Search results for: gate decomposition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 867

Search results for: gate decomposition

477 Etude 3D Quantum Numerical Simulation of Performance in the HEMT

Authors: A. Boursali, A. Guen-Bouazza

Abstract:

We present a simulation of a HEMT (high electron mobility transistor) structure with and without a field plate. We extract the device characteristics through the analysis of DC, AC and high frequency regimes, as shown in this paper. This work demonstrates the optimal device with a gate length of 15 nm, InAlN/GaN heterostructure and field plate structure, making it superior to modern HEMTs when compared with otherwise equivalent devices. This improves the ability to bear the burden of the current density passes in the channel. We have demonstrated an excellent current density, as high as 2.05 A/m, a peak extrinsic transconductance of 0.59S/m at VDS=2 V, and cutting frequency cutoffs of 638 GHz in the first HEMT and 463 GHz for Field plate HEMT., maximum frequency of 1.7 THz, maximum efficiency of 73%, maximum breakdown voltage of 400 V, leakage current density IFuite=1 x 10-26 A, DIBL=33.52 mV/V and an ON/OFF current density ratio higher than 1 x 1010. These values were determined through the simulation by deriving genetic and Monte Carlo algorithms that optimize the design and the future of this technology.

Keywords: HEMT, silvaco, field plate, genetic algorithm, quantum

Procedia PDF Downloads 335
476 Percentages of Alumina Phase and Different Ph on The Ha- Al2o3 Nano Composite

Authors: S. Tayyebi, F. Mirjalili, H. Samadi, A. Nemati

Abstract:

In this study, hydroxyapatite-Alumina nano composite powder, containing 15,20 and 25% weight percent of reinforced alumina were prepared by chemical precipitation from the reaction between calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate with ratio of Ca / p = 1.67 and different percentage of aluminum nitrate nona hydrate in different pH of 9,10 and 11. The microstructure and thermal stability of samples were measured by X-ray diffraction (XRD), infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The results showed that the presence of reinforced alumina phase reduced the degree of crystallinity of hydroxyapatite phase and increased its decomposition to tricalcium phosphate phase. Microstructural analysis showed that the hydroxyapatite-alumina nano composite powder was obtained with spherical shape and size of less than 100 nm.

Keywords: biomaterial, hydroxyapatite, alumina, nano composite, precipitation method

Procedia PDF Downloads 520
475 3D Quantum Simulation of a HEMT Device Performance

Authors: Z. Kourdi, B. Bouazza, M. Khaouani, A. Guen-Bouazza, Z. Djennati, A. Boursali

Abstract:

We present a simulation of a HEMT (high electron mobility transistor) structure with and without a field plate. We extract the device characteristics through the analysis of DC, AC and high frequency regimes, as shown in this paper. This work demonstrates the optimal device with a gate length of 15 nm, InAlN/GaN heterostructure and field plate structure, making it superior to modern HEMTs when compared with otherwise equivalent devices. This improves the ability to bear the burden of the current density passes in the channel. We have demonstrated an excellent current density, as high as 2.05 A/mm, a peak extrinsic transconductance of 590 mS/mm at VDS=2 V, and cutting frequency cutoffs of 638 GHz in the first HEMT and 463 GHz for Field plate HEMT., maximum frequency of 1.7 THz, maximum efficiency of 73%, maximum breakdown voltage of 400 V, DIBL=33.52 mV/V and an ON/OFF current density ratio higher than 1 x 1010. These values were determined through the simulation by deriving genetic and Monte Carlo algorithms that optimize the design and the future of this technology.

Keywords: HEMT, Silvaco, field plate, genetic algorithm, quantum

Procedia PDF Downloads 453
474 Study of the Microstructural Evolution and Precipitation Kinetic in AZ91 Alloys

Authors: A. Azizi, M. Toubane, L. Chetibi

Abstract:

Differential scanning calorimetry (DSC) is a widely used technique for the study of phase transformations, particularly in the study of precipitation. The kinetic of the precipitation and dissolution is always related to the concept of activation energy Ea. The determination of the activation energy gives important information about the kinetic of the precipitation reaction. In this work, we were interested in the study of the isothermal and non-isothermal treatments on the decomposition of the supersaturated solid solution in the alloy AZ91 (Mg-9 Al-Zn 1-0.2 Mn. mass fraction %), using Differential Calorimetric method. Through this method, the samples were heat treated up to 425° C, using different rates. To calculate the apparent activation energies associated with the formation of precipitated phases, we used different isoconversional methods. This study was supported by other analysis: X-ray diffraction and microhardness measurements.

