Search results for: soil microbial biomass
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4474

Search results for: soil microbial biomass

334 The Effects of Inoculation and N Fertilization on Soybean (Glycine max (L.) Merr.) Seed Yield and Protein Concentration under Drought Stress

Authors: Oqba Basal, Andras Szabo

Abstract:

Using mineral fertilization is increasing worldwide, as it is claimed to be majorly responsible for achieving high yields; however, the negative impacts of mineral fertilization on soil and environment are becoming more obvious, with alternative methods being more necessary and applicable, especially with the current climatic changes which have imposed serious abiotic stresses, such as drought. An experiment was made during 2017 growing season in Debrecen, Hungary to investigate the effects of inoculation and N fertilization on the seed yield and protein concentration of the soybean (Glycine max (L.) Merr.) cultivar (Panonia Kincse) under three different irrigation regimes: severe drought stress (SD), moderate drought stress (MD) and control with no drought stress (ND). Three N fertilizer rates were applied: no N fertilizer (0 N), 35 kg ha⁻¹ of N fertilizer (35 N) and 105 kg ha⁻¹ of N fertilizer (105 N). Half of the seeds in each treatment was inoculated with Bradyrhizobium japonicum inoculant, and the other half was not inoculated. The results showed significant differences in the seed yield associated with inoculation, irrigation and the interaction between them, whereas there were no significant differences in the seed yield associated with fertilization alone or in interaction with inoculation or irrigation or both. When seeds were inoculated, yield was increased when (35 N) was applied compared to (0 N) but not significantly; however, the high rate of N fertilizer (105 N) reduced the yield to a level even less than (0 N). When seeds were not inoculated, the highest rate of N increased the yield the most compared to the other two N fertilizer rates whenever the drought was present (moderate or severe). Under severe drought stress, inoculation was positively and significantly correlated with yield; however, adding N fertilizer increased the yield of uninoculated plants compared to the inoculated ones, regardless of the rate of N fertilizer. Protein concentration in the seeds was significantly affected by irrigation and by fertilization, but not by inoculation. Protein concentration increased as the N fertilization rate increased, regardless of the inoculation or irrigation treatments; moreover, increasing the N rate reduced the correlation coefficient of protein concentration with the irrigation. It was concluded that adding N fertilizer is not always recommended, especially when seeds are inoculated before being sown; however, it is very important under severe drought stress to sustain yield. Enhanced protein concentrations could be achieved by applying N fertilization, whether the seeds were pre-inoculated or not.

Keywords: drought stress, N fertilization, protein concentration, soybean

Procedia PDF Downloads 137
333 Study of Properties of Concretes Made of Local Building Materials and Containing Admixtures, and Their Further Introduction in Construction Operations and Road Building

Authors: Iuri Salukvadze

Abstract:

Development of Georgian Economy largely depends on its effective use of its transit country potential. The value of Georgia as the part of Europe-Asia corridor has increased; this increases the interest of western and eastern countries to Georgia as to the country that laid on the transit axes that implies transit infrastructure creation and development in Georgia. It is important to use compacted concrete with the additive in modern road construction industry. Even in the 21-century, concrete remains as the main vital constructive building material, therefore innovative, economic and environmentally protected technologies are needed. Georgian construction market requires the use of concrete of new generation, adaptation of nanotechnologies to the local realities that will give the ability to create multifunctional, nano-technological high effective materials. It is highly important to research their physical and mechanical states. The study of compacted concrete with the additives is necessary to use in the road construction in the future and to increase hardness of roads in Georgia. The aim of the research is to study the physical-mechanical properties of the compacted concrete with the additives based on the local materials. Any experimental study needs large number of experiments from one side in order to achieve high accuracy and optimal number of the experiments with minimal charges and in the shortest period of time from the other side. To solve this problem in practice, it is possible to use experiments planning static and mathematical methods. For the materials properties research we will use distribution hypothesis, measurements results by normal law according to which divergence of the obtained results is caused by the error of method and inhomogeneity of the object. As the result of the study, we will get resistible compacted concrete with additives for the motor roads that will improve roads infrastructure and give us saving rate while construction of the roads and their exploitation.

Keywords: construction, seismic protection systems, soil, motor roads, concrete

Procedia PDF Downloads 223
332 Applications of Hyperspectral Remote Sensing: A Commercial Perspective

Authors: Tuba Zahra, Aakash Parekh

Abstract:

Hyperspectral remote sensing refers to imaging of objects or materials in narrow conspicuous spectral bands. Hyperspectral images (HSI) enable the extraction of spectral signatures for objects or materials observed. These images contain information about the reflectance of each pixel across the electromagnetic spectrum. It enables the acquisition of data simultaneously in hundreds of spectral bands with narrow bandwidths and can provide detailed contiguous spectral curves that traditional multispectral sensors cannot offer. The contiguous, narrow bandwidth of hyperspectral data facilitates the detailed surveying of Earth's surface features. This would otherwise not be possible with the relatively coarse bandwidths acquired by other types of imaging sensors. Hyperspectral imaging provides significantly higher spectral and spatial resolution. There are several use cases that represent the commercial applications of hyperspectral remote sensing. Each use case represents just one of the ways that hyperspectral satellite imagery can support operational efficiency in the respective vertical. There are some use cases that are specific to VNIR bands, while others are specific to SWIR bands. This paper discusses the different commercially viable use cases that are significant for HSI application areas, such as agriculture, mining, oil and gas, defense, environment, and climate, to name a few. Theoretically, there is n number of use cases for each of the application areas, but an attempt has been made to streamline the use cases depending upon economic feasibility and commercial viability and present a review of literature from this perspective. Some of the specific use cases with respect to agriculture are crop species (sub variety) detection, soil health mapping, pre-symptomatic crop disease detection, invasive species detection, crop condition optimization, yield estimation, and supply chain monitoring at scale. Similarly, each of the industry verticals has a specific commercially viable use case that is discussed in the paper in detail.

Keywords: agriculture, mining, oil and gas, defense, environment and climate, hyperspectral, VNIR, SWIR

Procedia PDF Downloads 65
331 Urban Health and Strategic City Planning: A Case from Greece

Authors: Alexandra P. Alexandropoulou, Andreas Fousteris, Eleni Didaskalou, Dimitrios A. Georgakellos

Abstract:

As urbanization is becoming a major stress factor not only for the urban environment but also for the wellbeing of city dwellers, incorporating the issues of urban health in strategic city planning and policy-making has never been more relevant. The impact of urbanization can vary from low to severe and relates to all non-communicable diseases caused by the different functions of cities. Air pollution, noise pollution, water and soil pollution, availability of open green spaces, and urban heat island are the major factors that can compromise citizens' health. Urban health describes the effects of the social environment, the physical environment, and the availability and accessibility to health and social services. To assess the quality of urban wellbeing, all urban characteristics that might have an effect on citizens' health must be considered, evaluated, and introduced in integrated local planning. A series of indices and indicators can be used to better describe these effects and set the target values in policy making. Local strategic planning is one of the most valuable development tools a local city administration can possess; thus, it has become mandatory under Greek law for all municipalities. It involves a two-stage procedure; the first aims to collect, analyse and evaluate data on the current situation of the city (administrative data, population data, environmental data, social data, swot analysis), while the second aims to introduce a policy vision described and supported by distinct (nevertheless integrated) actions, plans and measures to be implemented with the aim of city development and citizen wellbeing. In this procedure, the element of health is often neglected or under-evaluated. A relative survey was conducted among all Greek local authorities in order to shed light on the current situation. Evidence shows that the rate of incorporation of health in strategic planning is lacking behind. The survey also highlights key hindrances and concerns raised by local officials and suggests a path for the way forward.

