Search results for: financial bubble detection
5984 Assessment of Image Databases Used for Human Skin Detection Methods
Authors: Saleh Alshehri
Abstract:
Human skin detection is a vital step in many applications. Some of the applications are critical especially those related to security. This leverages the importance of a high-performance detection algorithm. To validate the accuracy of the algorithm, image databases are usually used. However, the suitability of these image databases is still questionable. It is suggested that the suitability can be measured mainly by the span the database covers of the color space. This research investigates the validity of three famous image databases.Keywords: image databases, image processing, pattern recognition, neural networks
Procedia PDF Downloads 2715983 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data
Authors: Murat Yazici
Abstract:
Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data
Procedia PDF Downloads 535982 A Research and Application of Feature Selection Based on IWO and Tabu Search
Authors: Laicheng Cao, Xiangqian Su, Youxiao Wu
Abstract:
Feature selection is one of the important problems in network security, pattern recognition, data mining and other fields. In order to remove redundant features, effectively improve the detection speed of intrusion detection system, proposes a new feature selection method, which is based on the invasive weed optimization (IWO) algorithm and tabu search algorithm(TS). Use IWO as a global search, tabu search algorithm for local search, to improve the results of IWO algorithm. The experimental results show that the feature selection method can effectively remove the redundant features of network data information in feature selection, reduction time, and to guarantee accurate detection rate, effectively improve the speed of detection system.Keywords: intrusion detection, feature selection, iwo, tabu search
Procedia PDF Downloads 5305981 Modeling of Full Range Flow Boiling Phenomenon in 23m Long Vertical Steam Generator Tube
Authors: Chaitanya R. Mali, V. Vinod, Ashwin W. Patwardhan
Abstract:
Design of long vertical steam generator (SG) tubes in nuclear power plant involves an understanding of different aspects of flow boiling phenomenon such as flow instabilities, flow regimes, dry out, critical heat flux, pressure drop, etc. The knowledge of the prediction of local thermal hydraulic characteristics is necessary to understand these aspects. For this purpose, the methodology has been developed which covers all the flow boiling regimes to model full range flow boiling phenomenon. In this methodology, the vertical tube is divided into four sections based on vapor fraction value at the end of each section. Different modeling strategies have been applied to the different sections of the vertical tube. Computational fluid dynamics simulations have been performed on a vertical SG tube of 0.0126 m inner diameter and 23 m length. The thermal hydraulic parameters such as vapor fraction, liquid temperature, heat transfer coefficient, pressure drop, heat flux distribution have been analyzed for different designed heat duties (1.1 MW (20%) to 3.3 MW (60%)) and flow conditions (10 % to 80 %). The sensitivity of different boiling parameters such as bubble departure diameter, nucleation site density, bubble departure frequency on the thermal hydraulic parameters was also studied. Flow instability has been observed at 20 % designed heat duty and 20 % flow conditions.Keywords: thermal hydraulics, boiling, vapor fraction, sensitivity
Procedia PDF Downloads 1475980 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection
Authors: Alireza Mirrashid, Mohammad Khoshbin, Ali Atghaei, Hassan Shahbazi
Abstract:
In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.Keywords: attention, fire detection, smoke detection, spatio-temporal
Procedia PDF Downloads 2035979 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 1265978 Attack Redirection and Detection using Honeypots
Authors: Chowduru Ramachandra Sharma, Shatunjay Rawat
Abstract:
A false positive state is when the IDS/IPS identifies an activity as an attack, but the activity is acceptable behavior in the system. False positives in a Network Intrusion Detection System ( NIDS ) is an issue because they desensitize the administrator. It wastes computational power and valuable resources when rules are not tuned properly, which is the main issue with anomaly NIDS. Furthermore, most false positives reduction techniques are not performed during the real-time of attempted intrusions; instead, they have applied afterward on collected traffic data and generate alerts. Of course, false positives detection in ‘offline mode’ is tremendously valuable. Nevertheless, there is room for improvement here; automated techniques still need to reduce False Positives in real-time. This paper uses the Snort signature detection model to redirect the alerted attacks to Honeypots and verify attacks.Keywords: honeypot, TPOT, snort, NIDS, honeybird, iptables, netfilter, redirection, attack detection, docker, snare, tanner
Procedia PDF Downloads 1565977 Financial Fraud Prediction for Russian Non-Public Firms Using Relational Data
Authors: Natalia Feruleva
Abstract:
The goal of this paper is to develop the fraud risk assessment model basing on both relational and financial data and test the impact of the relationships between Russian non-public companies on the likelihood of financial fraud commitment. Relationships mean various linkages between companies such as parent-subsidiary relationship and person-related relationships. These linkages may provide additional opportunities for committing fraud. Person-related relationships appear when firms share a director, or the director owns another firm. The number of companies belongs to CEO and managed by CEO, the number of subsidiaries was calculated to measure the relationships. Moreover, the dummy variable describing the existence of parent company was also included in model. Control variables such as financial leverage and return on assets were also implemented because they describe the motivating factors of fraud. To check the hypotheses about the influence of the chosen parameters on the likelihood of financial fraud, information about person-related relationships between companies, existence of parent company and subsidiaries, profitability and the level of debt was collected. The resulting sample consists of 160 Russian non-public firms. The sample includes 80 fraudsters and 80 non-fraudsters operating in 2006-2017. The dependent variable is dichotomous, and it takes the value 1 if the firm is engaged in financial crime, otherwise 0. Employing probit model, it was revealed that the number of companies which belong to CEO of the firm or managed by CEO has significant impact on the likelihood of financial fraud. The results obtained indicate that the more companies are affiliated with the CEO, the higher the likelihood that the company will be involved in financial crime. The forecast accuracy of the model is about is 80%. Thus, the model basing on both relational and financial data gives high level of forecast accuracy.Keywords: financial fraud, fraud prediction, non-public companies, regression analysis, relational data
Procedia PDF Downloads 1195976 Digitalization, Economic Growth and Financial Sector Development in Africa
Authors: Abdul Ganiyu Iddrisu
Abstract:
Digitization is the process of transforming analog material into digital form, especially for storage and use in a computer. Significant development of information and communication technology (ICT) over the past years has encouraged many researchers to investigate its contribution to promoting economic growth, and reducing poverty. Yet compelling empirical evidence on the effects of digitization on economic growth remains weak, particularly in Africa. This is because extant studies that explicitly evaluate digitization and economic growth nexus are mostly reports and desk reviews. This points out an empirical knowledge gap in the literature. Hypothetically, digitization influences financial sector development which in turn influences economic growth. Digitization has changed the financial sector and its operating environment. Obstacles to access to financing, for instance, physical distance, minimum balance requirements, low-income flows among others can be circumvented. Savings have increased, micro-savers have opened bank accounts, and banks are now able to price short-term loans. This has the potential to develop the financial sector, however, empirical evidence on digitization-financial development nexus is dearth. On the other hand, a number of studies maintained that financial sector development greatly influences growth of economies. We therefore argue that financial sector development is one of the transmission mechanisms through which digitization affects economic growth. Employing macro-country-level data from African countries and using fixed effects, random effects and Hausman-Taylor estimation approaches, this paper contributes to the literature by analysing economic growth in Africa focusing on the role of digitization, and financial sector development. First, we assess how digitization influence financial sector development in Africa. From an economic policy perspective, it is important to identify digitization determinants of financial sector development so that action can be taken to reduce the economic shocks associated with financial sector distortions. This nexus is rarely examined empirically in the literature. Secondly, we examine the effect of domestic credit to private sector and stock market capitalization as a percentage of GDP as used to proxy for financial sector development on 2 economic growth. Digitization is represented by the volume of digital/ICT equipment imported and GDP growth is used to proxy economic growth. Finally, we examine the effect of digitization on economic growth in the light of financial sector development. The following key results were found; first, digitalization propels financial sector development in Africa. Second, financial sector development enhances economic growth. Finally, contrary to our expectation, the results also indicate that digitalization conditioned on financial sector development tends to reduce economic growth in Africa. However, results of the net effects suggest that digitalization, overall, improves economic growth in Africa. We, therefore, conclude that, digitalization in Africa does not only develop the financial sector but unconditionally contributes the growth of the continent’s economies.Keywords: digitalization, economic growth, financial sector development, Africa