Keywords: calorimetric, activation energy, AZ91 alloys, microstructural evolution

Procedia PDF Downloads 422
473 The Journey of a Malicious HTTP Request

Authors: M. Mansouri, P. Jaklitsch, E. Teiniker

Abstract:

SQL injection on web applications is a very popular kind of attack. There are mechanisms such as intrusion detection systems in order to detect this attack. These strategies often rely on techniques implemented at high layers of the application but do not consider the low level of system calls. The problem of only considering the high level perspective is that an attacker can circumvent the detection tools using certain techniques such as URL encoding. One technique currently used for detecting low-level attacks on privileged processes is the tracing of system calls. System calls act as a single gate to the Operating System (OS) kernel; they allow catching the critical data at an appropriate level of detail. Our basic assumption is that any type of application, be it a system service, utility program or Web application, “speaks” the language of system calls when having a conversation with the OS kernel. At this level we can see the actual attack while it is happening. We conduct an experiment in order to demonstrate the suitability of system call analysis for detecting SQL injection. We are able to detect the attack. Therefore we conclude that system calls are not only powerful in detecting low-level attacks but that they also enable us to detect high-level attacks such as SQL injection.

Keywords: Linux system calls, web attack detection, interception, SQL

Procedia PDF Downloads 337
472 Effect of Transition Metal (Fe, Mn) Ion Doping on TiO2 Nano Particles

Authors: Kirit Siddhapara, Dimple Shah

Abstract:

In this research, we have studied the doping behaviors of two transition metal ion dopants on the crystal phase, particle sizes, XRD patterns, EDAX spectra, and photoreactivity of TiO2 nanoparticles. The crystalline size of TiO2 is close to 4 nm Calculated from (1 0 1) peak by using FWHM method in Scherrer’s equation. Test metal ion concentrations ranged from 1% to 4 at.%, we report the growth of [Fe, Mn]xTiO2 nanocrystals prepared by Sol-Gel technique, followed by freeze-drying treatment at -30°C temperature for 12hrs. The obtained Gel was thermally treated at different temperature like 200°C, 400°C, 600°C, 800°C. Thermal gravimetric analysis (TGA) shows that dopant concentration affects thermal decomposition. The photoreactivities of transition metal ion-doped TiO2 nanoparticles under UV irradiation were quantified by the degradation of formaldehyde.

Keywords: growth from solution, sol-gel method, nanomaterials, oxides, magnetic materials, titanium compounds

Procedia PDF Downloads 414
471 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors

Authors: Anwar Jarndal

Abstract:

In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.

Keywords: GaN HEMT, computer-aided design and modeling, neural networks, genetic optimization

Procedia PDF Downloads 363
470 Torrefaction of Biomass Pellets: Modeling of the Process in a Fixed Bed Reactor

Authors: Ekaterina Artiukhina, Panagiotis Grammelis

Abstract:

Torrefaction of biomass pellets is considered as a useful pretreatment technology in order to convert them into a high quality solid biofuel that is more suitable for pyrolysis, gasification, combustion and co-firing applications. In the course of torrefaction the temperature varies across the pellet, and therefore chemical reactions proceed unevenly within the pellet. However, the uniformity of the thermal distribution along the pellet is generally assumed. The torrefaction process of a single cylindrical pellet is modeled here, accounting for heat transfer coupled with chemical kinetics. The drying sub-model was also introduced. The non-stationary process of wood pellet decomposition is described by the system of non-linear partial differential equations over the temperature and mass. The model captures well the main features of the experimental data.

Keywords: torrefaction, biomass pellets, model, heat, mass transfer

Procedia PDF Downloads 464
469 Performance Evaluation of Different Technologies of PV Modules in Algeria

Authors: Amira Balaska, Ali Tahri, Amine Boudghene Stambouli, Takashi Oozeki

Abstract:

This paper is dealing with the evaluation of photovoltaic modules as part of the Sahara Solar Breeder project (SSB), five different photovoltaic module technologies which are: m-si, CIS, HIT, Back Contact, a-si_μc -si and a weather station recently installed at the University of Saida (Tahar Moulay) in Saida city located at the gate of the great southern Algeria’s Sahara. The objective of the present work is the study of solar photovoltaic capacity and performance parameters of each PV module technology. The goal of the study is to compare the five different PV technologies in order to find which technologies are suitable for the climate conditions of Algeria’s desert. Measurements of various parameters as irradiance, temperature, humidity and so on by the weather station and I-V curves were performed outdoors at the location without shadow. Finally performance parameters as performance ratio, energy yield and temperature losses are given and analyzed.

Keywords: photovoltaic modules, performance ratio, energy yield, sahara solar breeder, outdoor conditions

Procedia PDF Downloads 646
468 Catalytic Pyrolysis of Sewage Sludge for Upgrading Bio-Oil Quality Using Sludge-Based Activated Char as an Alternative to HZSM5

Authors: Ali Zaker, Zhi Chen

Abstract:

Due to the concerns about the depletion of fossil fuel sources and the deteriorating environment, the attempt to investigate the production of renewable energy will play a crucial role as a potential to alleviate the dependency on mineral fuels. One particular area of interest is the generation of bio-oil through sewage sludge (SS) pyrolysis. SS can be a potential candidate in contrast to other types of biomasses due to its availability and low cost. However, the presence of high molecular weight hydrocarbons and oxygenated compounds in the SS bio-oil hinders some of its fuel applications. In this context, catalytic pyrolysis is another attainable route to upgrade bio-oil quality. Among different catalysts (i.e., zeolites) studied for SS pyrolysis, activated chars (AC) are eco-friendly alternatives. The beneficial features of AC derived from SS comprise the comparatively large surface area, porosity, enriched surface functional groups, and presence of a high amount of metal species that can improve the catalytic activity. Hence, a sludge-based AC catalyst was fabricated in a single-step pyrolysis reaction with NaOH as the activation agent and was compared with HZSM5 zeolite in this study. The thermal decomposition and kinetics were invested via thermogravimetric analysis (TGA) for guidance and control of pyrolysis and catalytic pyrolysis and the design of the pyrolysis setup. The results indicated that the pyrolysis and catalytic pyrolysis contains four obvious stages, and the main decomposition reaction occurred in the range of 200-600°C. The Coats-Redfern method was applied in the 2nd and 3rd devolatilization stages to estimate the reaction order and activation energy (E) from the mass loss data. The average activation energy (Em) values for the reaction orders n = 1, 2, and 3 were in the range of 6.67-20.37 kJ for SS; 1.51-6.87 kJ for HZSM5; and 2.29-9.17 kJ for AC, respectively. According to the results, AC and HZSM5 both were able to improve the reaction rate of SS pyrolysis by abridging the Em value. Moreover, to generate and examine the effect of the catalysts on the quality of bio-oil, a fixed-bed pyrolysis system was designed and implemented. The composition analysis of the produced bio-oil was carried out via gas chromatography/mass spectrometry (GC/MS). The selected SS to catalyst ratios were 1:1, 2:1, and 4:1. The optimum ratio in terms of cracking the long-chain hydrocarbons and removing oxygen-containing compounds was 1:1 for both catalysts. The upgraded bio-oils with AC and HZSM5 were in the total range of C4-C17, with around 72% in the range of C4-C9. The bio-oil from pyrolysis of SS contained 49.27% oxygenated compounds, while with the presence of AC and HZSM5 dropped to 13.02% and 7.3%, respectively. Meanwhile, the generation of benzene, toluene, and xylene (BTX) compounds was significantly improved in the catalytic process. Furthermore, the fabricated AC catalyst was characterized by BET, SEM-EDX, FT-IR, and TGA techniques. Overall, this research demonstrated AC is an efficient catalyst in the pyrolysis of SS and can be used as a cost-competitive catalyst in contrast to HZSM5.

Keywords: catalytic pyrolysis, sewage sludge, activated char, HZSM5, bio-oil

Procedia PDF Downloads 165
467 Preparation of Heterogeneous Ferrite Catalysts and Their Application for Fenton-Like Oxidation of Radioactive Organic Wastewater

Authors: Hsien T. Hsieh, Chao R. Chen, Li C. Chuang, Chin C. Shen

Abstract:

Fenton oxidation technology is the general strategy for the treatment of organic compounds-contained wastewater. However, a considerable amount of ferric sludge was produced during the Fenton process as secondary wastes, which were needed to be further removed from the effluent and treated. In this study, heterogeneous catalysts based on ferrite oxide (Cu-Fe-Ce-O) were synthesized and characterized, and their application for Fenton-like oxidation of simulated and actual radioactive organic wastewater was investigated. The results of TOC decomposition efficiency around 54% ~ 99% were obtained when the catalyst loading, H2O2 loading, pH, temperature, and reaction time were controlled. In this case, no secondary wastes formed and the given catalysts were able to be separated by magnetic devices and reused again.

Keywords: fenton, oxidation, heterogeneous catalyst, wastewater

Procedia PDF Downloads 342
466 FPGA Implementation of Novel Triangular Systolic Array Based Architecture for Determining the Eigenvalues of Matrix

Authors: Soumitr Sanjay Dubey, Shubhajit Roy Chowdhury, Rahul Shrestha

Abstract:

In this paper, we have presented a novel approach of calculating eigenvalues of any matrix for the first time on Field Programmable Gate Array (FPGA) using Triangular Systolic Arra (TSA) architecture. Conventionally, additional computation unit is required in the architecture which is compliant to the algorithm for determining the eigenvalues and this in return enhances the delay and power consumption. However, recently reported works are only dedicated for symmetric matrices or some specific case of matrix. This works presents an architecture to calculate eigenvalues of any matrix based on QR algorithm which is fully implementable on FPGA. For the implementation of QR algorithm we have used TSA architecture, which is further utilising CORDIC (CO-ordinate Rotation DIgital Computer) algorithm, to calculate various trigonometric and arithmetic functions involved in the procedure. The proposed architecture gives an error in the range of 10−4. Power consumption by the design is 0.598W. It can work at the frequency of 900 MHz.

