Search results for: Boltzmann statistics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1935

Search results for: Boltzmann statistics

1545 Artificial Neural Network in FIRST Robotics Team-Based Prediction System

Authors: Cedric Leong, Parth Desai, Parth Patel

Abstract:

The purpose of this project was to develop a neural network based on qualitative team data to predict alliance scores to determine winners of matches in the FIRST Robotics Competition (FRC). The game for the competition changes every year with different objectives and game objects, however the idea was to create a prediction system which can be reused year by year using some of the statistics that are constant through different games, making our system adaptable to future games as well. Aerial Assist is the FRC game for 2014, and is played in alliances of 3 teams going against one another, namely the Red and Blue alliances. This application takes any 6 teams paired into 2 alliances of 3 teams and generates the prediction for the final score between them.

Keywords: artifical neural network, prediction system, qualitative team data, FIRST Robotics Competition (FRC)

Procedia PDF Downloads 513
1544 Modern Imputation Technique for Missing Data in Linear Functional Relationship Model

Authors: Adilah Abdul Ghapor, Yong Zulina Zubairi, Rahmatullah Imon

Abstract:

Missing value problem is common in statistics and has been of interest for years. This article considers two modern techniques in handling missing data for linear functional relationship model (LFRM) namely the Expectation-Maximization (EM) algorithm and Expectation-Maximization with Bootstrapping (EMB) algorithm using three performance indicators; namely the mean absolute error (MAE), root mean square error (RMSE) and estimated biased (EB). In this study, we applied the methods of imputing missing values in the LFRM. Results of the simulation study suggest that EMB algorithm performs much better than EM algorithm in both models. We also illustrate the applicability of the approach in a real data set.

Keywords: expectation-maximization, expectation-maximization with bootstrapping, linear functional relationship model, performance indicators

Procedia PDF Downloads 399
1543 Applications of Artificial Neural Networks in Civil Engineering

Authors: Naci Büyükkaracığan

Abstract:

Artificial neural networks (ANN) is an electrical model based on the human brain nervous system and working principle. Artificial neural networks have been the subject of an active field of research that has matured greatly over the past 55 years. ANN now is used in many fields. But, it has been viewed that artificial neural networks give better results in particular optimization and control systems. There are requirements of optimization and control system in many of the area forming the subject of civil engineering applications. In this study, the first artificial intelligence systems are widely used in the solution of civil engineering systems were examined with the basic principles and technical aspects. Finally, the literature reviews for applications in the field of civil engineering were conducted and also artificial intelligence techniques were informed about the study and its results.

Keywords: artificial neural networks, civil engineering, Fuzzy logic, statistics

Procedia PDF Downloads 412
1542 The Customer Attitude and Behavior of Boutique Hotels in Eastern Part of Thailand

Authors: Anocha Rojanapanich

Abstract:

This research aimed to identify important factors that effect customer satisfaction in boutique hotels and the important factors effecting customer loyalty in returning to boutique hotels. Furthermore, this study also aimed to study demographics, which effect variable factors. Four hundred questionnaires were completed by customers of the boutique hotels. The descriptive statistics used in this paper were percentages, means, and standard deviation (S.D.), while hypothesis testing was done using T-test, Anova, Correlation and Regression to analyze the relationship among those factors. In terms of the purpose in staying, it was found that the largest respondent was for ‘leisure purposes’. While the frequency indicated that most of the customers who stayed ‘once’in the last two years in the hotels had less concern in the hotel’s image than other groups. For customer’s perceived value and income levels had an influence on customer perceived values in both functional value price and emotional value.

Keywords: boutique hotels, customer attitude, customer satisfaction, customer loyalty

Procedia PDF Downloads 308
1541 Impact of Job Burnout on Job Satisfaction and Job Performance of Front Line Employees in Bank: Moderating Role of Hope and Self-Efficacy

Authors: Huma Khan, Faiza Akhtar

Abstract:

The present study investigates the effects of burnout toward job performance and job satisfaction with the moderating role of hope and self-efficacy. Findings from 310 frontline employees of Pakistani commercial banks (Lahore, Karachi & Islamabad) disclosed burnout has negative significant effects on job performance and job satisfaction. Simple random sampling technique was used to collect data and inferential statistics were applied to analyzed the data. However, results disclosed no moderation effect of hope on burnout, job performance or with job satisfaction. Moreover, Data significantly supported the moderation effect of self-efficacy. Study further shed light on the development of psychological capital. Importance of the implication of the current finding is discussed.

