test were obtained. Results: A total of 263 workers consented and participated in the study. Among these workers, 200 (76%) suffered from MSD. Most of the workers were aged between 18–27 years and majority of the workers were women with 198 (75.2%) of the 263 workers being women. A chi square test was significant for association between male gender and MSD with a P value of 0.007. Among the MSD positive group, 4 (2%) had a grand score of 5, 10 (5%) had a grand score of 6 and 186 (93%) had a grand score of 7 on RULA. There were significant differences between the non-MSD and MSD group on five out of the seven psychosocial domains, namely job demand, job monotony, co-worker support, decision control and family and environment domains. Discussion: The current cross-sectional study demonstrates a high prevalence of MSD among assembly line works with inherent physical and psychosocial risk factors and recommends that not only physical risk factors, addressing psychosocial risk factors through proper ergonomic means is also essential to the well-being of the employee.

Keywords: musculoskeletal disorders, India, occupational health, Rapid Upper Limb Assessment (RULA)

Procedia PDF Downloads 349
1870 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors

Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff

Abstract:

Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.

Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns

Procedia PDF Downloads 155
1869 Seasonal Variability of M₂ Internal Tides Energetics in the Western Bay of Bengal

Authors: A. D. Rao, Sachiko Mohanty

Abstract:

The Internal Waves (IWs) are generated by the flow of barotropic tide over the rapidly varying and steep topographic features like continental shelf slope, subsurface ridges, and the seamounts, etc. The IWs of the tidal frequency are generally known as internal tides. These waves have a significant influence on the vertical density and hence causes mixing in the region. Such waves are also important in submarine acoustics, underwater navigation, offshore structures, ocean mixing and biogeochemical processes, etc. over the shelf-slope region. The seasonal variability of internal tides in the Bay of Bengal with special emphasis on its energetics is examined by using three-dimensional MITgcm model. The numerical simulations are performed for different periods covering August-September, 2013; November-December, 2013 and March-April, 2014 representing monsoon, post-monsoon and pre-monsoon seasons respectively during which high temporal resolution in-situ data sets are available. The model is initially validated through the spectral estimates of density and the baroclinic velocities. From the estimates, it is inferred that the internal tides associated with semi-diurnal frequency are more dominant in both observations and model simulations for November-December and March-April. However, in August, the estimate is found to be maximum near-inertial frequency at all the available depths. The observed vertical structure of the baroclinic velocities and its magnitude are found to be well captured by the model. EOF analysis is performed to decompose the zonal and meridional baroclinic tidal currents into different vertical modes. The analysis suggests that about 70-80% of the total variance comes from Mode-1 semi-diurnal internal tide in both observations as well as in the model simulations. The first three modes are sufficient to describe most of the variability for semidiurnal internal tides, as they represent 90-95% of the total variance for all the seasons. The phase speed, group speed, and wavelength are found to be maximum for post-monsoon season compared to other two seasons. The model simulation suggests that the internal tide is generated all along the shelf-slope regions and propagate away from the generation sites in all the months. The model simulated energy dissipation rate infers that its maximum occurs at the generation sites and hence the local mixing due to internal tide is maximum at these sites. The spatial distribution of available potential energy is found to be maximum in November (20kg/m²) in northern BoB and minimum in August (14kg/m²). The detailed energy budget calculation are made for all the seasons and results are analysed.

Keywords: available potential energy, baroclinic energy flux, internal tides, Bay of Bengal

Procedia PDF Downloads 170
1868 Risk, Capital Buffers, and Bank Lending: The Adjustment of Euro Area Banks

Authors: Laurent Maurin, Mervi Toivanen

Abstract:

This paper estimates euro area banks’ internal target capital ratios and investigates whether banks’ adjustment to the targets have an impact on credit supply and holding of securities during the financial crisis in 2005-2011. Using data on listed banks and country-specific macro-variables a partial adjustment model is estimated in a panel context. The results indicate, firstly, that an increase in the riskiness of banks’ balance sheets influences positively on the target capital ratios. Secondly, the adjustment towards higher equilibrium capital ratios has a significant impact on banks’ assets. The impact is found to be more size-able on security holdings than on loans, thereby suggesting a pecking order.

Keywords: Euro area, capital ratios, credit supply, partial adjustment model

Procedia PDF Downloads 448
1867 Dynamic Modelling of Hepatitis B Patient Using Sihar Model

Authors: Alakija Temitope Olufunmilayo, Akinyemi, Yagba Joy

Abstract:

Hepatitis is the inflammation of the liver tissue that can cause whiteness of the eyes (Jaundice), lack of appetite, vomiting, tiredness, abdominal pain, diarrhea. Hepatitis is acute if it resolves within 6 months and chronic if it last longer than 6 months. Acute hepatitis can resolve on its own, lead to chronic hepatitis or rarely result in acute liver failure. Chronic hepatitis may lead to scarring of the liver (Cirrhosis), liver failure and liver cancer. Modelling Hepatitis B may become necessary in order to reduce its spread. So, dynamic SIR model can be used. This model consists of a system of three coupled non-linear ordinary differential equation which does not have an explicit formula solution. It is an epidemiological model used to predict the dynamics of infectious disease by categorizing the population into three possible compartments. In this study, a five-compartment dynamic model of Hepatitis B disease was proposed and developed by adding control measure of sensitizing the public called awareness. All the mathematical and statistical formulation of the model, especially the general equilibrium of the model, was derived, including the nonlinear least square estimators. The initial parameters of the model were derived using nonlinear least square embedded in R code. The result study shows that the proportion of Hepatitis B patient in the study population is 1.4 per 1,000,000 populations. The estimated Hepatitis B induced death rate is 0.0108, meaning that 1.08% of the infected individuals die of the disease. The reproduction number of Hepatitis B diseases in Nigeria is 6.0, meaning that one individual can infect more than 6.0 people. The effect of sensitizing the public on the basic reproduction number is significant as the reproduction number is reduced. The study therefore recommends that programme should be designed by government and non-governmental organization to sensitize the entire Nigeria population in order to reduce cases of Hepatitis B disease among the citizens.

Keywords: hepatitis B, modelling, non-linear ordinary differential equation, sihar model, sensitization

Procedia PDF Downloads 89
1866 Testing the Validity of Feldstein-Horioka Puzzle in BRICS Countries

Authors: Teboho J. Mosikari, Johannes T. Tsoku, Diteboho L. Xaba

Abstract:

The increase of capital mobility across emerging economies has become an interesting topic for many economic policy makers. The current study tests the validity of Feldstein–Horioka puzzle for 5 BRICS countries. The sample period of the study runs from 2001 to 2014. The study uses the following parameter estimates well known as the Fully Modified OLS (FMOLS), and Dynamic OLS (DOLS). The results of the study show that investment and savings are cointegrated in the long run. The parameters estimated using FMOLS and DOLS are 0.85 and 0.74, respectively. These results imply that policy makers within BRICS countries have to consider flexible monetary and fiscal policy instruments to influence the mobility of capital with the bloc.

Keywords: Feldstein and Horioka puzzle, saving and investment, panel models, BRICS countries

Procedia PDF Downloads 259