Keywords: coordinate rotation digital computer, three angle complex rotation, triangular systolic array, QR algorithm

Procedia PDF Downloads 391
465 A Hydrometallurgical Route for the Recovery of Molybdenum from Spent Mo-Co Catalyst

Authors: Bina Gupta, Rashmi Singh, Harshit Mahandra

Abstract:

Molybdenum is a strategic metal and finds applications in petroleum refining, thermocouples, X-ray tubes and in making of steel alloy owing to its high melting temperature and tensile strength. The growing significance and economic value of molybdenum has increased interest in the development of efficient processes aiming its recovery from secondary sources. Main secondary sources of Mo are molybdenum catalysts which are used for hydrodesulphurisation process in petrochemical refineries. The activity of these catalysts gradually decreases with time during the desulphurisation process as the catalysts get contaminated with toxic material and are dumped as waste which leads to environmental issues. In this scenario, recovery of molybdenum from spent catalyst is significant from both economic and environmental point of view. Recently ionic liquids have gained prominence due to their low vapour pressure, high thermal stability, good extraction efficiency and recycling capacity. The present study reports recovery of molybdenum from Mo-Co spent leach liquor using Cyphos IL 102[trihexyl(tetradecyl)phosphonium bromide] as an extractant. Spent catalyst was leached with 3.0 mol/L HCl, and the leach liquor containing Mo-870 ppm, Co-341 ppm, Al-508 ppm and Fe-42 ppm was subjected to extraction step. The effect of extractant concentration on the leach liquor was investigated and almost 85% extraction of Mo was achieved with 0.05 mol/L Cyphos IL 102. Results of stripping studies revealed that 2.0 mol/L HNO3 can effectively strip 94% of the extracted Mo from the loaded organic phase. McCabe- Thiele diagrams were constructed to determine the number of stages required for quantitative extraction and stripping of molybdenum and were confirmed by countercurrent simulation studies. According to McCabe- Thiele extraction and stripping isotherms, two stages are required for quantitative extraction and stripping of molybdenum at A/O= 1:1. Around 95.4% extraction of molybdenum was achieved in two-stage counter current at A/O= 1:1 with the negligible extraction of Co and Al. However, iron was coextracted and removed from the loaded organic phase by scrubbing with 0.01 mol/L HCl. Quantitative stripping (~99.5 %) of molybdenum was achieved with 2.0 mol/L HNO₃ in two stages at O/A=1:1. Overall ~95.0% molybdenum with 99 % purity was recovered from Mo-Co spent catalyst. From the strip solution, MoO₃ was obtained by crystallization followed by thermal decomposition. The product obtained after thermal decomposition was characterized by XRD, FE-SEM and EDX techniques. XRD peaks of MoO₃ correspond to molybdite Syn-MoO₃ structure. FE-SEM depicts the rod-like morphology of synthesized MoO₃. EDX analysis of MoO₃ shows 1:3 atomic percentage of molybdenum and oxygen. The synthesised MoO₃ can find application in gas sensors, electrodes of batteries, display devices, smart windows, lubricants and as a catalyst.

Keywords: cyphos Il 102, extraction, spent mo-co catalyst, recovery

Procedia PDF Downloads 157
464 Voltage and Current Control of Microgrid in Grid Connected and Islanded Modes

Authors: Megha Chavda, Parth Thummar, Rahul Ghetia

Abstract:

This paper presents the voltage and current control of microgrid accompanied by the synchronization of microgrid with the main utility grid in both islanded and grid-connected modes. Distributed Energy Resources (DERs) satisfy the wide-spread power demand of consumer by behaving as a micro source for a low voltage (LV) grid or microgrid. Synchronization of the microgrid with the main utility grid is done using PLL and PWM gate pulse generation technique is used for the Voltage Source Converter. Potential Function method achieves the voltage and current control of this microgrid in both islanded and grid-connected modes. A low voltage grid consisting of three distributed generators (DG) is considered for the study and is simulated in time-domain using PSCAD/EMTDC software. The simulation results depict the appropriateness of voltage and current control of microgrid and synchronization of microgrid with the medium voltage (MV) grid.

Keywords: microgrid, distributed energy resources, voltage and current control, voltage source converter, pulse width modulation, phase locked loop

Procedia PDF Downloads 395
463 Energy Dynamics of Solar Thermionic Power Conversion with Emitter of Graphene

Authors: Olukunle C. Olawole, Dilip K. De, Moses Emetere, Omoje Maxwell

Abstract:

Graphene can stand very high temperature up to 4500 K in vacuum and has potential for application in thermionic energy converter. In this paper, we discuss the application of energy dynamics principles and the modified Richardson-Dushman Equation, to estimate the efficiency of solar power conversion to electrical power by a solar thermionic energy converter (STEC) containing emitter made of graphene. We present detailed simulation of power output for different solar insolation, diameter of parabolic concentrator, area of the graphene emitter (same as that of the collector), temperature of the collector, physical dimensions of the emitter-collector etc. After discussing possible methods of reduction or elimination of space charge problem using magnetic field and gate, we finally discuss relative advantages of using emitters made of graphene, carbon nanotube and metals respectively in a STEC.