Keywords: burnout, hope, job performance, job satisfaction, psychological capital, self-efficacy

Procedia PDF Downloads 141
1540 Social Skills for Students with and without Learning Disabilities in Primary Education in Saudi Arabia

Authors: Omer Agail

Abstract:

The purpose of this study was to assess the social skills of students with and without learning disabilities in primary education in Saudi Arabia. A Social Skills Rating Scale for Teachers Form (SSRS-TF) was used to evaluate students' social skills as perceived by teachers. A randomly-selected sample was chosen from students with and without learning disabilities. Descriptive statistics were used to describe the demographic characteristics of participants. Analysis indicated that there were statistically significant differences in SSRS-TF by academic status, i.e. students with learning disabilities exhibit less social skills compared to students without learning disabilities. In addition, analysis indicated that there were no statistically significant differences in SSRS-TF by gender. A conclusion and recommendations are presented.

Keywords: primary education, students with learning disabilities, social skills, social competence

Procedia PDF Downloads 391
1539 The Study of Suan Sunandha Rajabhat University’s Image among People in Bangkok

Authors: Sawitree Suvanno

Abstract:

The objective of this study is to investigate the Suan Sunandha Rajabhat University (SSRU) image among people in Bangkok. This study was conducted in the quantitative research and the questionnaires were used to collect data from 360 people of a sample group. Descriptive and inferential statistics were used in data analysis. The result showed that the SSRU’s image among people in Bangkok is in the “rather true” level of questionnaire scale in all aspects measured. The aspect that gains the utmost average is that the university is considered as royal-oriented and conservative; 2) the instructional supplies, buildings and venue promoting Thai art and tradition; 3) the moral and honest university administration; 4) the curriculum and the skillful students as well as graduates. Additional, people in Bangkok with different profession have the different view to the SSRU’s image at the significant level 0.05; there is no significant difference in gender, age and income.

Keywords: Bangkok, demographics, image, Suan Sunandha Rajabhpat University

Procedia PDF Downloads 247
1538 Key Factors for a Smart City

Authors: Marta Christina Suciu, Cristina Andreea Florea

Abstract:

The purpose of this paper is to highlight the relevance of building smart cities in the context of regional development and to analyze the important factors that make a city smart. These cities could be analyzed through the perspective of environment quality, the socio-cultural condition, technological applications and innovations, the vitality of the economic environment and public policies. Starting with these five sustainability domains, we will demonstrate the hypothesis that smart cities are the engine of the regional development. The aim of this paper is to assess the implications of smart cities, in the context of sustainable development, analyzing the benefits of developing creative and innovative cities. Regarding the methodology, it is used the systemic, logical and comparative analysis of important literature and data, also descriptive statistics and correlation analysis. In conclusion, we will define a direction on the regional development and competitiveness increasing.

Keywords: creativity, innovation, regional development, smart city, sustainability, triple helix

Procedia PDF Downloads 489
1537 Low Cost Inertial Sensors Modeling Using Allan Variance

Authors: A. A. Hussen, I. N. Jleta

Abstract:

Micro-electromechanical system (MEMS) accelerometers and gyroscopes are suitable for the inertial navigation system (INS) of many applications due to the low price, small dimensions and light weight. The main disadvantage in a comparison with classic sensors is a worse long term stability. The estimation accuracy is mostly affected by the time-dependent growth of inertial sensor errors, especially the stochastic errors. In order to eliminate negative effect of these random errors, they must be accurately modeled. Where the key is the successful implementation that depends on how well the noise statistics of the inertial sensors is selected. In this paper, the Allan variance technique will be used in modeling the stochastic errors of the inertial sensors. By performing a simple operation on the entire length of data, a characteristic curve is obtained whose inspection provides a systematic characterization of various random errors contained in the inertial-sensor output data.

Keywords: Allan variance, accelerometer, gyroscope, stochastic errors

Procedia PDF Downloads 442
1536 Employer Branding and Its Influence in Employee Retention in the Non Governmental Organizations in Jordan

Authors: Wasfi Alrawabdeh

Abstract:

Abstract The prime purpose of this study was to investigate whether employers use branding in their organizations, and how employer branding influence the attraction and retention of employees in the Non Governmental Organizations (NGOs) in Jordan. The descriptive survey design was adopted for the study. 500 random NGOs employees', including junior and senior staff were conveniently sampled for the study. Data was analyzed using both descriptive and inferential statistics. The results of the study suggest that organizations use employer-branding processes in their business to attract employees and customers. It was also found that brand names of organizations might significantly influence the decision of employees to join and stay in the organizations. It was therefore suggested that employers need to create conducive work environment with conditions to enable employees feel comfortable and remain in the organization.