Procedia PDF Downloads 1035975 The Conditionality of Financial Risk: A Comparative Analysis of High-Tech and Utility Companies Listed on the Shenzhen Stock Exchange (SSE)
Authors: Joseph Paul Chunga
Abstract:
The investment universe is awash with a myriad of financial choices that investors have to opt for, which principally culminates into a duality between aggressive or conservative approaches. Howbeit, it is pertinent to emphasize that the investment vehicles with an aggressive approach tend to take on more risk than the latter group in an effort to generate higher future returns for their respective investors. This study examines the conditionality effect that such partiality in financing has on the High-Tech and Public Utility companies listed on the Shenzhen Stock Exchange (SSE). Specifically, it examines the significance of the relationship between capitalization ratios of Total Debt Ratio (TDR), Degree of Financial Leverage (DFL) and profitability ratios of Earnings per Share (EPS) and Returns on Equity (ROE) on the Financial Risk of the two industries. We employ a modified version of the Panel Regression Model used by Rahman (2017) to estimate the relationship. The study finds that there is a significant positive relationship between the capitalization ratios on the financial risk of Public Utility companies more than High-Tech companies and a substantial negative relationship between the profitability ratios and the financial risk of the former than the latter companies. This then spells an important insight for prospective investors with regards to the volatility of earnings of such companies.Keywords: financial leverage, debt financing, conservative firms, aggressive firms
Procedia PDF Downloads 1855974 The Importance of Knowledge Innovation for External Audit on Anti-Corruption
Authors: Adel M. Qatawneh
Abstract:
This paper aimed to determine the importance of knowledge innovation for external audit on anti-corruption in the entire Jordanian bank companies are listed in Amman Stock Exchange (ASE). The study importance arises from the need to recognize the Knowledge innovation for external audit and anti-corruption as the development in the world of business, the variables that will be affected by external audit innovation are: reliability of financial data, relevantly of financial data, consistency of the financial data, Full disclosure of financial data and protecting the rights of investors to achieve the objectives of the study a questionnaire was designed and distributed to the society of the Jordanian bank are listed in Amman Stock Exchange. The data analysis found out that the banks in Jordan have a positive importance of Knowledge innovation for external audit on anti-corruption. They agree on the benefit of Knowledge innovation for external audit on anti-corruption. The statistical analysis showed that Knowledge innovation for external audit had a positive impact on the anti-corruption and that external audit has a significantly statistical relationship with anti-corruption, reliability of financial data, consistency of the financial data, a full disclosure of financial data and protecting the rights of investors.Keywords: knowledge innovation, external audit, anti-corruption, Amman Stock Exchange
Procedia PDF Downloads 4645973 Preliminary Results on a Maximum Mean Discrepancy Approach for Seizure Detection
Authors: Boumediene Hamzi, Turky N. AlOtaiby, Saleh AlShebeili, Arwa AlAnqary
Abstract:
We introduce a data-driven method for seizure detection drawing on recent progress in Machine Learning. The method is based on embedding probability measures in a high (or infinite) dimensional reproducing kernel Hilbert space (RKHS) where the Maximum Mean Discrepancy (MMD) is computed. The MMD is metric between probability measures that are computed as the difference between the means of probability measures after being embedded in an RKHS. Working in RKHS provides a convenient, general functional-analytical framework for theoretical understanding of data. We apply this approach to the problem of seizure detection.Keywords: kernel methods, maximum mean discrepancy, seizure detection, machine learning
Procedia PDF Downloads 2385972 An International Comparison of Global Financial Centers: Major Competitive Strategies
Authors: I. Hakki Eraslan, Birol Ozturk, Istemi Comlekci
Abstract:
This paper begins by defining what is meant by globalization in finance and by identifying the sources of value-added in the internationally-competitive financial services sector origination, trading and distribution of debt and equity capital market instruments and their derivatives, foreign exchange trading and securities brokerage, management of market risk and credit risk, loan syndication and structured bank financings, corporate finance and advisory services, and asset management. These activities are considered in terms of a value-chain one that ultimately gives rise to the real economic gains attributable to financial-center operations. The research presents available evidence as to where the relevant value-added activities usually take place. It then examines the centrifugal and centripetal forces that determine the concentration or dispersal of value-added activity in financial intermediation, both interregionally and internationally. Next, the research assesses the factors, which appear to underlie the locational pattern of international financial centers that has evolved. In preparing this paper, also it is examined the current position and the main opportunities and challenges facing world major financial services sector, and attempted to lay out a potential vision and strategies. It is conducted extensive research, including many internal research materials and publications. It is also engaged closely with the academia, industry practitioners and regulators, and consulted market experts from major world financial centers. More than 60 in‐depth consultative sessions were conducted in the past two years which provided insightful suggestions and innovative ideas on how to further financial industry’s position as an international financial centre. The paper concludes with the outlook for the future pattern of financial centers in the global competitive environment. The ideas and advice gathered are condensed into this paper that recommends to the strategic decision leaders a vision and a strategy for financial services sector to move forward amid a highly competitive environment.Keywords: financial centers, competitiveness, financial services industry, economics
Procedia PDF Downloads 4035971 Strabismus Detection Using Eye Alignment Stability
Authors: Anoop T. R., Otman Basir, Robert F. Hess, Ben Thompson
Abstract:
Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. Currently, many children with strabismus remain undiagnosed until school entry because current automated screening methods have limited success in the preschool age range. A method for strabismus detection using eye alignment stability (EAS) is proposed. This method starts with face detection, followed by facial landmark detection, eye region segmentation, eye gaze extraction, and eye alignment stability estimation. Binarization and morphological operations are performed for segmenting the pupil region from the eye. After finding the EAS, its absolute value is used to differentiate the strabismic eye from the non-strabismic eye. If the value of the eye alignment stability is greater than a particular threshold, then the eyes are misaligned, and if its value is less than the threshold, the eyes are aligned. The method was tested on 175 strabismic and non-strabismic images obtained from Kaggle and Google Photos. The strabismic eye is taken as a positive class, and the non-strabismic eye is taken as a negative class. The test produced a true positive rate of 100% and a false positive rate of 7.69%.Keywords: strabismus, face detection, facial landmarks, eye segmentation, eye gaze, binarization
Procedia PDF Downloads 765970 Outdoor Anomaly Detection with a Spectroscopic Line Detector
Authors: O. J. G. Somsen
Abstract:
One of the tasks of optical surveillance is to detect anomalies in large amounts of image data. However, if the size of the anomaly is very small, limited information is available to distinguish it from the surrounding environment. Spectral detection provides a useful source of additional information and may help to detect anomalies with a size of a few pixels or less. Unfortunately, spectral cameras are expensive because of the difficulty of separating two spatial in addition to one spectral dimension. We investigate the possibility of modifying a simpler spectral line detector for outdoor detection. This may be especially useful if the area of interest forms a line, such as the horizon. We use a monochrome CCD that also enables detection into the near infrared. A simple camera is attached to the setup to determine which part of the environment is spectrally imaged. Our preliminary results indicate that sensitive detection of very small targets is indeed possible. Spectra could be taken from the various targets by averaging columns in the line image. By imaging a set of lines of various width we found narrow lines that could not be seen in the color image but remained visible in the spectral line image. A simultaneous analysis of the entire spectra can produce better results than visual inspection of the line spectral image. We are presently developing calibration targets for spatial and spectral focusing and alignment with the spatial camera. This will present improved results and more use in outdoor applicationKeywords: anomaly detection, spectroscopic line imaging, image analysis, outdoor detection
Procedia PDF Downloads 4815969 The Impact of Financial Literacy, Perception of Debt, and Perception of Risk Toward Student Willingness to Use Online Student Loan
Authors: Irni Rahmayani Johan, Ira Kamelia
Abstract:
One of the impacts of the rapid advancement of technology is the rise of digital finance, including peer-to-peer lending (P2P). P2P lending has been widely marketed, including an online student loan that used the P2P platform. This study aims to analyze the effect of financial literacy, perception of debt, and perception of risk toward student willingness to use the online student loan (P2P lending). Using a cross-sectional study design, in collecting the data this study employed an online survey method, with a total sample of 280 undergraduate students of IPB university, Indonesia. This study found that financial literacy, perception of debt, perception of risk, and interest in using online student loans are categorized as low level. While the level of knowledge is found to be the lowest, the first-year students showed a higher level in terms of willingness to use the online student loan. In addition, the second year students recorded a positive perception toward debt. This study showed that level of study, attendance in personal finance course, and student’ GPA is positively related to financial knowledge. While debt perception is negatively related to financial attitudes. Similarly, the negative relationship is found between risk perception and the willingness to use the online student loan. The determinant factor of the willingness to use online student loans is the level of study, debt perception, financial risk perception, and time risk perception. Students with a higher level of study are more likely to have a lower interest in using online student loans. Moreover, students who perceived debt as a financial stimulator, as well as those with higher level of financial risk perceptions and time risk perceptions, tend to show more interest to use the loan.Keywords: financial literacy, willingness to use, online student loan, perception of risk, perception of debt
Procedia PDF Downloads 1445968 The Effects of the Corporate Governance on the Level of Internet Financial Reporting: Evidence from Turkish Companies
Authors: Raif Parlakkaya, Umran Kahraman, Huseyin Cetin
Abstract:
Internet financial reporting and corporate governance issues are in the focus of academic and professional studies due to their attributed importance by stakeholders of corporations. Major aim of this study is to reveal the relationship between internet financial reporting which is held as dependent variable and some indicators of corporate governance such as the ratio of managerial ownership, blockholder ownership, number of independent members in the board of directors, frequency of meetings by audit committee and education level of audit committee members which are held as independent variables. Main purpose is to reveal the effect of corporate governance on the voluntary efforts of Internet Financial reporting. The scope of the research is limited to the Turkish Corporations listed in Borsa Istanbul (Istanbul Stock Exchange) and findings which are generated by means of SPSS software are revealed in results section and interpreted in conclusions.Keywords: audit committee, corporate governance, internet financial reporting, managerial ownership
Procedia PDF Downloads 5215967 Executive Stock Options, Business Ethics and Financial Reporting Quality
Authors: Philemon Rakoto
Abstract:
This paper tests the improvement of financial reporting quality when firms award stock options to their executives. The originality of this study is that we introduce the moderating effect of business ethics in the model. The sample is made up of 116 Canadian high-technology firms with available data for the fiscal year ending in 2012. We define the quality of financial reporting as the value relevance of accounting information as developed by Ohlson. Our results show that executive stock option award alone does not improve the quality of financial reporting. Rather, the quality improves when a firm awards stock options to its executives and investors perceive that the level of business ethics in that firm is high.Keywords: business ethics, Canada, high-tech firms, stock options, value relevance
Procedia PDF Downloads 4875966 Bayesian Prospective Detection of Small Area Health Anomalies Using Kullback Leibler Divergence
Authors: Chawarat Rotejanaprasert, Andrew Lawson
Abstract:
Early detection of unusual health events depends on the ability to detect rapidly any substantial changes in disease, thus facilitating timely public health interventions. To assist public health practitioners to make decisions, statistical methods are adopted to assess unusual events in real time. We introduce a surveillance Kullback-Leibler (SKL) measure for timely detection of disease outbreaks for small area health data. The detection methods are compared with the surveillance conditional predictive ordinate (SCPO) within the framework of Bayesian hierarchical Poisson modeling and applied to a case study of a group of respiratory system diseases observed weekly in South Carolina counties. Properties of the proposed surveillance techniques including timeliness and detection precision are investigated using a simulation study.Keywords: Bayesian, spatial, temporal, surveillance, prospective
Procedia PDF Downloads 3115965 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery
Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi
Abstract:
One of the most important tasks in urban area remote sensing is detection of impervious surface (IS), such as building roof and roads. However, detection of IS in heterogeneous areas still remains as one of the most challenging works. In this study, detection of concrete roof using an object-oriented approach was proposed. A new rule-based classification was developed to detect concrete roof tile. The proposed rule-based classification was applied to WorldView-2 image. Results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images with 85% accuracy.Keywords: object-based, roof material, concrete tile, WorldView-2