Keywords: urban health, strategic planning, local authorities, integrated development

Procedia PDF Downloads 52
330 Environmental Sanitation Parameters Recording in Refugee-Migrants Camps in Greece, 2017

Authors: Crysovaladou Kefaloudi, Kassiani Mellou, Eirini Saranti-Papasaranti, Athanasios Koustenis, Chrysoula Botsi, Agapios Terzidis

Abstract:

Recent migration crisis led to a vast migrant – refugees movement to Greece which created an urgent need for hosting settlements. Taken into account the protection of public health from possible pathogens related to water and food supply as well as waste and sewage accumulation, a 'Living Conditions Recording Form' was created in the context of 'PHILOS' European Program funded by the Asylum Migration and Integration Fund (AMIF) of EU’s DG Migration and Home Affairs, in order to assess a number of environmental sanitation parameters, in refugees – migrants camps in mainland. The assessment will be completed until the end of July. From March to June 2017, mobile unit teams comprised of health inspectors of sub-action 2 of “PHILOS” proceeded with the assessment of living conditions in twenty-two out of thirty-one camps and 'Stata' was used for the statistical analysis of obtained information. Variables were grouped into the following categories: 1) Camp administration, 2) hosted population number, 3) accommodation, 4) heating installations, 5) personal hygiene, 6) sewage collection and disposal, 7) water supply, 8) waste collection and management, 9) pest control, 10) fire safety, 11) food handling and safety. Preliminary analysis of the results showed that camp administration was performed in 90% of the camps by a public authority with the coordination of various NGOs. The median number of hosted population was 222 ranging from 62 to 3200, and the median value of hosted population per accommodation type was 4 in 19 camps. Heating facilities were provided in 86.1% of camps. In 18.2 % of the camps, one personal hygiene facility was available per 6 people ranging in the rest of the camps from 1 per 3 to 1 per 20 hosted refugees-migrants. Waste and sewage collection was performed depending on populations demand in an adequate way in all recorded camps. In 90% of camps, water was supplied through the central water supply system. In 85% of camps quantity and quality of water supply inside camps was regularly monitored for microbial and chemical indices. Pest control was implemented in 86.4% of the camps as well as fire safety measures. Food was supplied by catering companies in 50% of the camps, and the quality and quantity food was monitored at a regular basis. In 77% of camps, food was prepared by the hosted population with the availability of proper storage conditions. Furthermore, in all camps, hosted population was provided with personal hygiene items and health sanitary educational programs were implemented in 77.3% of camps. In conclusion, in the majority of the camps, environmental sanitation parameters were satisfactory. However, waste and sewage accumulation, as well as inadequate pest control measures were recorded in some camps. The obtained data have led to a number of recommendations for the improvement of sanitary conditions, disseminated to all relevant stakeholders. Special emphasis was given to hygiene measures implementation during food handling by migrants – refugees, as well as to waste and sewage accumulation taking in to account the population’s cultural background.

Keywords: environmental sanitation parameters, food borne diseases risk assessment, refugee – migrants camps, water borne diseases risk assessment

Procedia PDF Downloads 210
329 Impact of Water Interventions under WASH Program in the South-west Coastal Region of Bangladesh

Authors: S. M. Ashikur Elahee, Md. Zahidur Rahman, Md. Shofiqur Rahman

Abstract:

This study evaluated the impact of different water interventions under WASH program on access of household's to safe drinking water. Following survey method, the study was carried out in two Upazila of South-west coastal region of Bangladesh namely Koyra from Khulna and Shymnagar from Satkhira district. Being an explanatory study, a total of 200 household's selected applying random sampling technique were interviewed using a structured interview schedule. The predicted probability suggests that around 62 percent household's are out of year-round access to safe drinking water whereby, only 25 percent household's have access at SPHERE standard (913 Liters/per person/per year). Besides, majority (78 percent) of the household's have not accessed at both indicators simultaneously. The distance from household residence to the water source varies from 0 to 25 kilometer with an average distance of 2.03 kilometers. The study also reveals that the increase in monthly income around BDT 1,000 leads to additional 11 liters (coefficient 0.01 at p < 0.1) consumption of safe drinking water for a person/year. As expected, lining up time has significant negative relationship with dependent variables i.e., for higher lining up time, the probability of getting access for both SPHERE standard and year round access variables becomes lower. According to ordinary least square (OLS) regression results, water consumption decreases at 93 liters for per person/year of a household if one member is added to that household. Regarding water consumption intensity, ordered logistic regression (OLR) model shows that one-minute increase of lining up time for water collection tends to reduce water consumption intensity. On the other hand, as per OLS regression results, for one-minute increase of lining up time, the water consumption decreases by around 8 liters. Considering access to Deep Tube Well (DTW) as a reference dummy, in OLR, the household under Pond Sand Filter (PSF), Shallow Tube Well (STW), Reverse Osmosis (RO) and Rainwater Harvester System (RWHS) are respectively 37 percent, 29 percent, 61 percent and 27 percent less likely to ensure year round access of water consumption. In line of health impact, different type of water born diseases like diarrhea, cholera, and typhoid are common among the coastal community caused by microbial impurities i.e., Bacteria, Protozoa. High turbidity and TDS in pond water caused by reduction of water depth, presence of suspended particle and inorganic salt stimulate the growth of bacteria, protozoa, and algae causes affecting health hazard. Meanwhile, excessive growth of Algae in pond water caused by excessive nitrate in drinking water adversely effects on child health. In lieu of ensuring access at SPHERE standard, we need to increase the number of water interventions at reasonable distance, preferably a half kilometer away from the dwelling place, ensuring community peoples involved with its installation process where collectively owned water intervention is found more effective than privately owned. In addition, a demand-responsive approach to supply of piped water should be adopted to allow consumer demand to guide investment in domestic water supply in future.

Keywords: access, impact, safe drinking water, Sphere standard, water interventions

Procedia PDF Downloads 209
328 The Role of Home Composting in Waste Management Cost Reduction

Authors: Nahid Hassanshahi, Ayoub Karimi-Jashni, Nasser Talebbeydokhti

Abstract:

Due to the economic and environmental benefits of producing less waste, the US Environmental Protection Agency (EPA) introduces source reduction as one of the most important means to deal with the problems caused by increased landfills and pollution. Waste reduction involves all waste management methods, including source reduction, recycling, and composting, which reduce waste flow to landfills or other disposal facilities. Source reduction of waste can be studied from two perspectives: avoiding waste production, or reducing per capita waste production, and waste deviation that indicates the reduction of waste transfer to landfills. The present paper has investigated home composting as a managerial solution for reduction of waste transfer to landfills. Home composting has many benefits. The use of household waste for the production of compost will result in a much smaller amount of waste being sent to landfills, which in turn will reduce the costs of waste collection, transportation and burial. Reducing the volume of waste for disposal and using them for the production of compost and plant fertilizer might help to recycle the material in a shorter time and to use them effectively in order to preserve the environment and reduce contamination. Producing compost in a home-based manner requires very small piece of land for preparation and recycling compared with other methods. The final product of home-made compost is valuable and helps to grow crops and garden plants. It is also used for modifying the soil structure and maintaining its moisture. The food that is transferred to landfills will spoil and produce leachate after a while. It will also release methane and greenhouse gases. But, composting these materials at home is the best way to manage degradable materials, use them efficiently and reduce environmental pollution. Studies have shown that the benefits of the sale of produced compost and the reduced costs of collecting, transporting, and burying waste can well be responsive to the costs of purchasing home compost machine and the cost of related trainings. Moreover, the process of producing home compost may be profitable within 4 to 5 years and as a result, it will have a major role in reducing waste management.