Keywords: Employer branding, Employee attraction , and retention , Trust , Satisfaction.

Procedia PDF Downloads 161
1535 Using AI for Analysing Political Leaders

Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu

Abstract:

This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.

Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence

Procedia PDF Downloads 86
1534 Investigation of Software Integration for Simulations of Buoyancy-Driven Heat Transfer in a Vehicle Underhood during Thermal Soak

Authors: R. Yuan, S. Sivasankaran, N. Dutta, K. Ebrahimi

Abstract:

This paper investigates the software capability and computer-aided engineering (CAE) method of modelling transient heat transfer process occurred in the vehicle underhood region during vehicle thermal soak phase. The heat retention from the soak period will be beneficial to the cold start with reduced friction loss for the second 14°C worldwide harmonized light-duty vehicle test procedure (WLTP) cycle, therefore provides benefits on both CO₂ emission reduction and fuel economy. When vehicle undergoes soak stage, the airflow and the associated convective heat transfer around and inside the engine bay is driven by the buoyancy effect. This effect along with thermal radiation and conduction are the key factors to the thermal simulation of the engine bay to obtain the accurate fluids and metal temperature cool-down trajectories and to predict the temperatures at the end of the soak period. Method development has been investigated in this study on a light-duty passenger vehicle using coupled aerodynamic-heat transfer thermal transient modelling method for the full vehicle under 9 hours of thermal soak. The 3D underhood flow dynamics were solved inherently transient by the Lattice-Boltzmann Method (LBM) method using the PowerFlow software. This was further coupled with heat transfer modelling using the PowerTHERM software provided by Exa Corporation. The particle-based LBM method was capable of accurately handling extremely complicated transient flow behavior on complex surface geometries. The detailed thermal modelling, including heat conduction, radiation, and buoyancy-driven heat convection, were integrated solved by PowerTHERM. The 9 hours cool-down period was simulated and compared with the vehicle testing data of the key fluid (coolant, oil) and metal temperatures. The developed CAE method was able to predict the cool-down behaviour of the key fluids and components in agreement with the experimental data and also visualised the air leakage paths and thermal retention around the engine bay. The cool-down trajectories of the key components obtained for the 9 hours thermal soak period provide vital information and a basis for the further development of reduced-order modelling studies in future work. This allows a fast-running model to be developed and be further imbedded with the holistic study of vehicle energy modelling and thermal management. It is also found that the buoyancy effect plays an important part at the first stage of the 9 hours soak and the flow development during this stage is vital to accurately predict the heat transfer coefficients for the heat retention modelling. The developed method has demonstrated the software integration for simulating buoyancy-driven heat transfer in a vehicle underhood region during thermal soak with satisfying accuracy and efficient computing time. The CAE method developed will allow integration of the design of engine encapsulations for improving fuel consumption and reducing CO₂ emissions in a timely and robust manner, aiding the development of low-carbon transport technologies.

Keywords: ATCT/WLTC driving cycle, buoyancy-driven heat transfer, CAE method, heat retention, underhood modeling, vehicle thermal soak

Procedia PDF Downloads 153
1533 Authentication Based on Hand Movement by Low Dimensional Space Representation

Authors: Reut Lanyado, David Mendlovic

Abstract:

Most biological methods for authentication require special equipment and, some of them are easy to fake. We proposed a method for authentication based on hand movement while typing a sentence with a regular camera. This technique uses the full video of the hand, which is harder to fake. In the first phase, we tracked the hand joints in each frame. Next, we represented a single frame for each individual using our Pose Agnostic Rotation and Movement (PARM) dimensional space. Then, we indicated a full video of hand movement in a fixed low dimensional space using this method: Fixed Dimension Video by Interpolation Statistics (FDVIS). Finally, we identified each individual in the FDVIS representation using unsupervised clustering and supervised methods. Accuracy exceeds 96% for 80 individuals by using supervised KNN.

Keywords: authentication, feature extraction, hand recognition, security, signal processing

Procedia PDF Downloads 127
1532 Content Analysis and Attitude of Thai Students towards Thai Series “Hormones: Season 2”

Authors: Siriporn Meenanan

Abstract:

The objective of this study is to investigate the attitude of Thai students towards the Thai series "Hormones the Series Season 2". This study was conducted in the quantitative research, and the questionnaires were used to collect data from 400 people of the sample group. Descriptive statistics were used in data analysis. The findings reveal that most participants have positive comments regarding the series. They strongly agreed that the series reflects on the way of life and problems of teenagers in Thailand. Hence, the participants believe that if adults have a chance to watch the series, they will have the better understanding of the teenagers. In addition, the participants also agreed that the contents of the play are appropriate and satisfiable as the contents of “Hormones the Series Season 2” will raise awareness among the teens and use it as a guide to prevent problems that might happen during their teenage life.