Keywords: graphene, high temperature, modified Richardson-Dushman equation, solar thermionic energy converter

Procedia PDF Downloads 291
462 Performance Analysis of Arithmetic Units for IoT Applications

Authors: Nithiya C., Komathi B. J., Praveena N. G., Samuda Prathima

Abstract:

At present, the ultimate aim in digital system designs, especially at the gate level and lower levels of design abstraction, is power optimization. Adders are a nearly universal component of today's integrated circuits. Most of the research was on the design of high-speed adders to execute addition based on various adder structures. This paper discusses the ideal path for selecting an arithmetic unit for IoT applications. Based on the analysis of eight types of 16-bit adders, we found out Carry Look-ahead (CLA) produces low power. Additionally, multiplier and accumulator (MAC) unit is implemented with the Booth multiplier by using the low power adders in the order of preference. The design is synthesized and verified using Synopsys Design Compiler and VCS. Then it is implemented by using Cadence Encounter. The total power consumed by the CLA based booth multiplier is 0.03527mW, the total area occupied is 11260 um², and the speed is 2034 ps.

Keywords: carry look-ahead, carry select adder, CSA, internet of things, ripple carry adder, design rule check, power delay product, multiplier and accumulator

Procedia PDF Downloads 103
461 Economic Loss due to Ganoderma Disease in Oil Palm

Authors: K. Assis, K. P. Chong, A. S. Idris, C. M. Ho

Abstract:

Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate.

Keywords: ganoderma, oil palm, regression model, yield loss, economic loss

Procedia PDF Downloads 370
460 Fast Algorithm to Determine Initial Tsunami Wave Shape at Source

Authors: Alexander P. Vazhenin, Mikhail M. Lavrentiev, Alexey A. Romanenko, Pavel V. Tatarintsev

Abstract:

One of the problems obstructing effective tsunami modelling is the lack of information about initial wave shape at source. The existing methods; geological, sea radars, satellite images, contain an important part of uncertainty. Therefore, direct measurement of tsunami waves obtained at the deep water bottom peruse recorders is also used. In this paper we propose a new method to reconstruct the initial sea surface displacement at tsunami source by the measured signal (marigram) approximation with the help of linear combination of synthetic marigrams from the selected set of unit sources, calculated in advance. This method has demonstrated good precision and very high performance. The mathematical model and results of numerical tests are here described.

Keywords: numerical tests, orthogonal decomposition, Tsunami Initial Sea Surface Displacement

Procedia PDF Downloads 453
459 A Hydrometallurgical Route for the Recovery of Molybdenum from Mo-Co Spent Catalyst

Authors: Bina Gupta, Rashmi Singh, Harshit Mahandra

Abstract:

Molybdenum is a strategic metal and finds applications in petroleum refining, thermocouples, X-ray tubes and in making of steel alloy owing to its high melting temperature and tensile strength. The growing significance and economic value of molybdenum have increased interest in the development of efficient processes aiming its recovery from secondary sources. Main secondary sources of Mo are molybdenum catalysts which are used for hydrodesulphurisation process in petrochemical refineries. The activity of these catalysts gradually decreases with time during the desulphurisation process as the catalysts get contaminated with toxic material and are dumped as waste which leads to environmental issues. In this scenario, recovery of molybdenum from spent catalyst is significant from both economic and environmental point of view. Recently ionic liquids have gained prominence due to their low vapour pressure, high thermal stability, good extraction efficiency and recycling capacity. Present study reports recovery of molybdenum from Mo-Co spent leach liquor using Cyphos IL 102[trihexyl(tetradecyl)phosphonium bromide] as an extractant. Spent catalyst was leached with 3 mol/L HCl and the leach liquor containing Mo-870 ppm, Co-341 ppm, Al-508 ppm and Fe-42 ppm was subjected to extraction step. The effect of extractant concentration on the leach liquor was investigated and almost 85% extraction of Mo was achieved with 0.05 mol/L Cyphos IL 102. Results of stripping studies revealed that 2 mol/L HNO3 can effectively strip 94% of the extracted Mo from the loaded organic phase. McCabe-Thiele diagrams were constructed to determine the number of stages required for quantitative extraction and stripping of molybdenum and were confirmed by counter current simulation studies. According to McCabe-Thiele extraction and stripping isotherms, two stages are required for quantitative extraction and stripping of molybdenum at A/O= 1:1. Around 95.4% extraction of molybdenum was achieved in two stage counter current at A/O= 1:1 with negligible extraction of Co and Al. However, iron was coextracted and removed from the loaded organic phase by scrubbing with 0.01 mol/L HCl. Quantitative stripping (~99.5 %) of molybdenum was achieved with 2.0 mol/L HNO3 in two stages at O/A=1:1. Overall ~95.0% molybdenum with 99 % purity was recovered from Mo-Co spent catalyst. From the strip solution, MoO3 was obtained by crystallization followed by thermal decomposition. The product obtained after thermal decomposition was characterized by XRD, FE-SEM and EDX techniques. XRD peaks of MoO3correspond to molybdite Syn-MoO3 structure. FE-SEM depicts the rod like morphology of synthesized MoO3. EDX analysis of MoO3 shows 1:3 atomic percentage of molybdenum and oxygen. The synthesised MoO3 can find application in gas sensors, electrodes of batteries, display devices, smart windows, lubricants and as catalyst.