Procedia PDF Downloads 4245964 Analysis of Financial Time Series by Using Ornstein-Uhlenbeck Type Models
Authors: Md Al Masum Bhuiyan, Maria C. Mariani, Osei K. Tweneboah
Abstract:
In the present work, we develop a technique for estimating the volatility of financial time series by using stochastic differential equation. Taking the daily closing prices from developed and emergent stock markets as the basis, we argue that the incorporation of stochastic volatility into the time-varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. While using the technique, we see the long-memory behavior of data sets and one-step-ahead-predicted log-volatility with ±2 standard errors despite the variation of the observed noise from a Normal mixture distribution, because the financial data studied is not fully Gaussian. Also, the Ornstein-Uhlenbeck process followed in this work simulates well the financial time series, which aligns our estimation algorithm with large data sets due to the fact that this algorithm has good convergence properties.Keywords: financial time series, maximum likelihood estimation, Ornstein-Uhlenbeck type models, stochastic volatility model
Procedia PDF Downloads 2415963 Understanding Risky Borrowing Behavior among Young Consumers: An Empirical Study
Authors: T. Hansen
Abstract:
Many consumers are uncertain of what financial borrowing behavior may serve their interests in the best way. This is important since consumers’ risky financial decisions may not only negatively affect their short-term liquidity but may haunt them for years after they are made. Obviously, this is especially critical for young adults who often carry large amounts of student loans or credit card debt, which in turn may hinder their future ability to obtain financial healthiness. Even though factors such as financial knowledge, attitudes towards risk, gender, and motivations of borrowing, among others, are known to influence consumer borrowing behavior, no existing model comprehensibly describes the mechanisms behind young adults’ risky borrowing behavior. This is unfortunate since a better understanding of the relationships between such factors and young adults’ risky borrowing behavior may be of value to financial service providers and financial authorities aiming to improve young adults’ borrowing behavior. This research extends prior research by developing a conceptual framework for the purpose of understanding young adults’ risky borrowing behavior. The study is based on two survey samples comprising 488 young adults aged 18-25 who have not obtained a risky loan (sample 1) and 214 young adults aged 18-25 who already have obtained a risky loan (sample 2), respectively. The results suggest several psychological, sociological, and behavioral factors that may influence young adults’ intentional risky borrowing behavior, which in turn is shown to affect actualized risky borrowing behavior. We also found that the relationship between intentional risky borrowing behavior and actualized risky borrowing behavior is negatively moderated by perceived risk – but not by perceived complexity. In particular, the results of this study indicate that public policy makers, banks and financial educators should seek to eliminate less desirable social norms on how to behave financially. In addition, they should seek to enhance young adults’ risky borrowing perceived risk, thereby preventing that intentional risky borrowing behavior translates into actualized risky behavior.Keywords: financial services, risky borrowing behavior, young adults, financial knowledge, social norms, perceived risk, financial trust, public financial policy
Procedia PDF Downloads 2655962 Digitization and Economic Growth in Africa: The Role of Financial Sector Development
Authors: Abdul Ganiyu Iddrisu, Bei Chen
Abstract:
Digitization is the process of transforming analog material into digital form, especially for storage and use in a computer. Significant development of information and communication technology (ICT) over the past years has encouraged many researchers to investigate its contribution to promoting economic growth and reducing poverty. Yet the compelling empirical evidence on the effects of digitization on economic growth remains weak, particularly in Africa. This is because extant studies that explicitly evaluate digitization and economic growth nexus are mostly reports and desk reviews. This points out an empirical knowledge gap in the literature. Hypothetically, digitization influences financial sector development which in turn influences economic growth. Digitization has changed the financial sector and its operating environment. Obstacles to access to financing, for instance, physical distance, minimum balance requirements, and low-income flows, among others can be circumvented. Savings have increased, micro-savers have opened bank accounts, and banks are now able to price short-term loans. This has the potential to develop the financial sector. However, empirical