Keywords: content analysis, attitude, Thai series, hormones the Series

Procedia PDF Downloads 229
1531 A More Powerful Test Procedure for Multiple Hypothesis Testing

Authors: Shunpu Zhang

Abstract:

We propose a new multiple test called the minPOP test for testing multiple hypotheses simultaneously. Under the assumption that the test statistics are independent, we show that the minPOP test has higher global power than the existing multiple testing methods. We further propose a stepwise multiple-testing procedure based on the minPOP test and two of its modified versions (the Double Truncated and Left Truncated minPOP tests). We show that these multiple tests have strong control of the family-wise error rate (FWER). A method for finding the p-values of the proposed tests after adjusting for multiplicity is also developed. Simulation results show that the Double Truncated and Left Truncated minPOP tests, in general, have a higher number of rejections than the existing multiple testing procedures.

Keywords: multiple test, single-step procedure, stepwise procedure, p-value for multiple testing

Procedia PDF Downloads 83
1530 An Approach Based on Statistics and Multi-Resolution Representation to Classify Mammograms

Authors: Nebi Gedik

Abstract:

One of the significant and continual public health problems in the world is breast cancer. Early detection is very important to fight the disease, and mammography has been one of the most common and reliable methods to detect the disease in the early stages. However, it is a difficult task, and computer-aided diagnosis (CAD) systems are needed to assist radiologists in providing both accurate and uniform evaluation for mass in mammograms. In this study, a multiresolution statistical method to classify mammograms as normal and abnormal in digitized mammograms is used to construct a CAD system. The mammogram images are represented by wave atom transform, and this representation is made by certain groups of coefficients, independently. The CAD system is designed by calculating some statistical features using each group of coefficients. The classification is performed by using support vector machine (SVM).

Keywords: wave atom transform, statistical features, multi-resolution representation, mammogram

Procedia PDF Downloads 222
1529 Investigating Income Diversification Strategies into Off-Farm Activities Among Rural Households in Ethiopia

Authors: Kibret Berhanu Getinet

Abstract:

Off-farm income diversification by farm rural households has gained the attention of researchers and policymakers due to the fact that agriculture failed to meet the needs of people in developing countries like Ethiopia. The objective of this study was to investigate income diversification strategies into off-farm activities among rural households in Hawassa Zuria Woreda, Sidama National Regional State, Ethiopia. The study used primary and secondary data sources for the primary data collection questionnaire employed as a data collection instrument. A multistage sampling technique was used to collect data from a total of 197 sample households from four kebeles of the study area. Descriptive statistics, as well as econometrics methods of data analysis, were employed. The descriptive statistics result indicates that the majority of sample rural households (68.53 %) have engaged in off-farm income diversification activities while the remaining 31.47% of households did not participate in the diversification in the study area. The choice of participants among the strategies indicates that 6.60% of respondents participated in off-farm wage employment, 30.46% participated in off-farm self-employment, and about 31.47% of them participated in both off-farm wage employment. The study revealed that the share of off-farm income in total annual earnings of households was about 48.457%, and thus, the off-farm diversification significantly contributes to the rural household income. Moreover, binary and multinomial logistic regression models were employed to identify factors that affect the participation and the choices of the off-farm income diversification strategies, respectively. The binary logit model result indicated that agro-ecological zone, education status of the households, available technical skills of the household, household saving, total livestock owned by the households, access to electricity, road access and being married of household head were significant and positively affected the chance of diversification in off-farm activities while the on-farm income of households is negatively affected the chance of diversification. Similarly, the multinomial logistic regression model estimate revealed that agroecological zone, on-farm income, available technical skills, household savings, and access to electricity are positively related and significantly influenced the household’s choice of employment into off-farm wage employment. The off-farm self-employment diversification choice is significantly influenced by on-farm income, available technical skills, household savings, total livestock owned, and access to electricity. Moreover, the result showed that the factors that affect the choice of farm households to engage in both off-farm wage and self-employment are ecological zone, education status, on-farm income, available technical skills, household own saving, market access, total livestock owned, access to electricity and road access. Thus, due attention should be given to addressing the demographic, socio-economic, and institutional constraints to strengthen off-farm income diversification strategies to improve the income of rural households.