Keywords: cyphos IL 102, extraction, Mo-Co spent catalyst, recovery

Procedia PDF Downloads 252
458 Review: Wavelet New Tool for Path Loss Prediction

Authors: Danladi Ali, Abdullahi Mukaila

Abstract:

In this work, GSM signal strength (power) was monitored in an indoor environment. Samples of the GSM signal strength was measured on mobile equipment (ME). One-dimensional multilevel wavelet is used to predict the fading phenomenon of the GSM signal measured and neural network clustering to determine the average power received in the study area. The wavelet prediction revealed that the GSM signal is attenuated due to the fast fading phenomenon which fades about 7 times faster than the radio wavelength while the neural network clustering determined that -75dBm appeared more frequently followed by -85dBm. The work revealed that significant part of the signal measured is dominated by weak signal and the signal followed more of Rayleigh than Gaussian distribution. This confirmed the wavelet prediction.

Keywords: decomposition, clustering, propagation, model, wavelet, signal strength and spectral efficiency

Procedia PDF Downloads 432
457 Quantitative Evaluation of Efficiency of Surface Plasmon Excitation with Grating-Assisted Metallic Nanoantenna

Authors: Almaz R. Gazizov, Sergey S. Kharintsev, Myakzyum Kh. Salakhov

Abstract:

This work deals with background signal suppression in tip-enhanced near-field optical microscopy (TENOM). The background appears because an optical signal is detected not only from the subwavelength area beneath the tip but also from a wider diffraction-limited area of laser’s waist that might contain another substance. The background can be reduced by using a taper probe with a grating on its lateral surface where an external illumination causes surface plasmon excitation. It requires the grating with parameters perfectly matched with a given incident light for effective light coupling. This work is devoted to an analysis of the light-grating coupling and a quest of grating parameters to enhance a near-field light beneath the tip apex. The aim of this work is to find the figure of merit of plasmon excitation depending on grating period and location of grating in respect to the apex. In our consideration the metallic grating on the lateral surface of the tapered plasmonic probe is illuminated by a plane wave, the electric field is perpendicular to the sample surface. Theoretical model of efficiency of plasmon excitation and propagation toward the apex is tested by fdtd-based numerical simulation. An electric field of the incident light is enhanced on the grating by every single slit due to lightning rod effect. Hence, grating causes amplitude and phase modulation of the incident field in various ways depending on geometry and material of grating. The phase-modulating grating on the probe is a sort of metasurface that provides manipulation by spatial frequencies of the incident field. The spatial frequency-dependent electric field is found from the angular spectrum decomposition. If one of the components satisfies the phase-matching condition then one can readily calculate the figure of merit of plasmon excitation, defined as a ratio of the intensities of the surface mode and the incident light. During propagation towards the apex, surface wave undergoes losses in probe material, radiation losses, and mode compression. There is an optimal location of the grating in respect to the apex. One finds the value by matching quadratic law of mode compression and the exponential law of light extinction. Finally, performed theoretical analysis and numerical simulations of plasmon excitation demonstrate that various surface waves can be effectively excited by using the overtones of a period of the grating or by phase modulation of the incident field. The gratings with such periods are easy to fabricate. Tapered probe with the grating effectively enhances and localizes the incident field at the sample.

Keywords: angular spectrum decomposition, efficiency, grating, surface plasmon, taper nanoantenna

Procedia PDF Downloads 267
456 3 Phase Induction Motor Control Using Single Phase Input and GSM

Authors: Pooja S. Billade, Sanjay S. Chopade

Abstract:

This paper focuses on the design of three phase induction motor control using single phase input and GSM.The controller used in this work is a wireless speed control using a GSM technique that proves to be very efficient and reliable in applications.The most common principle is the constant V/Hz principle which requires that the magnitude and frequency of the voltage applied to the stator of a motor maintain a constant ratio. By doing this, the magnitude of the magnetic field in the stator is kept at an approximately constant level throughout the operating range. Thus, maximum constant torque producing capability is maintained. The energy that a switching power converter delivers to a motor is controlled by Pulse Width Modulated signals applied to the gates of the power transistors in H-bridge configuration. PWM signals are pulse trains with fixed frequency and magnitude and variable pulse width. When a PWM signal is applied to the gate of a power transistor, it causes the turn on and turns off intervals of the transistor to change from one PWM period.