Keywords: compost, home compost, reducing waste, waste management

Procedia PDF Downloads 406
327 Dietary Exposure of Heavy Metals through Cereals Commonly Consumed by Dhaka City Residents

Authors: A. Md. Bayejid Hosen, B. M Zakir Hossain Howlader, C. Yearul Kabir

Abstract:

Contamination of soil and agricultural products by heavy metals resulting from rapid industrial development has caused major concern. Dietary exposure to heavy metals has been associated with toxic and adverse health effects. The main threats to human health from heavy metals are associated with exposure to Pb, Cd and Hg. The aim of this study was to monitor the presence of heavy metals in cereals collected from different wholesale markets of Dhaka City. One hundred and sixty cereal samples were collected and analyzed for determination of heavy metals. Heavy metals were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). A total of six heavy metals– lead, chromium, cadmium, mercury, arsenic and antimony were estimated. The average concentrations of heavy metals in cereals fall within the safe limit established by regulatory organizations except for Pb (152.4 μg/100g) and Hg (15.13 μg/100g) which exceeded the safe limits. BARI gom-26 was the highest source of Pb (304.1 μg/100g) whereas Haski-29 rice variety contained the highest amount of Hg (60.85 μg/100g). Though all the cereal varieties contained approximately same amount of Cr the naizer sail varieties contained huge amount of Cr (171.8 μg/100g). Among all the cereal samples miniket rice varieties contained the least amount of heavy metals. The concentration of Cr (63.24 μg/100g), Cd (5.54 μg/100g) and As (3.26 μg/100g) in all cereals were below the safe limits. The daily intake of heavy metals was determined using the total weight of cereals consumed each day multiplied by the concentrations of heavy metals in cereals. The daily intake was compared with provisional maximum tolerable daily intake set by different regulatory organizations. The daily intake of Cd (23.0 μg), Hg (63.0 μg) and as (13.6 μg) through cereals were below the risk level except for Pb (634.0 μg) and Cr (263.1 μg). As the main meal of average Bangladeshi people is boiled rice served with some sorts of vegetables, our findings indicate that the residents of Dhaka City are at risk from Pb and Cr contamination. Potential health risks from exposure to heavy metals in self-planted cereals need more attention.

Keywords: contamination, dietary exposure, heavy metals, human health, ICP-MS

Procedia PDF Downloads 428
326 Knowledge, Attitude, and Practices of Small Scale Farmers on Organic Agriculture in a Rural Community in Ifugao, Philippines

Authors: Marah Joy A. Nanglegan

Abstract:

A survey was conducted to describe knowledge, attitude, practices, information needs, and information seeking behavior of small-scale farmers on Organic Agriculture Production (OAP) in a rural community in Ifugao, Philippines. Respondents’ age ranged from 23-67 years old. Most of them are male, married, and have reached high school level. The major source of income is farming with an average monthly income of less than Php 5,000 for a household size of seven. More than fifty percent of the respondents are members of a farmer’s organization. Farm size is less than one hectare. Majority of them own their farms and have been farming for more than twenty years. Very few attended training on Organic Agriculture Production (OAP). Most of them are not aware of any OAP program in their community. Hence, their farming practices are mostly conventional. The overall level of knowledge on OAP among all respondents was below the average. On attitude, most of the respondents agreed that organic farming would decrease production costs by reducing input purchases. They believe it benefits both the consumer and the producer. In fact, they are aware of the many benefits of organic farming, especially on health. Likewise, many of them agreed on the benefits of organic farming to soil fertility, to the environment, and to increase the income of farmers. Many of them, however, see organic farming as troublesome and difficult in terms of time and effort, obtaining organic inputs, limited production, and marketing aspects. They also have heavy reliance on pesticides and herbicides to control pests and diseases. On practices, majority of the respondents stated that they practiced crop rotation, manual weeding, and the use of animal manure. Most of them desired to do organic farming but needed information such as production techniques, costs, and marketing opportunities. Their most preferred communication channel is through extension agents and contact farmers. Their most preferred communication method is through trainings and seminars as well as through farm demonstrations. Results of this study will serve as a basis for developing appropriate communication strategies to improve knowledge, attitude, and practices of respondents on organic agriculture as well as enhance the promotion of organic agriculture production in the community.

Keywords: Ifugao, knowledge attitude practices, organic agriculture, Philippines

Procedia PDF Downloads 148
325 Calibration and Validation of ArcSWAT Model for Estimation of Surface Runoff and Sediment Yield from Dhangaon Watershed

Authors: M. P. Tripathi, Priti Tiwari

Abstract:

Soil and Water Assessment Tool (SWAT) is a distributed parameter continuous time model and was tested on daily and fortnightly basis for a small agricultural watershed (Dhangaon) of Chhattisgarh state in India. The SWAT model recently interfaced with ArcGIS and called as ArcSWAT. The watershed and sub-watershed boundaries, drainage networks, slope and texture maps were generated in the environment of ArcGIS of ArcSWAT. Supervised classification method was used for land use/cover classification from satellite imageries of the years 2009 and 2012. Manning's roughness coefficient 'n' for overland flow and channel flow and Fraction of Field Capacity (FFC) were calibrated for monsoon season of the years 2009 and 2010. The model was validated on a daily basis for the years 2011 and 2012 by using the observed daily rainfall and temperature data. Calibration and validation results revealed that the model was predicting the daily surface runoff and sediment yield satisfactorily. Sensitivity analysis showed that the annual sediment yield was inversely proportional to the overland and channel 'n' values whereas; annual runoff and sediment yields were directly proportional to the FFC. The model was also tested (calibrated and validated) for the fortnightly runoff and sediment yield for the year 2009-10 and 2011-12, respectively. Simulated values of fortnightly runoff and sediment yield for the calibration and validation years compared well with their observed counterparts. The calibration and validation results revealed that the ArcSWAT model could be used for identification of critical sub-watershed and for developing management scenarios for the Dhangaon watershed. Further, the model should be tested for simulating the surface runoff and sediment yield using generated rainfall and temperature before applying it for developing the management scenario for the critical or priority sub-watersheds.

Keywords: watershed, hydrologic and water quality, ArcSWAT model, remote sensing, GIS, runoff and sediment yield

Procedia PDF Downloads 357
324 Simulation of Antimicrobial Resistance Gene Fate in Narrow Grass Hedges

Authors: Marzieh Khedmati, Shannon L. Bartelt-Hunt

Abstract:

Vegetative Filter Strips (VFS) are used for controlling the volume of runoff and decreasing contaminant concentrations in runoff before entering water bodies. Many studies have investigated the role of VFS in sediment and nutrient removal, but little is known about their efficiency for the removal of emerging contaminants such as antimicrobial resistance genes (ARGs). Vegetative Filter Strip Modeling System (VFSMOD) was used to simulate the efficiency of VFS in this regard. Several studies demonstrated the ability of VFSMOD to predict reductions in runoff volume and sediment concentration moving through the filters. The objectives of this study were to calibrate the VFSMOD with experimental data and assess the efficiency of the model in simulating the filter behavior in removing ARGs (ermB) and tylosin. The experimental data were obtained from a prior study conducted at the University of Nebraska (UNL) Rogers Memorial Farm. Three treatment factors were tested in the experiments, including manure amendment, narrow grass hedges and rainfall events. Sediment Delivery Ratio (SDR) was defined as the filter efficiency and the related experimental and model values were compared to each other. The VFS Model generally agreed with the experimental results and as a result, the model was used for predicting filter efficiencies when the runoff data are not available. Narrow Grass Hedges (NGH) were shown to be effective in reducing tylosin and ARGs concentration. The simulation showed that the filter efficiency in removing ARGs is different for different soil types and filter lengths. There is an optimum length for the filter strip that produces minimum runoff volume. Based on the model results increasing the length of the filter by 1-meter leads to higher efficiency but widening beyond that decreases the efficiency. The VFSMOD, which was proved to work well in estimation of VFS trapping efficiency, showed confirming results for ARG removal.