Keywords: off-farm, incoem, diversification, logit model

Procedia PDF Downloads 54
1528 Competence of E-Office System of Suan Sunandha Rajabhat University

Authors: Somkiat Korbuakaew, Bongkoch Puttawong

Abstract:

This research aims to study the level of e-office system competence of Suan Sunandha Rajabhat University graded by age, education background, position and work experience. Sample of this research is 291 staff at Suan Sunandha Rajabhat University. Data were collected by questionnaire. Statistics used in the research are percentage, mean and standard deviation. The result shows that the overall competence of E-office System of the university staff is at average level. When considered in each aspect, it was found that competency level for creating-forwarding-signing documents is high, while competency level for booking meeting rooms, requesting for transportation service, blackboard system, public relations and making appointment and meeting are average.

Keywords: competence, e-office, education background, work experience

Procedia PDF Downloads 256
1527 Rest Behavior and Restoration: Searching for Patterns through a Textual Analysis

Authors: Sandra Christina Gressler

Abstract:

Resting is essentially the physical and mental relaxation. So, can behaviors that go beyond the merely physical relaxation to some extent be understood as a behavior of restoration? Studies on restorative environments emphasize the physical, mental and social benefits that some environments can provide and suggest that activities in natural environments reduce the stress of daily lives, promoting recovery against the daily wear. These studies, though specific in their results, do not unify the different possibilities of restoration. Considering the importance of restorative environments by promoting well-being, this research aims to verify the applicability of the theory on restorative environments in a Brazilian context, inquiring about the environment/behavior of rest. The research sought to achieve its goals by; a) identifying daily ways of how participants interact/connect with nature; b) identifying the resting environments/behavior; c) verifying if rest strategies match the restorative environments suggested by restorative studies; and d) verifying different rest strategies related to time. Workers from different companies in which certain functions require focused attention, and high school students from different schools, participated in this study. An interview was used to collect data and information. The data obtained were compared with studies of attention restoration theory and stress recovery. The collected data were analyzed through the basic descriptive inductive statistics and the use of the software ALCESTE® (Analyse Lexicale par Contexte d'un Ensemble de Segments de Texte). The open questions investigate perception of nature on a daily basis – analysis using ALCESTE; rest periods – daily, weekends and holidays – analysis using ALCESTE with tri-croisé; and resting environments and activities – analysis using a simple descriptive statistics. According to the results, environments with natural characteristics that are compatible with personal desires (physical aspects and distance) and residential environments when they fulfill the characteristics of refuge, safety, and self-expression, characteristics of primary territory, meet the requirements of restoration. Analyzes suggest that the perception of nature has a wide range that goes beyond the objects nearby and possible to be touched, as well as observation and contemplation of details. The restoration processes described in the studies of attention restoration theory occur gradually (hierarchically), starting with being away, following compatibility, fascination, and extent. They are also associated with the time that is available for rest. The relation between rest behaviors and the bio-demographic characteristics of the participants are noted. It reinforces, in studies of restoration, the need to insert not only investigations regarding the physical characteristics of the environment but also behavior, social relationship, subjective reactions, distance and time available. The complexity of the theme indicates the necessity for multimethod studies. Practical contributions provide subsidies for developing strategies to promote the welfare of the population.

Keywords: attention restoration theory, environmental psychology, rest behavior, restorative environments

Procedia PDF Downloads 193
1526 Financial Information Transparency on Investor Behavior in the Private Company in Dusit Area

Authors: Yosapon Kidsuntad

Abstract:

The purpose of this dissertation was to explore the relationship between financial transparency and investor behavior. In carrying out this inquiry, the researcher used a questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. The results revealed that there are significant differences investor perceptions of the different dimensions of financial information transparency. These differences correspond to demographical variables with the exception of the educational level variable. It was also found that there are relationships between investor perceptions of the dimensions of financial information transparency and investor behavior in the private company in Dusit Area. Finally, the researcher also found that there are differences in investor behavior corresponding to different categories of investor experience.