Keywords: index terms— PIC, GSM (global system for mobile), LCD (Liquid Crystal Display), IM (Induction Motor)

Procedia PDF Downloads 429
455 Investigation of Maritime Accidents with Exploratory Data Analysis in the Strait of Çanakkale (Dardanelles)

Authors: Gizem Kodak

Abstract:

The Strait of Çanakkale, together with the Strait of Istanbul and the Sea of Marmara, form the Turkish Straits System. In other words, the Strait of Çanakkale is the southern gate of the system that connects the Black Sea countries with the other countries of the world. Due to the heavy maritime traffic, it is important to scientifically examine the accident characteristics in the region. In particular, the results indicated by the descriptive statistics are of critical importance in order to strengthen the safety of navigation. At this point, exploratory data analysis offers strategic outputs in terms of defining the problem and knowing the strengths and weaknesses against possible accident risk. The study aims to determine the accident characteristics in the Strait of Çanakkale with temporal and spatial analysis of historical data, using Exploratory Data Analysis (EDA) as the research method. The study's results will reveal the general characteristics of maritime accidents in the region and form the infrastructure for future studies. Therefore, the text provides a clear description of the research goals and methodology, and the study's contributions are well-defined.

Keywords: maritime accidents, EDA, Strait of Çanakkale, navigational safety

Procedia PDF Downloads 69
454 Wavelet Based Advanced Encryption Standard Algorithm for Image Encryption

Authors: Ajish Sreedharan

Abstract:

With the fast evolution of digital data exchange, security information becomes much important in data storage and transmission. Due to the increasing use of images in industrial process, it is essential to protect the confidential image data from unauthorized access. As encryption process is applied to the whole image in AES ,it is difficult to improve the efficiency. In this paper, wavelet decomposition is used to concentrate the main information of image to the low frequency part. Then, AES encryption is applied to the low frequency part. The high frequency parts are XORed with the encrypted low frequency part and a wavelet reconstruction is applied. Theoretical analysis and experimental results show that the proposed algorithm has high efficiency, and satisfied security suits for image data transmission.

Keywords: discrete wavelet transforms, AES, dynamic SBox

Procedia PDF Downloads 419
453 Approximate-Based Estimation of Single Event Upset Effect on Statistic Random-Access Memory-Based Field-Programmable Gate Arrays

Authors: Mahsa Mousavi, Hamid Reza Pourshaghaghi, Mohammad Tahghighi, Henk Corporaal

Abstract:

Recently, Statistic Random-Access Memory-based (SRAM-based) Field-Programmable Gate Arrays (FPGAs) are widely used in aeronautics and space systems where high dependability is demanded and considered as a mandatory requirement. Since design’s circuit is stored in configuration memory in SRAM-based FPGAs; they are very sensitive to Single Event Upsets (SEUs). In addition, the adverse effects of SEUs on the electronics used in space are much higher than in the Earth. Thus, developing fault tolerant techniques play crucial roles for the use of SRAM-based FPGAs in space. However, fault tolerance techniques introduce additional penalties in system parameters, e.g., area, power, performance and design time. In this paper, an accurate estimation of configuration memory vulnerability to SEUs is proposed for approximate-tolerant applications. This vulnerability estimation is highly required for compromising between the overhead introduced by fault tolerance techniques and system robustness. In this paper, we study applications in which the exact final output value is not necessarily always a concern meaning that some of the SEU-induced changes in output values are negligible. We therefore define and propose Approximate-based Configuration Memory Vulnerability Factor (ACMVF) estimation to avoid overestimating configuration memory vulnerability to SEUs. In this paper, we assess the vulnerability of configuration memory by injecting SEUs in configuration memory bits and comparing the output values of a given circuit in presence of SEUs with expected correct output. In spite of conventional vulnerability factor calculation methods, which accounts any deviations from the expected value as failures, in our proposed method a threshold margin is considered depending on user-case applications. Given the proposed threshold margin in our model, a failure occurs only when the difference between the erroneous output value and the expected output value is more than this margin. The ACMVF is subsequently calculated by acquiring the ratio of failures with respect to the total number of SEU injections. In our paper, a test-bench for emulating SEUs and calculating ACMVF is implemented on Zynq-7000 FPGA platform. This system makes use of the Single Event Mitigation (SEM) IP core to inject SEUs into configuration memory bits of the target design implemented in Zynq-7000 FPGA. Experimental results for 32-bit adder show that, when 1% to 10% deviation from correct output is considered, the counted failures number is reduced 41% to 59% compared with the failures number counted by conventional vulnerability factor calculation. It means that estimation accuracy of the configuration memory vulnerability to SEUs is improved up to 58% in the case that 10% deviation is acceptable in output results. Note that less than 10% deviation in addition result is reasonably tolerable for many applications in approximate computing domain such as Convolutional Neural Network (CNN).