Keywords: antimicrobial resistance genes, emerging contaminants, narrow grass hedges, vegetative filter strips, vegetative filter strip modeling system

Procedia PDF Downloads 120
323 Functional Traits and Agroecosystem Multifunctionality in Summer Cover Crop Mixtures and Monocultures

Authors: Etienne Herrick

Abstract:

As an economically and ecologically feasible method for farmers to introduce greater diversity into their crop rotations, cover cropping presents a valuable opportunity for improving the sustainability of food production. Planted in-between cash crop growing seasons, cover crops serve to enhance agroecosystem functioning, rather than being destined for sale or consumption. In fact, cover crops may hold the capacity to deliver multiple ecosystem functions or services simultaneously (multifunctionality). Building upon this line of research will not only benefit society at present, but also support its continued survival through its potential for restoring depleted soils and reducing the need for energy-intensive and harmful external inputs like fertilizers and pesticides. This study utilizes a trait-based approach to explore the influence of inter- and intra-specific interactions in summer cover crop mixtures and monocultures on functional trait expression and ecosystem services. Functional traits that enhance ecosystem services related to agricultural production include height, specific leaf area (SLA), root, shoot ratio, leaf C and N concentrations, and flowering phenology. Ecosystem services include biomass production, weed suppression, reduced N leaching, N recycling, and support of pollinators. Employing a trait-based approach may allow for the elucidation of mechanistic links between plant structure and resulting ecosystem service delivery. While relationships between some functional traits and the delivery of particular ecosystem services may be readily apparent through existing ecological knowledge (e.g. height positively correlating with weed suppression), this study will begin to quantify those relationships so as to gain further understanding of whether and how measurable variation in functional trait expression across cover crop mixtures and monocultures can serve as a reliable predictor of variation in the types and abundances of ecosystem services delivered. Six cover crop species, including legume, grass, and broadleaf functional types, were selected for growth in six mixtures and their component monocultures based upon the principle of trait complementarity. The tricultures (three-way mixtures) are comprised of a legume, grass, and broadleaf species, and include cowpea/sudex/buckwheat, sunnhemp/sudex/buckwheat, and chickling vetch/oat/buckwheat combinations; the dicultures contain the same legume and grass combinations as above, without the buckwheat broadleaf. By combining species with expectedly complimentary traits (for example, legumes are N suppliers and grasses are N acquirers, creating a nutrient cycling loop) the cover crop mixtures may elicit a broader range of ecosystem services than that provided by a monoculture, though trade-offs could exist. Collecting functional trait data will enable the investigation of the types of interactions driving these ecosystem service outcomes. It also allows for generalizability across a broader range of species than just those selected for this study, which may aid in informing further research efforts exploring species and ecosystem functioning, as well as on-farm management decisions.

Keywords: agroecology, cover crops, functional traits, multifunctionality, trait complementarity

Procedia PDF Downloads 242
322 Evaluation of Paper Effluent with Two Bacterial Strain and Their Consortia

Authors: Priya Tomar, Pallavi Mittal

Abstract:

As industrialization is inevitable and progress with rapid acceleration, the need for innovative ways to get rid of waste has increased. Recent advancement in bioresource technology paves novel ideas for recycling of factory waste that has been polluting the agro-industry, soil and water bodies. Paper industries in India are in a considerable number, where molasses and impure alcohol are still being used as raw materials for manufacturing of paper. Paper mills based on nonconventional agro residues are being encouraged due to increased demand of paper and acute shortage of forest-based raw materials. The colouring body present in the wastewater from pulp and paper mill is organic in nature and is comprised of wood extractives, tannin, resins, synthetic dyes, lignin and its degradation products formed by the action of chlorine on lignin which imparts an offensive colour to the water. These mills use different chemical process for paper manufacturing due to which lignified chemicals are released into the environment. Therefore, the chemical oxygen demand (COD) of the emanating stream is quite high. This paper presents some new techniques that were developed for the efficiency of bioremediation on paper industry. A short introduction to paper industry and a variety of presently available methods of bioremediation on paper industry and different strategies are also discussed here. For solving the above problem, two bacterial strains (Pseudomonas aeruginosa and Bacillus subtilis) and their consortia (Pseudomonas aeruginosa and Bacillus subtilis) were utilized for the pulp and paper mill effluent. Pseudomonas aeruginosa and Bacillus subtilis named as T–1, T–2, T–3, T–4, T–5, T–6, for the decolourisation of paper industry effluent. The results indicated that a maximum colour reduction is (60.5%) achieved by Pseudomonas aeruginosa and COD reduction is (88.8%) achieved by Bacillus subtilis, maximum pH changes is (4.23) achieved by Pseudomonas aeruginosa, TSS reduction is (2.09 %) achieved by Bacillus subtilis, and TDS reduction is (0.95 %) achieved by Bacillus subtilis. When the wastewater was supplemented with carbon (glucose) and nitrogen (yeast extract) source and data revealed the efficiency of Bacillus subtilis, having more with glucose than Pseudomonas aeruginosa.

Keywords: bioremediation, paper and pulp mill effluent, treated effluent, lignin

Procedia PDF Downloads 236
321 Optimum Dimensions of Hydraulic Structures Foundation and Protections Using Coupled Genetic Algorithm with Artificial Neural Network Model

Authors: Dheyaa W. Abbood, Rafa H. AL-Suhaili, May S. Saleh

Abstract:

A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs length sand their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy.The optimization carried out subjected to constraints that ensure a safe structure against the uplift pressure force and sufficient protection length at the downstream side of the structure to overcome an excessive exit gradient. The Geo-studios oft ware, was used to analyze 1200 different cases. For each case the length of protection and volume of structure required to satisfy the safety factors mentioned previously were estimated. An ANN model was developed and verified using these cases input-output sets as its data base. A MatLAB code was written to perform a genetic algorithm optimization modeling coupled with this ANN model using a formulated optimization model. A sensitivity analysis was done for selecting the cross-over probability, the mutation probability and level ,the number of population, the position of the crossover and the weights distribution for all the terms of the objective function. Results indicate that the most factor that affects the optimum solution is the number of population required. The minimum value that gives stable global optimum solution of this parameters is (30000) while other variables have little effect on the optimum solution.

Keywords: inclined cutoff, optimization, genetic algorithm, artificial neural networks, geo-studio, uplift pressure, exit gradient, factor of safety

Procedia PDF Downloads 310
320 Machine Learning in Agriculture: A Brief Review

Authors: Aishi Kundu, Elhan Raza

Abstract:

"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.

Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting

Procedia PDF Downloads 88
319 The Effects of Climate Change and Upstream Dam Development on Sediment Distribution in the Vietnamese Mekong Delta

Authors: Trieu Anh Ngoc, Nguyen Quang Kim

Abstract:

Located at the downstream of the Mekong Delta, the Vietnamese Mekong Delta is well-known as 'rice bowl' of Vietnam. The Vietnamese Mekong Delta experiences widespread flooding annually where is habitat for about 17 million people. The economy of this region mainly depends on the agricultural productivities. The suspended sediment load in the Mekong River plays an important role in carrying contaminants and nutrients to the delta and changing the geomorphology of the delta river system. In many past decades, flooding and suspended sediment were considered as indispensable factors in agricultural cultivations. Although flooding in the wet season caused serious inundation in paddy field and affected livelihoods, it is an effective facility for flushing acid and saline to this area - alluvial soil heavily contaminated with acid and salt intrusion. In addition, sediment delivery to this delta contained rich-nutrients distributed and deposited on the fields through flooding process. In recent decades, the changing of flow and sediment transport have been strongly and clearly occurring due to upstream dam development and climate change. However, effects of sediment delivery on agricultural cultivations were less attention. This study investigated the impacts of upstream flow on sediment distribution in the Vietnamese Mekong Delta. Flow fluctuation and sediment distribution were simulated by the Mike 11 model, including hydrodynamics model and advection-dispersion model. Various scenarios were simulated based on anticipated upstream discharges. Our findings indicated that sediment delivery into the Vietnamese Mekong Delta come from not only Tien River but also border of Cambodia floodplains. Sediment distribution in the Vietnamese Mekong Delta is dramatically changed by the distance from the main rivers and the secondary channels. The dam development in the upstream is one of the major factors leading a decrease in sediment discharge as well as sediment deposition. Moreover, sea level rise partially contributed to decrease in sediment transport and change of sediment distribution between upstream and downstream of the Vietnamese Mekong Delta.

Keywords: sediment transport, sea level rise, climate change, Mike Model

Procedia PDF Downloads 260
318 Geospatial Analysis of Hydrological Response to Forest Fires in Small Mediterranean Catchments

Authors: Bojana Horvat, Barbara Karleusa, Goran Volf, Nevenka Ozanic, Ivica Kisic

Abstract:

Forest fire is a major threat in many regions in Croatia, especially in coastal areas. Although they are often caused by natural processes, the most common cause is the human factor, intentional or unintentional. Forest fires drastically transform landscapes and influence natural processes. The main goal of the presented research is to analyse and quantify the impact of the forest fire on hydrological processes and propose the model that best describes changes in hydrological patterns in the analysed catchments. Keeping in mind the spatial component of the processes, geospatial analysis is performed to gain better insight into the spatial variability of the hydrological response to disastrous events. In that respect, two catchments that experienced severe forest fire were delineated, and various hydrological and meteorological data were collected both attribute and spatial. The major drawback is certainly the lack of hydrological data, common in small torrential karstic streams; hence modelling results should be validated with the data collected in the catchment that has similar characteristics and established hydrological monitoring. The event chosen for the modelling is the forest fire that occurred in July 2019 and burned nearly 10% of the analysed area. Surface (land use/land cover) conditions before and after the event were derived from the two Sentinel-2 images. The mapping of the burnt area is based on a comparison of the Normalized Burn Index (NBR) computed from both images. To estimate and compare hydrological behaviour before and after the event, curve number (CN) values are assigned to the land use/land cover classes derived from the satellite images. Hydrological modelling resulted in surface runoff generation and hence prediction of hydrological responses in the catchments to a forest fire event. The research was supported by the Croatian Science Foundation through the project 'Influence of Open Fires on Water and Soil Quality' (IP-2018-01-1645).

Keywords: Croatia, forest fire, geospatial analysis, hydrological response

Procedia PDF Downloads 120
317 Simulation of Scaled Model of Tall Multistory Structure: Raft Foundation for Experimental and Numerical Dynamic Studies

Authors: Omar Qaftan

Abstract:

Earthquakes can cause tremendous loss of human life and can result in severe damage to a several of civil engineering structures especially the tall buildings. The response of a multistory structure subjected to earthquake loading is a complex task, and it requires to be studied by physical and numerical modelling. For many circumstances, the scale models on shaking table may be a more economical option than the similar full-scale tests. A shaking table apparatus is a powerful tool that offers a possibility of understanding the actual behaviour of structural systems under earthquake loading. It is required to use a set of scaling relations to predict the behaviour of the full-scale structure. Selecting the scale factors is the most important steps in the simulation of the prototype into the scaled model. In this paper, the principles of scaling modelling procedure are explained in details, and the simulation of scaled multi-storey concrete structure for dynamic studies is investigated. A procedure for a complete dynamic simulation analysis is investigated experimentally and numerically with a scale factor of 1/50. The frequency domain accounting and lateral displacement for both numerical and experimental scaled models are determined. The procedure allows accounting for the actual dynamic behave of actual size porotype structure and scaled model. The procedure is adapted to determine the effects of the tall multi-storey structure on a raft foundation. Four generated accelerograms were used as inputs for the time history motions which are in complying with EC8. The output results of experimental works expressed regarding displacements and accelerations are compared with those obtained from a conventional fixed-base numerical model. Four-time history was applied in both experimental and numerical models, and they concluded that the experimental has an acceptable output accuracy in compare with the numerical model output. Therefore this modelling methodology is valid and qualified for different shaking table experiments tests.

Keywords: structure, raft, soil, interaction

Procedia PDF Downloads 119
316 LCA and LCC for the Evaluation of Sustainability of Rapeseed, Giant Reed, and Poplar Cultivation

Authors: Alessandro Suardi, Rodolfo Picchio, Domenico Coaloa, Maria Bonaventura Forleo, Nadia Palmieri, Luigi Pari

Abstract:

The reconversion process of the Italian sugar supply chain to bio-energy supply chains, as a result of the 2006 Sugar CMO reform, have involved research to define the best logistics, the most adapted energy crops for the Italian territory and their sustainability. Rapeseed (Brassica napus L.), Giant reed (Arundo donax L.) and Poplar (Poplar ssp.) are energy crops considered strategic for the development of Italian energy supply-chains. This study analyzed the environmental and the economic impacts on the farm level of these three energy crops. The environmental assessment included six farming units, two per crop, which were extracted from a sample of 251 rapeseed farm units (2751 ha), 7 giant reed farm units (7.8 ha), and 91 poplar farm units (440 ha) using a statistical multivariate analysis. Life Cycle Assessment (LCA) research method has been used to evaluate and compare the sustainability of the agricultural phases of the crops studied. The impact analyses have been performed at mid-point and end-point levels. The results of the analysis shown that the fertilization, is the major source of environmental impact of the agricultural phase due to the production of the fertilizers and the soil emissions of GHG following the treatment. The perennial energy crops studied (Arundo donax L., Poplar ssp.) were environmentally more sustainable if compared with the annual crop (Brassica napus L.) for all the impact categories at mid-point and end-point levels analyzed. The most relevant impact category influenced by the agricultural process result the fossil depletion, mainly due to the fossil fuels consumed during the mineral fertilizers production (urea). Human health was the most affected damage category at the end point level. Poplar result the energy crop with the best environmental performance for the Italian territory, in the distribution areas most suitable for its cultivation.