Keywords: financial information transparency, investor behavior, private company, Dusit Area

Procedia PDF Downloads 330
1525 Risk and Impact of the COVID-19 Crisis on Real Estate

Authors: Tahmina Akhter

Abstract:

In the present work, we make a study of the repercussions of the pandemic generated by Covid-19 in the real estate market, this disease has affected almost all sectors of the economy across different countries in the world, including the real estate markets. This documentary research, basically focused on the years 2021 and 2022, as we seek to focus on the strongest time of the pandemic. We carried out the study trying to take into account the repercussions throughout the world and that is why the data we analyze takes into account information from all continents as possible. Particularly in the US, Europe and China where the Covid-19 impact has been of such proportions that it has fundamentally affected the housing market for middle-class housing. In addition, a risk has been generated, the investment of this market, due to the fact that companies in the sector have generated losses in certain cases; in the Chinese case, Evergrande, one of the largest companies in the sector, fell into default.

Keywords: COVID-19, real estate market, statistics, pandemic

Procedia PDF Downloads 85
1524 Healthcare Data Mining Innovations

Authors: Eugenia Jilinguirian

Abstract:

In the healthcare industry, data mining is essential since it transforms the field by collecting useful data from large datasets. Data mining is the process of applying advanced analytical methods to large patient records and medical histories in order to identify patterns, correlations, and trends. Healthcare professionals can improve diagnosis accuracy, uncover hidden linkages, and predict disease outcomes by carefully examining these statistics. Additionally, data mining supports personalized medicine by personalizing treatment according to the unique attributes of each patient. This proactive strategy helps allocate resources more efficiently, enhances patient care, and streamlines operations. However, to effectively apply data mining, however, and ensure the use of private healthcare information, issues like data privacy and security must be carefully considered. Data mining continues to be vital for searching for more effective, efficient, and individualized healthcare solutions as technology evolves.

Keywords: data mining, healthcare, big data, individualised healthcare, healthcare solutions, database

Procedia PDF Downloads 66
1523 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection

Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu

Abstract:

Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.

Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception

Procedia PDF Downloads 575
1522 International Marketing in Business Practice of Small and Medium-Sized Enterprises

Authors: K. Matušínská, Z. Bednarčík, M. Klepek

Abstract:

This paper examines international marketing in business practice of Czech exporting small and medium-sized enterprises (SMEs) with regard to the strategic perspectives. Research was focused on Czech exporting SMEs from Moravian-Silesia region and their behaviour on international markets. For purpose of collecting data, a questionnaire was given to 262 SMEs involved in international business. Statistics utilized in this research included frequency, mean, percentage, and chi-square test. Data were analysed by Statistical Package for the Social Sciences software. The research analysis disclosed that there is certain space for improvement in strategic marketing especially in marketing research, perception of cultural and social differences, product adaptation and usage of marketing communication tools.

Keywords: international marketing, marketing mix, marketing research, small and medium-sized enterprises, strategic marketing

Procedia PDF Downloads 330
1521 Digital Advance Care Planning and Directives: Early Observations of Adoption Statistics and Responses from an All-Digital Consumer-Driven Approach

Authors: Robert L. Fine, Zhiyong Yang, Christy Spivey, Bonnie Boardman, Maureen Courtney

Abstract:

Importance: Barriers to traditional advance care planning (ACP) and advance directive (AD) creation have limited the promise of ACP/AD for individuals and families, the healthcare team, and society. Reengineering ACP by using a web-based, consumer-driven process has recently been suggested. We report early experience with such a process. Objective: Begin to analyze the potential of the creation and use of ACP/ADs as generated by a consumer-friendly, digital process by 1) assessing the likelihood that consumers would create ACP/ADs without structured intervention by medical or legal professionals, and 2) analyzing the responses to determine if the plans can help doctors better understand a person’s goals, preferences, and priorities for their medical treatments and the naming of healthcare agents. Design: The authors chose 900 users of MyDirectives.com, a digital ACP/AD tool, solely based on their state of residence in order to achieve proportional representation of all 50 states by population size and then reviewed their responses, summarizing these through descriptive statistics including treatment preferences, demographics, and revision of preferences. Setting: General United States population. Participants: The 900 participants had an average age of 50.8 years (SD = 16.6); 84.3% of the men and 91% of the women were in self-reported good health when signing their ADs. Main measures: Preferences regarding the use of life-sustaining treatments, where to spend final days, consulting a supportive and palliative care team, attempted cardiopulmonary resuscitation (CPR), autopsy, and organ and tissue donation. Results: Nearly 85% of respondents prefer cessation of life-sustaining treatments during their final days whenever those may be, 76% prefer to spend their final days at home or in a hospice facility, and 94% wanted their future doctors to consult a supportive and palliative care team. 70% would accept attempted CPR in certain limited circumstances. Most respondents would want an autopsy under certain conditions, and 62% would like to donate their organs. Conclusions and relevance: Analysis of early experience with an all-digital web-based ACP/AD platform demonstrates that individuals from a wide range of ages and conditions can engage in an interrogatory process about values, goals, preferences, and priorities for their medical treatments by developing advance directives and easily make changes to the AD created. Online creation, storage, and retrieval of advance directives has the potential to remove barriers to ACP/AD and, thus, to further improve patient-centered end-of-life care.