evidence on the digitization-financial development nexus is dearth. On the other hand, a number of studies maintained that financial sector development greatly influences growth of economies. We, therefore, argue that financial sector development is one of the transmission mechanisms through which digitization affects economic growth. Employing macro-country-level data from African countries and using fixed effects, random effects and Hausman-Taylor estimation approaches, this paper contributes to the literature by analysing economic growth in Africa, focusing on the role of digitization and financial sector development. First, we assess how digitization influences financial sector development in Africa. From an economic policy perspective, it is important to identify digitization determinants of financial sector development so that action can be taken to reduce the economic shocks associated with financial sector distortions. This nexus is rarely examined empirically in the literature. Secondly, we examine the effect of domestic credit to the private sector and stock market capitalization as a percentage of GDP as used to proxy for financial sector development on economic growth. Digitization is represented by the volume of digital/ICT equipment imported and GDP growth is used to proxy economic growth. Finally, we examine the effect of digitization on economic growth in the light of financial sector development. The following key results were found; first, digitalization propels financial sector development in Africa. Second, financial sector development enhances economic growth. Finally, contrary to our expectation, the results also indicate that digitalization conditioned on financial sector development tends to reduce economic growth in Africa. However, results of the net effects suggest that digitalization, overall, improve economic growth in Africa. We, therefore, conclude that, digitalization in Africa does not only develop the financial sector but unconditionally contributes the growth of the continent’s economies.Keywords: digitalization, financial sector development, Africa, economic growth
Procedia PDF Downloads 1405961 The Effects of Relationship Banking on the Financial Performance of SMEs in Kenya
Authors: Abraham Rotich
Abstract:
The purpose of this study was to determine the effects of relationship banking on the financial performance of SMEs. The paper attempted to establish the link between the constructs of relationship banking and SME performance. The study was guided by relationship lending, relationship monitoring, relationship risk sharing and bundle of products as independent variables while financial performance will be the dependent variable. The study used a quasi experimental design with population being the 620 SMEs who have a relationship banking arrangement with banks in Nairobi. The study used stratified sampling to pick a sample of 235. The population of interest will be the CEOs of the respective companies. The basis of stratification is the sectors in which the SMEs operate in. The study will use a questionnaire to collect data. The questionnaire will have both open and close ended questions. A pilot study will be conducted to test reliability and validity of questionnaire. The data was analyzed using descriptive statistics. Regression analysis was employed to test if there is a relationship between the dependent and the independent variable. The study found evidence that relationship banking positively impacts on financial performance of SMEs. Specifically, the study established that each component of relationship banking in this study i.e relationship lending, monitoring, bundle of products and risk sharing positively affects financial performance.Keywords: relationship banking, SMEs, financial performance, entrepreneurial orientation
Procedia PDF Downloads 3225960 Conventional and Islamic Perspective in Accounting: Potential for Alternative Reporting Framework
Authors: Shibly Abdullah
Abstract:
This paper provides an overview of fundamental philosophical and functional differences in conventional and Islamic accounting. The aim of this research is to undertake a detailed analysis focus on specific illustrations drawn from both these systems and highlight how these differences implicate in recording financial transactions and preparation of financial reports for a range of stakeholders. Accounting as being universally considered as a platform for providing a ‘true and fair’ view of corporate entities can be challenged in the current world view, as the business environment has evolved and transformed significantly. Growth of the non-traditional corporate entity such as Islamic financial institutions, fundamentally questions the applicability of conventional accounting standards in preparation of Shariah-compliant financial reporting. Coupled with this, there are significant concerns about the wider applicability of Islamic accounting standards and framework in order to achieve reporting practices satisfying the information needs generally. Against the backdrop of such a context, this paper raises fundamental question as to how potential convergence could be achieved between these two systems in order to provide users’ a transparent and comparable state of financial information resulting in an alternative framework of financial reporting.Keywords: accounting, conventional accounting, corporate reporting, Islamic accounting