Keywords: LCA, energy crops, rapeseed, giant reed, poplar

Procedia PDF Downloads 465
315 Detecting the Palaeochannels Based on Optical Data and High-Resolution Radar Data for Periyarriver Basin

Authors: S. Jayalakshmi, Gayathri S., Subiksa V., Nithyasri P., Agasthiya

Abstract:

Paleochannels are the buried part of an active river system which was separated from the active river channel by the process of cutoff or abandonment during the dynamic evolution of the active river. Over time, they are filled by young unconsolidated or semi-consolidated sediments. Additionally, it is impacted by geo morphological influences, lineament alterations, and other factors. The primary goal of this study is to identify the paleochannels in Periyar river basin for the year 2023. Those channels has a high probability in the presence of natural resources, including gold, platinum,tin,an duranium. Numerous techniques are used to map the paleochannel. Using the optical data, Satellite images were collected from various sources, which comprises multispectral satellite images from which indices such as Normalized Difference Vegetation Index (NDVI),Normalized Difference Water Index (NDWI), Soil Adjusted Vegetative Index (SAVI) and thematic layers such as Lithology, Stream Network, Lineament were prepared. Weights are assigned to each layer based on its importance, and overlay analysis has done, which concluded that the northwest region of the area has shown some paleochannel patterns. The results were cross-verified using the results obtained using microwave data. Using Sentinel data, Synthetic Aperture Radar (SAR) Image was extracted from European Space Agency (ESA) portal, pre-processed it using SNAP 6.0. In addition to that, Polarimetric decomposition technique has incorporated to detect the paleochannels based on its scattering property. Further, Principal component analysis has done for enhanced output imagery. Results obtained from optical and microwave radar data were compared and the location of paleochannels were detected. It resulted six paleochannels in the study area out of which three paleochannels were validated with the existing data published by Department of Geology and Environmental Science, Kerala. The other three paleochannels were newly detected with the help of SAR image.

Keywords: paleochannels, optical data, SAR image, SNAP

Procedia PDF Downloads 67
314 Extracellular Production of the Oncolytic Enzyme, Glutaminase Free L-Asparaginase, from Newly Isolated Streptomyces Olivaceus NEAE-119: Optimization of Culture Conditions Using Response Surface Methodology

Authors: Noura El-Ahmady El-Naggar

Abstract:

Among the antitumour drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological and biochemical properties, together with 16S rDNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product(1509 bp) was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett–Burman experimental design and response surface methodology was carried out. Fifteen nutritional variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4.7H2O, NaCl and FeSO4. 7H2O) were screened using Plackett–Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age and agitation speed) were further optimized by the central composite face-centered design -response surface methodology. As a result, a medium of the following formula is the optimum for producing an extracellular L-asparaginase in the culture filtrate of Streptomyces olivaceus NEAE-119: Dextrose 3g, starch 20g, L-asparagine 10g, KNO3 1g, K2HPO4 1g, MgSO4.7H2O 0.1g, NaCl 0.1g, pH 7, temperature 37°C, agitation speed 200 rpm/min, inoculum size 4%, v/v, inoculum age 72 h and fermentation period 5 days.

Keywords: Streptomyces olivaceus NEAE-119, glutaminase free L-asparaginase, production, Plackett-Burman design, central composite face-centered design, 16S rRNA, scanning electron microscope

Procedia PDF Downloads 346
313 Ecological and Cartographic Study of the Cork OAK of the Forest of Mahouna, North-Eastern of Algeria

Authors: Amina Beldjazia, Djamel Alatou, Khaled Missaoui

Abstract:

The forest of Mahouna is a part of the mountain range of the Tell Atlas in the northeast of Algeria. It is characterized by a significant biodiversity. The management of this resource requires thorough the understanding of the current state of the vegetation (inventories), degradation factors and ongoing monitoring of the various long-term ecological changes. Digital mapping is a very effective way to in-depth knowledge of natural resources. The realization of a vegetation map based on satellite images, aerial photographs and the use of geographic information system (GIS), shows large values results of the vegetation of the massif in the scientific view point (the development of a database of the different formations that exist on the site, ecological conditions) and economic (GIS facilitate our task of managing the various resources and diversity of the forest). The methodology is divided into three stages: the first involves an analysis of climate data (1988 to 2013); the second is to conduct field surveys (soil and phytoecological) during the months of June and July 2013 (10 readings), the third is based on the development of different themes and synthetic cards by software of GIS (ENVI 4.6 and 10 ARCMAP). The results show: cork oak covers an area of 1147 ha. Depending on the environmental conditions, it rests on sandstone and individualizes between 3 layers of vegetation from thermo-mediterranean (the North East part with 40ha), meso-Mediterranean (1061 ha) and finally the supra-Mediterranean (46ha ). The map shows the current actual state of the cork oak forest massif of Mahouna, it is an older forest (>150 years) where regeneration is absent because of several factors (fires, overgrazing, leaching, erosion, etc.). The cork oak is in the form of dense forest with Laburnum and heather as the dominant species. It may also present in open forest dominated by scrub species: Daphne gniduim, Erica arborea, Calycotome spinosa, Phillyrea angustifolia, Lavandula stoechas, Cistus salvifolius.

Keywords: biodiversity, environmental, Mahouna, Cork oak

Procedia PDF Downloads 428
312 Highly Efficient in Vitro Regeneration of Swertia chirayita (Roxb. ex Fleming) Karsten: A Critically Endangered Medicinal Plant

Authors: Mahendran Ganesan, Sanjeet Kumar Verma, Zafar Iqbal, Ashish Chandran, Zakir Husain, Shama Afroz, Sana Shahid, Laiq Ur Rahman

Abstract:

Highly efficient in vitro regeneration system has been developed for Swertia chirayita (Roxb. ex Fleming) H. Karst, a high prized traditional medicinal plant to treat numerous ailments such as liver disorders, malaria and diabetes and are reported to have a wide spectrum of pharmacological properties. Its medicinal usage is well-documented in Indian pharmaceutical codex, the British and the American pharmacopeias, and in different traditional medicine such as the Ayurveda, Unani and Siddha medical systems. Nodal explants were cultured on MS medium supplemented with various phytohormones for multiple shoot induction. The nodal segments failed to respond in growth regulator free medium. All the concentrations of BAP, Kin and TDZ facilitated shoot bud break and multiple shoot induction. Among the various cytokinins tested, BAP was found to be more effective with respect to initiation and subsequent development of shoots. Of the various concentrations BAP tested, BAP at 4.0 mg/L showed the higher average number of shoot regeneration (10.80 shoots per explant). Kin at 4 mg/L and TDZ at 4 mg/L induced 5.70 and 04.5+0 shoots per explant, respectively. Further increase in concentration did not favour an increase in the number of shoots. However, these shoots failed to elongate further. Hence, addition of GA₃ (1 mg/L) was added to the above medium. This treatment resulted in the elongation of shoots (2.50 cm) and a further increase in the number of microshoots (34.20 shoots/explant). Roots were also induced in the same medium containing BAP (4 mg/L) + GA₃ (1 mg/L) + NAA (0.5 mg/L). In vitro derived plantlets with well-developed roots were transferred to the potting media containing garden soil: sand: vermicompost (2:1:1). Plantlets were covered with a polyethylene bag and irrigated with water. The pots were maintained at 25 ± 2ºC, and then the polyethylene cover was gradually loosened, thus dropping the humidity (65–70%). This procedure subsequently resulted in in vitro hardening of the plantlet.