Keywords: Advance Care Plan, Advance Decisions, Advance Directives, Consumer; Digital, End of Life Care, Goals, Living Wills, Prefences, Universal Advance Directive, Statements

Procedia PDF Downloads 327
1520 Language Learning Strategies of Chinese Students at Suan Sunandha Rajabhat University in Thailand

Authors: Gunniga Anugkakul, Suwaree Yordchim

Abstract:

The objectives were to study language learning strategies (LLSs) employed by Chinese students, and the frequency of LLSs they used, and examine the relationship between the use of LLSs and gender. The Strategy Inventory for Language Learning (SILL) by Oxford was administered to thirty-six Chinese students at Suan Sunandha Rajabhat University in Thailand. The data obtained was analyzed using descriptive statistics and chi-square tests. Three useful findings were found on the use of LLSs reported by Chinese students. First, Chinese students used overall LLSs at a high level. Second, among the six strategy groups, Chinese students employed compensation strategy most frequently and memory strategy least frequently. Third, the research results also revealed that gender had significant effect on Chinese Student’s use of overall LLSs.

Keywords: English language, language learning strategy, Chinese students, compensation strategy

Procedia PDF Downloads 679
1519 Assessing the Structure of Non-Verbal Semantic Knowledge: The Evaluation and First Results of the Hungarian Semantic Association Test

Authors: Alinka Molnár-Tóth, Tímea Tánczos, Regina Barna, Katalin Jakab, Péter Klivényi

Abstract:

Supported by neuroscientific findings, the so-called Hub-and-Spoke model of the human semantic system is based on two subcomponents of semantic cognition, namely the semantic control process and semantic representation. Our semantic knowledge is multimodal in nature, as the knowledge system stored in relation to a conception is extensive and broad, while different aspects of the conception may be relevant depending on the purpose. The motivation of our research is to develop a new diagnostic measurement procedure based on the preservation of semantic representation, which is appropriate to the specificities of the Hungarian language and which can be used to compare the non-verbal semantic knowledge of healthy and aphasic persons. The development of the test will broaden the Hungarian clinical diagnostic toolkit, which will allow for more specific therapy planning. The sample of healthy persons (n=480) was determined by the last census data for the representativeness of the sample. Based on the concept of the Pyramids and Palm Tree Test, and according to the characteristics of the Hungarian language, we have elaborated a test based on different types of semantic information, in which the subjects are presented with three pictures: they have to choose the one that best fits the target word above from the two lower options, based on the semantic relation defined. We have measured 5 types of semantic knowledge representations: associative relations, taxonomy, motional representations, concrete as well as abstract verbs. As the first step in our data analysis, we examined the normal distribution of our results, and since it was not normally distributed (p < 0.05), we used nonparametric statistics further into the analysis. Using descriptive statistics, we could determine the frequency of the correct and incorrect responses, and with this knowledge, we could later adjust and remove the items of questionable reliability. The reliability was tested using Cronbach’s α, and it can be safely said that all the results were in an acceptable range of reliability (α = 0.6-0.8). We then tested for the potential gender differences using the Mann Whitney-U test, however, we found no difference between the two (p < 0.05). Likewise, we didn’t see that the age had any effect on the results using one-way ANOVA (p < 0.05), however, the level of education did influence the results (p > 0.05). The relationships between the subtests were observed by the nonparametric Spearman’s rho correlation matrix, showing statistically significant correlation between the subtests (p > 0.05), signifying a linear relationship between the measured semantic functions. A margin of error of 5% was used in all cases. The research will contribute to the expansion of the clinical diagnostic toolkit and will be relevant for the individualised therapeutic design of treatment procedures. The use of a non-verbal test procedure will allow an early assessment of the most severe language conditions, which is a priority in the differential diagnosis. The measurement of reaction time is expected to advance prodrome research, as the tests can be easily conducted in the subclinical phase.