Procedia PDF Downloads 2825959 On the Impact of Oil Price Fluctuations on Stock Markets: A Multivariate Long-Memory GARCH Framework
Authors: Manel Youssef, Lotfi Belkacem
Abstract:
This paper employs multivariate long memory GARCH models to simultaneously estimate mean and conditional variance spillover effects between oil prices and different financial markets. Since different financial assets are traded based on these market sector returns, it’s important for financial market participants to understand the volatility transmission mechanism over time and across these series in order to make optimal portfolio allocation decisions. We examine weekly returns from January 1, 2003 to November 30, 2012 and find evidence of significant transmission of shocks and volatilities between oil prices and some of the examined financial markets. The findings support the idea of cross-market hedging and sharing of common information by investors.Keywords: oil prices, stock indices returns, oil volatility, contagion, DCC-multivariate (FI) GARCH
Procedia PDF Downloads 5335958 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic
Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato
Abstract:
Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security
Procedia PDF Downloads 3685957 Overview and Future Opportunities of Sarcasm Detection on Social Media Communications
Authors: Samaneh Nadali, Masrah Azrifah Azmi Murad, Nurfadhlina Mohammad Sharef
Abstract:
Sarcasm is a common phenomenon in social media which is a nuanced form of language for stating the opposite of what is implied. Due to the intentional ambiguity, analysis of sarcasm is a difficult task not only for a machine but even for a human. Although sarcasm detection has an important effect on sentiment, it is usually ignored in social media analysis because sarcasm analysis is too complicated. While there is a few systems exist which can detect sarcasm, almost no work has been carried out on a study and the review of the existing work in this area. This survey presents a nearly full image of sarcasm detection techniques and the related fields with brief details. The main contributions of this paper include the illustration of the recent trend of research in the sarcasm analysis and we highlight the gaps and propose a new framework that can be explored.Keywords: sarcasm detection, sentiment analysis, social media, sarcasm analysis
Procedia PDF Downloads 4575956 Developing Artificial Neural Networks (ANN) for Falls Detection
Authors: Nantakrit Yodpijit, Teppakorn Sittiwanchai
Abstract:
The number of older adults is rising rapidly. The world’s population becomes aging. Falls is one of common and major health problems in the elderly. Falls may lead to acute and chronic injuries and deaths. The fall-prone individuals are at greater risk for decreased quality of life, lowered productivity and poverty, social problems, and additional health problems. A number of studies on falls prevention using fall detection system have been conducted. Many available technologies for fall detection system are laboratory-based and can incur substantial costs for falls prevention. The utilization of alternative technologies can potentially reduce costs. This paper presents the new design and development of a wearable-based fall detection system using an Accelerometer and Gyroscope as motion sensors for the detection of body orientation and movement. Algorithms are developed to differentiate between Activities of Daily Living (ADL) and falls by comparing Threshold-based values with Artificial Neural Networks (ANN). Results indicate the possibility of using the new threshold-based method with neural network algorithm to reduce the number of false positive (false alarm) and improve the accuracy of fall detection system.Keywords: aging, algorithm, artificial neural networks (ANN), fall detection system, motion sensorsthreshold
Procedia PDF Downloads 4965955 Financial Reporting Quality and International Financial Reporting
Authors: Matthias Nnadi
Abstract:
Using samples of 250 large listed firms by market capitalization in China and Hong Kong, we conducted empirical test to determine the impact of regulatory environment on reporting quality following IFRS convergence using three financial reporting measures; earning management, timely loss recognition and value relevance. Our results indicate that accounting data are more value relevant for Hong Kong listed firms than the Chinese A-share firms. The empirical results for timely loss recognition further reveal that there is a larger coefficient estimate on bad news earnings, which suggests that Chines A-share firms are more likely to report losses in a timely manner. The results support the evidence that substantial convergence of IFRS can improve financial reporting quality in a regulated environment such as China. This further supports the expectation that IFRS are relevant to China and has positive effect on its accounting practice and quality.Keywords: reporting, quality, earning, loss, relevance, financial, China, Hong Kong
Procedia PDF Downloads 464