Keywords: micropropagation, nodal explant, plant growth regulators, Swertia chirayita

Procedia PDF Downloads 107
311 Negotiating Strangeness: Narratives of Forced Return Migration and the Construction of Identities

Authors: Cheryl-Ann Sarita Boodram

Abstract:

Historically, the movement of people has been the subject of socio-political and economic regulatory policies which congeal to regulate human mobility and establish geopolitical and spatial identities and borderlands. As migratory practices evolved, so too has the problematization associated with movement, migration and citizenship. The emerging trends have led to active development of immigration technology governing human mobility and the naming of migratory practices. One such named phenomenon is ‘deportation’ or the forced removal of individuals from their adopted country. Deportation, has gained much attention within the human mobility landscape in the past twenty years following the September 2001 terrorist attack on the World Trade Centre in New York. In a reactionary move, several metropolitan countries, including Canada and the United Kingdom enacted or reviewed immigration laws which further enabled the removal of foreign born criminals to the land of their birth in the global south. Existing studies fall short of understanding the multiple textures of the forced returned migration experiences and the social injustices resulting from deportation displacement. This study brings together indigenous research methodologies through the use of participatory action research and social work with returned migrants in Trinidad and Tobago to uncover the experiences of displacement of deported nationals. The study explores the experiences of negotiating life as a ‘stranger’ and how return has influenced the construction of identities of returned nationals. Findings from this study reveal that deportation has led to inequalities and facilitated ‘othering’ of this group within their own country of birth. The study further highlighted that deportation leads to circuits of dispossession, and perpetuates inequalities. This study provides original insights into the way returned migrants negotiate, map and embody ‘strangeness’ and manage their return to a soil they consider unfamiliar and alien.

Keywords: stranger, alien geographies, displacement, deportation, negotiating strangeness, identity, otherness, alien landscapes

Procedia PDF Downloads 491
310 Evaluation of Flow Alteration under Climate Change Scenarios for Disaster Risk Management in Lower Mekong Basin: A Case Study in Prek Thnot River in Cambodia

Authors: Vathanachannbo Veth, Ilan Ich, Sophea Rom Phy, Ty Sok, Layheang Song, Sophal Try, Chantha Oeurng

Abstract:

Climate change is one of the major global challenges inducing disaster risks and threatening livelihoods and communities through adverse impacts on food and water security, ecosystems, and services. Prek Thnot River Basin of Cambodia is one of the largest tributaries in the Lower Mekong that has been exposed to hazards and disasters, particularly floods and is said to be the effect of climate change. Therefore, the assessment of precipitation and streamflow changes under the effect of climate change was proposed in this river basin using Soil Water Assessment Tool (SWAT) model and different flow indices under baseline (1997 to 2011) and climate change scenarios (RCP2.6 and RCP8.5 with three General Circulation Models (GCMs): GFDL, GISS, and IPSL) in two time-horizons: near future (the 2030s: 2021 to 2040) and medium future (2060s: 2051 to 2070). Both intensity and frequency indices compared with the historical extreme rainfall indices significantly change in the GFDL under the RCP8.5 for both 2030s and 2060s. The average rate change of Rx1day, Rx10day, SDII, and R20mm in the 2030s and 2060s of both RCP2.6 and RCP8.5 was found to increase in GFDL and decrease in both GISS and IPSL. The mean percentage change of the flow analyzed in the IHA tool (Group1) indicated that the flow in the Prek Thnot River increased in GFDL for both RCP2.6 and RCP8.5 in both 2030s and 2060s, oppositely in GISS, the flow decreases. Moreover, the IPSL affected the flow by increasing in five months (January, February, October, November, and December), and in the other seven months, the flow decreased accordingly. This study provides water resources managers and policymakers with a wide range of precipitation and water flow projections within the Prek Thnot River Basin in the context of plausible climate change scenarios.

Keywords: IHA, climate change, disaster risk, Prek Thnot River Basin, Cambodia

Procedia PDF Downloads 84
309 Halotolerant Phosphates Solubilizing Bacteria Isolated from Phosphate Solid Sludge and Their Efficiency in Potassium, Zinc Solubilization, and Promoting Wheat (Triticum Durum 'karim') Germination

Authors: F. Z. Aliyat, M. El Guilli, L. Nassiri, J. Ibijbijen

Abstract:

Climate change is becoming a crucial factor that can significantly impact all ecosystems. It has a negative impact on the environment in many parts of the planet. Agriculture is the main sector affected by climate change. Particularly, the salinity of agricultural soils is among the problems caused by climate change. The use of phosphate solubilizing bacteria (PSB) as a biofertilizer requires previous research on their tolerance to abiotic stress, specifically saline stress tolerance, before the formation of biofertilizers. In this context, the main goal of this research was to assess the salinity tolerance of four strains: Serratia rubidaea strain JCM1240, Enterobacter bugandensis strain 247BMC, Pantoea agglomerans strain ATCC 27155, Pseudomonas brassicacearum subsp. Neoaurantiaca strain CIP109457, which was isolated from solid phosphate sludge. Additionally, their capacity to solubilize potassium and zinc, as well as their effect on Wheat (Triticum Durum 'Karim') germination. The four PSB strains were tested for their ability to solubilize phosphate in NBRIP medium with tricalcium phosphate (TCP) as the sole source of phosphorus under salt stress. Five concentrations of NaCl were used (0%, 0.5%, 1%, 2.5%, 5%). Their phosphate solubilizing activity was estimated by the vanadate-molybdate method. The potassium and zinc solubilization has been tested qualitatively and separately on solid media with mica and zinc oxide as the only sources of potassium and zinc, respectively. The result showed that the solubilization decreases with the increase in the concentration of NaCl; all the strains solubilize the TCP even with 5% NaCl, with a significant difference among the four strains. The Serratia rubidaea strain was the most tolerant strain. In addition, the four strains solubilize the potassium and the zinc. The Serratia rubidaea strain was the most efficient. Therefore, biofertilization with PSB salt-tolerant strains could be a climate-change-preparedness strategy for agriculture in salt soil.

Keywords: bioavailability of mineral nutrients, phosphate solid sludge; phosphate solubilization, potassium solubilization, salt stress, zinc solubilization.

Procedia PDF Downloads 70
308 Surface Motion of Anisotropic Half Space Containing an Anisotropic Inclusion under SH Wave

Authors: Yuanda Ma, Zhiyong Zhang, Zailin Yang, Guanxixi Jiang

Abstract:

Anisotropy is very common in underground media, such as rock, sand, and soil. Hence, the dynamic response of anisotropy medium under elastic waves is significantly different from the isotropic one. Moreover, underground heterogeneities and structures, such as pipelines, cylinders, or tunnels, are usually made by composite materials, leading to the anisotropy of these heterogeneities and structures. Both the anisotropy of the underground medium and the heterogeneities have an effect on the surface motion of the ground. Aiming at providing theoretical references for earthquake engineering and seismology, the surface motion of anisotropic half-space with a cylindrical anisotropic inclusion embedded under the SH wave is investigated in this work. Considering the anisotropy of the underground medium, the governing equation with three elastic parameters of SH wave propagation is introduced. Then, based on the complex function method and multipolar coordinates system, the governing equation in the complex plane is obtained. With the help of a pair of transformation, the governing equation is transformed into a standard form. By means of the same methods, the governing equation of SH wave propagation in the cylindrical inclusion with another three elastic parameters is normalized as well. Subsequently, the scattering wave in the half-space and the standing wave in the inclusion is deduced. Different incident wave angle and anisotropy are considered to obtain the reflected wave. Then the unknown coefficients in scattering wave and standing wave are solved by utilizing the continuous condition at the boundary of the inclusion. Through truncating finite terms of the scattering wave and standing wave, the equation of boundary conditions can be calculated by programs. After verifying the convergence and the precision of the calculation, the validity of the calculation is verified by degrading the model of the problem as well. Some parameters which influence the surface displacement of the half-space is considered: dimensionless wave number, dimensionless depth of the inclusion, anisotropic parameters, wave number ratio, shear modulus ratio. Finally, surface displacement amplitude of the half space with different parameters is calculated and discussed.