Keywords: communication disorders, diagnostic toolkit, neurorehabilitation, semantic knowlegde

Procedia PDF Downloads 103
1518 Understanding and Improving Neural Network Weight Initialization

Authors: Diego Aguirre, Olac Fuentes

Abstract:

In this paper, we present a taxonomy of weight initialization schemes used in deep learning. We survey the most representative techniques in each class and compare them in terms of overhead cost, convergence rate, and applicability. We also introduce a new weight initialization scheme. In this technique, we perform an initial feedforward pass through the network using an initialization mini-batch. Using statistics obtained from this pass, we initialize the weights of the network, so the following properties are met: 1) weight matrices are orthogonal; 2) ReLU layers produce a predetermined number of non-zero activations; 3) the output produced by each internal layer has a unit variance; 4) weights in the last layer are chosen to minimize the error in the initial mini-batch. We evaluate our method on three popular architectures, and a faster converge rates are achieved on the MNIST, CIFAR-10/100, and ImageNet datasets when compared to state-of-the-art initialization techniques.

Keywords: deep learning, image classification, supervised learning, weight initialization

Procedia PDF Downloads 135
1517 Effect of Energy Management Practices on Sustaining Competitive Advantage among Manufacturing Firms: A Case of Selected Manufacturers in Nairobi, Kenya

Authors: Henry Kiptum Yatich, Ronald Chepkilot, Aquilars Mutuku Kalio

Abstract:

Studies on energy management have focused on environmental conservation, reduction in production and operation expenses. However, transferring gains of energy management practices to competitive advantage is importance to manufacturers in Kenya. Success in managing competitive advantage arises out of a firm’s ability in identifying and implementing actions that can give the company an edge over its rivals. Manufacturing firms in Kenya are the highest consumers of both electricity and petroleum products. In this regard, the study posits that transfer of the gains of energy management practices to competitive advantage is imperative. The study was carried in Nairobi and its environs, which hosts the largest number of manufacturers. The study objectives were; to determine the level of implementing energy management regulations on sustaining competitive advantage, to determine the level of implementing company energy management policy on competitive advantage, to examine the level of implementing energy efficient technology on sustaining competitive advantage, and to assess the percentage energy expenditure on sustaining competitive advantage among manufacturing firms. The study adopted a survey research design, with a study population of 145,987. A sample of 384 respondents was selected randomly from 21 proportionately selected firms. Structured questionnaires were used to collect data. Data analysis was done using descriptive statistics (mean and standard deviations) and inferential statistics (correlation, regression, and T-test). Data is presented using tables and diagrams. The study found that Energy Management Regulations, Company Energy Management Policies, and Energy Expenses are significant predictors of Competitive Advantage (CA). However, Energy Efficient Technology as a component of Energy Management Practices did not have a significant relationship with Competitive Advantage. The study revealed that the level of awareness in the sector stood at 49.3%. Energy Expenses in the sector stood at an average of 10.53% of the firm’s total revenue. The study showed that gains from energy efficiency practices can be transferred to competitive strategies so as to improve firm competitiveness. The study recommends that manufacturing firms should consider energy management practices as part of its strategic agenda in assessing and reviewing their energy management practices as possible strategies for sustaining competitiveness. The government agencies such as Energy Regulatory Commission, the Ministry of Energy and Petroleum, and Kenya Association of Manufacturers should enforce the energy management regulations 2012, and with enhanced stakeholder involvement and sensitization so as promote sustenance of firm competitiveness. Government support in providing incentives and rebates for acquisition of energy efficient technologies should be pursued. From the study limitation, future experimental and longitudinal studies need to be carried out. It should be noted that energy management practices yield enormous benefits to all stakeholders and that the practice should not be considered a competitive tool but rather as a universal practice.

Keywords: energy, efficiency, management, guidelines, policy, technology, competitive advantage

Procedia PDF Downloads 383
1516 Optimal Mitigation of Slopes by Probabilistic Methods

Authors: D. De-León-Escobedo, D. J. Delgado-Hernández, S. Pérez

Abstract:

A probabilistic formulation to assess the slopes safety under the hazard of strong storms is presented and illustrated through a slope in Mexico. The formulation is based on the classical safety factor (SF) used in practice to appraise the slope stability, but it is introduced the treatment of uncertainties, and the slope failure probability is calculated as the probability that SF<1. As the main hazard is the rainfall on the area, statistics of rainfall intensity and duration are considered and modeled with an exponential distribution. The expected life-cycle cost is assessed by considering a monetary value on the slope failure consequences. Alternative mitigation measures are simulated, and the formulation is used to get the measures driving to the optimal one (minimum life-cycle costs). For the example, the optimal mitigation measure is the reduction on the slope inclination angle.

Keywords: expected life-cycle cost, failure probability, slopes failure, storms

Procedia PDF Downloads 160