Keywords: fault tolerance, FPGA, single event upset, approximate computing

Procedia PDF Downloads 175
452 An Efficient Approach for Speed up Non-Negative Matrix Factorization for High Dimensional Data

Authors: Bharat Singh Om Prakash Vyas

Abstract:

Now a day’s applications deal with High Dimensional Data have tremendously used in the popular areas. To tackle with such kind of data various approached has been developed by researchers in the last few decades. To tackle with such kind of data various approached has been developed by researchers in the last few decades. One of the problems with the NMF approaches, its randomized valued could not provide absolute optimization in limited iteration, but having local optimization. Due to this, we have proposed a new approach that considers the initial values of the decomposition to tackle the issues of computationally expensive. We have devised an algorithm for initializing the values of the decomposed matrix based on the PSO (Particle Swarm Optimization). Through the experimental result, we will show the proposed method converse very fast in comparison to other row rank approximation like simple NMF multiplicative, and ACLS techniques.

Keywords: ALS, NMF, high dimensional data, RMSE

Procedia PDF Downloads 327
451 Synthesis and Characterization of Ferromagnetic Ni-Cu Alloys for Thermal Rectification Applications

Authors: Josue Javier Martinez Flores, Jaime Alvarez Quintana

Abstract:

A thermal rectifier consists of a device which can load a different heat flow which depends on the direction of that flow. That device is a thermal diode. It is well known that heat transfer in solids basically depends on the electrical, magnetic and crystalline nature of materials via electrons, magnons and phonons as thermal energy carriers respectively. In the present research, we have synthesized polycrystalline Ni-Cu alloys and identified the Curie temperatures; and we have observed that by way of secondary phase transitions, it is possible manipulate the heat conduction in solid state thermal diodes via transition temperature. In this sense, we have succeeded in developing solid state thermal diodes with a control gate through the Curie temperature via the activation and deactivation of magnons in Ni-Cu ferromagnetic alloys at room temperature. Results show thermal diodes with thermal rectification factors up to 1.5. Besides, the performance of the electrical rectifiers can be controlled by way of alloy Cu content; hence, lower Cu content alloys present enhanced thermal rectifications factors than higher ones.

Keywords: thermal rectification, Curie temperature, ferromagnetic alloys, magnons

Procedia PDF Downloads 228
450 Optimization of Slider Crank Mechanism Using Design of Experiments and Multi-Linear Regression

Authors: Galal Elkobrosy, Amr M. Abdelrazek, Bassuny M. Elsouhily, Mohamed E. Khidr

Abstract:

Crank shaft length, connecting rod length, crank angle, engine rpm, cylinder bore, mass of piston and compression ratio are the inputs that can control the performance of the slider crank mechanism and then its efficiency. Several combinations of these seven inputs are used and compared. The throughput engine torque predicted by the simulation is analyzed through two different regression models, with and without interaction terms, developed according to multi-linear regression using LU decomposition to solve system of algebraic equations. These models are validated. A regression model in seven inputs including their interaction terms lowered the polynomial degree from 3rd degree to 1st degree and suggested valid predictions and stable explanations.

Keywords: design of experiments, regression analysis, SI engine, statistical modeling

Procedia PDF Downloads 166
449 Optimization of Plastic Injection Molding Parameters by Altering Gate and Runner of Feeding System

Authors: Ali Ramezani

Abstract:

Balancing feeding system of plastic injection molding has overriding importance as it minimizes the process’s product defects such as weld line, shrinkage, sink marks and warpage. This article presents the difference between optimization of feeding system in identical multi-cavity molding and family molding using Moldflow Plastic Insight software. In this work, the effect of dimension, shape, position and type of gates and runners on the products quality was studied. The optimization was carried out by analyzing plastic injection molding process parameters, including melt temperature, mold temperature, cooling time, cooling temperature packing time and packing pressure. It was found that symmetrical feeding system is the most efficient shape for diminishing defects in identical multi-cavity molding. However, the same results were not concluded for family molding due to the differences between volume, mass, thickness and shape of cavities.

Keywords: balancing feeding system, family molding, multi-cavity, Moldflow, plastic injection

Procedia PDF Downloads 116
448 Analytical Terahertz Characterization of In0.53Ga0.47As Transistors and Homogenous Diodes

Authors: Abdelmadjid Mammeri, Fatima Zohra Mahi, Luca Varani, H. Marinchoi

Abstract:

We propose an analytical model for the admittance and the noise calculations of the InGaAs transistor and diode. The development of the small-signal admittance takes into account the longitudinal and transverse electric fields through a pseudo two-dimensional approximation of the Poisson equation. The frequency-dependent of the small-signal admittance response is determined by the total currents and the potentials matrix relation between the gate and the drain terminals. The noise is evaluated by using the real part of the transistor/diode admittance under a small-signal perturbation. The analytical results show that the admittance spectrum exhibits a series of resonant peaks corresponding to the excitation of plasma waves. The appearance of the resonance is discussed and analyzed as functions of the channel length and the temperature. The model can be used, on one hand; to control the appearance of the plasma resonances, and on other hand; can give significant information about the noise frequency dependence in the InGaAs transistor and diode.

Keywords: InGaAs transistors, InGaAs diode, admittance, resonant peaks, plasma waves, analytical model

Procedia PDF Downloads 289