Keywords: anisotropy, complex function method, sh wave, surface displacement amplitude

Procedia PDF Downloads 104
307 Assessing Impacts of Climate Variability and Change on Water Productivity and Nutrient Use Efficiency of Maize in the Semi-arid Central Rift Valley of Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Changes in precipitation, temperature and atmospheric CO2 concentration are expected to alter agricultural productivity patterns worldwide. The interactive effects of soil moisture and nutrient availability are the two key edaphic factors that determine crop yield and are sensitive to climatic changes. The study assessed the potential impacts of climate change on maize yield and corresponding water productivity and nutrient use efficiency under climate change scenarios for the Central Rift Valley of Ethiopia by mid (2041-2070) and end century (2071-2100). Projected impacts were evaluated using climate scenarios generated from four General Circulation Models (GCMs) dynamically downscaled by the Swedish RCA4 Regional Climate Model (RCM) in combination with two Representative Concentration Pathways (RCP 4.5 and RCP8.5). Decision Support System for Agro-technology Transfer cropping system model (DSSAT-CSM) was used to simulate yield, water and nutrient use for the study periods. Results indicate that rainfed maize yield might decrease on average by 16.5 and 23% by the 2050s and 2080s, respectively, due to climate change. Water productivity is expected to decline on average by 2.2 and 12% in the CRV by mid and end centuries with respect to the baseline. Nutrient uptake and corresponding nutrient use efficiency (NUE) might also be negatively affected by climate change. Phosphorus uptake probably will decrease in the CRV on average by 14.5 to 18% by 2050s, while N uptake may not change significantly at Melkassa. Nitrogen and P use efficiency indicators showed decreases in the range between 8.5 to 10.5% and between 9.3 to 10.5%, respectively, by 2050s relative to the baseline average. The simulation results further indicated that a combination of increased water availability and optimum nutrient application might increase both water productivity and nutrient use efficiency in the changed climate, which can ensure modest production in the future. Potential options that can improve water availability and nutrient uptake should be identified for the study locations using a crop modeling approach.

Keywords: crop model, climate change scenario, nutrient uptake, nutrient use efficiency, water productivity

Procedia PDF Downloads 65
306 Exploitation Pattern of Atlantic Bonito in West African Waters: Case Study of the Bonito Stock in Senegalese Waters

Authors: Ousmane Sarr

Abstract:

The Senegalese coasts have high productivity of fishery resources due to the frequency of intense up-welling system that occurs along its coast, caused by the maritime trade winds making its waters nutrients rich. Fishing plays a primordial role in Senegal's socioeconomic plans and food security. However, a global diagnosis of the Senegalese maritime fishing sector has highlighted the challenges this sector encounters. Among these concerns, some significant stocks, a priority target for artisanal fishing, need further assessment. If no efforts are made in this direction, most stock will be overexploited or even in decline. It is in this context that this research was initiated. This investigation aimed to apply a multi-modal approach (LBB, Catch-only-based CMSY model and its most recent version (CMSY++); JABBA, and JABBA-Select) to assess the stock of Atlantic bonito, Sarda sarda (Bloch, 1793) in the Senegalese Exclusive Economic Zone (SEEZ). Available catch, effort, and size data from Atlantic bonito over 15 years (2004-2018) were used to calculate the nominal and standardized CPUE, size-frequency distribution, and length at retentions (50 % and 95 % selectivity) of the species. These relevant results were employed as input parameters for stock assessment models mentioned above to define the stock status of this species in this region of the Atlantic Ocean. The LBB model indicated an Atlantic bonito healthy stock status with B/BMSY values ranging from 1.3 to 1.6 and B/B0 values varying from 0.47 to 0.61 of the main scenarios performed (BON_AFG_CL, BON_GN_Length, and BON_PS_Length). The results estimated by LBB are consistent with those obtained by CMSY. The CMSY model results demonstrate that the SEEZ Atlantic bonito stock is in a sound condition in the final year of the main scenarios analyzed (BON, BON-bt, BON-GN-bt, and BON-PS-bt) with sustainable relative stock biomass (B2018/BMSY = 1.13 to 1.3) and fishing pressure levels (F2018/FMSY= 0.52 to 1.43). The B/BMSY and F/FMSY results for the JABBA model ranged between 2.01 to 2.14 and 0.47 to 0.33, respectively. In contrast, The estimated B/BMSY and F/FMSY for JABBA-Select ranged from 1.91 to 1.92 and 0.52 to 0.54. The Kobe plots results of the base case scenarios ranged from 75% to 89% probability in the green area, indicating sustainable fishing pressure and an Atlantic bonito healthy stock size capable of producing high yields close to the MSY. Based on the stock assessment results, this study highlighted scientific advice for temporary management measures. This study suggests an improvement of the selectivity parameters of longlines and purse seines and a temporary prohibition of the use of sleeping nets in the fishery for the Atlantic bonito stock in the SEEZ based on the results of the length-base models. Although these actions are temporary, they can be essential to reduce or avoid intense pressure on the Atlantic bonito stock in the SEEZ. However, it is necessary to establish harvest control rules to provide coherent and solid scientific information that leads to appropriate decision-making for rational and sustainable exploitation of Atlantic bonito in the SEEZ and the Eastern Atlantic Ocean.

Keywords: multi-model approach, stock assessment, atlantic bonito, SEEZ

Procedia PDF Downloads 50
305 Inducing Cryptobiosis State of Tardigrades in Cyanobacteria Synechococcus elongatus for Effective Preservation

Authors: Nilesh Bandekar, Sumita Dasgupta, Luis Alberto Allcahuaman Huaya, Souvik Manna

Abstract:

Cryptobiosis is a dormant state where all measurable metabolic activities are at a halt, allowing an organism to survive in extreme conditions like low temperature (cryobiosis), extreme drought (anhydrobiosis), etc. This phenomenon is observed especially in tardigrades that can retain this state for decades depending on the abiotic environmental conditions. On returning to favorable conditions, tardigrades re-attain a metabolically active state. In this study, cyanobacteria as a model organism are being chosen to induce cryptobiosis for its effective preservation over a long period of time. Preserving cyanobacteria using this strategy will have multiple space applications because of its ability to produce oxygen. In addition, research has shown the survivability of this organism in space for a certain period of time. Few species of cyanobacterial residents of the soil such as Microcoleus, are able to survive in extreme drought as well. This work specifically focuses on Synechococcus elongatus, an endolith cyanobacteria with multiple benefits. It has the capability to produce 25% oxygen in water bodies. It utilizes carbon dioxide to produce oxygen via photosynthesis and also uses carbon dioxide as an energy source to form glucose via the Calvin cycle. There is a fair possibility of initiating cryptobiosis in such an organism by inducing certain proteins extracted from tardigrades such as Heat Shock Proteins (Hsp27 and Hsp30c) and/or hydrophilic Late Embryogenesis Abundant proteins (LEA). Existing methods like cryopreservation are difficult to execute in space keeping in mind their cost and heavy instrumentation. Also, extensive freezing may cause cellular damage. Therefore, cryptobiosis-induced cyanobacteria for its transportation from Earth to Mars as a part of future terraforming missions on Mars will save resources and increase the effectiveness of preservation. Finally, Cyanobacteria species like Synechococcus elongatus can also produce oxygen and glucose on Mars in favorable conditions and holds the key to terraforming Mars.

Keywords: cryptobiosis, cyanobacteria, glucose, mars, Synechococcus elongatus, tardigrades

Procedia PDF Downloads 181