Search results for: RLS identification algorithm
2219 Multi-Vehicle Detection Using Histogram of Oriented Gradients Features and Adaptive Sliding Window Technique
Authors: Saumya Srivastava, Rina Maiti
Abstract:
In order to achieve a better performance of vehicle detection in a complex environment, we present an efficient approach for a multi-vehicle detection system using an adaptive sliding window technique. For a given frame, image segmentation is carried out to establish the region of interest. Gradient computation followed by thresholding, denoising, and morphological operations is performed to extract the binary search image. Near-region field and far-region field are defined to generate hypotheses using the adaptive sliding window technique on the resultant binary search image. For each vehicle candidate, features are extracted using a histogram of oriented gradients, and a pre-trained support vector machine is applied for hypothesis verification. Later, the Kalman filter is used for tracking the vanishing point. The experimental results show that the method is robust and effective on various roads and driving scenarios. The algorithm was tested on highways and urban roads in India.Keywords: gradient, vehicle detection, histograms of oriented gradients, support vector machine
Procedia PDF Downloads 1242218 A Sparse Representation Speech Denoising Method Based on Adapted Stopping Residue Error
Authors: Qianhua He, Weili Zhou, Aiwu Chen
Abstract:
A sparse representation speech denoising method based on adapted stopping residue error was presented in this paper. Firstly, the cross-correlation between the clean speech spectrum and the noise spectrum was analyzed, and an estimation method was proposed. In the denoising method, an over-complete dictionary of the clean speech power spectrum was learned with the K-singular value decomposition (K-SVD) algorithm. In the sparse representation stage, the stopping residue error was adaptively achieved according to the estimated cross-correlation and the adjusted noise spectrum, and the orthogonal matching pursuit (OMP) approach was applied to reconstruct the clean speech spectrum from the noisy speech. Finally, the clean speech was re-synthesised via the inverse Fourier transform with the reconstructed speech spectrum and the noisy speech phase. The experiment results show that the proposed method outperforms the conventional methods in terms of subjective and objective measure.Keywords: speech denoising, sparse representation, k-singular value decomposition, orthogonal matching pursuit
Procedia PDF Downloads 4992217 A Numerical Description of a Fibre Reinforced Concrete Using a Genetic Algorithm
Authors: Henrik L. Funke, Lars Ulke-Winter, Sandra Gelbrich, Lothar Kroll
Abstract:
This work reports about an approach for an automatic adaptation of concrete formulations based on genetic algorithms (GA) to optimize a wide range of different fit-functions. In order to achieve the goal, a method was developed which provides a numerical description of a fibre reinforced concrete (FRC) mixture regarding the production technology and the property spectrum of the concrete. In a first step, the FRC mixture with seven fixed components was characterized by varying amounts of the components. For that purpose, ten concrete mixtures were prepared and tested. The testing procedure comprised flow spread, compressive and bending tensile strength. The analysis and approximation of the determined data was carried out by GAs. The aim was to obtain a closed mathematical expression which best describes the given seven-point cloud of FRC by applying a Gene Expression Programming with Free Coefficients (GEP-FC) strategy. The seven-parametric FRC-mixtures model which is generated according to this method correlated well with the measured data. The developed procedure can be used for concrete mixtures finding closed mathematical expressions, which are based on the measured data.Keywords: concrete design, fibre reinforced concrete, genetic algorithms, GEP-FC
Procedia PDF Downloads 2802216 Enhancement of X-Rays Images Intensity Using Pixel Values Adjustments Technique
Authors: Yousif Mohamed Y. Abdallah, Razan Manofely, Rajab M. Ben Yousef
Abstract:
X-Ray images are very popular as a first tool for diagnosis. Automating the process of analysis of such images is important in order to help physician procedures. In this practice, teeth segmentation from the radiographic images and feature extraction are essential steps. The main objective of this study was to study correction preprocessing of x-rays images using local adaptive filters in order to evaluate contrast enhancement pattern in different x-rays images such as grey color and to evaluate the usage of new nonlinear approach for contrast enhancement of soft tissues in x-rays images. The data analyzed by using MatLab program to enhance the contrast within the soft tissues, the gray levels in both enhanced and unenhanced images and noise variance. The main techniques of enhancement used in this study were contrast enhancement filtering and deblurring images using the blind deconvolution algorithm. In this paper, prominent constraints are firstly preservation of image's overall look; secondly, preservation of the diagnostic content in the image and thirdly detection of small low contrast details in diagnostic content of the image.Keywords: enhancement, x-rays, pixel intensity values, MatLab
Procedia PDF Downloads 4852215 Enhancing the Bionic Eye: A Real-time Image Optimization Framework to Encode Color and Spatial Information Into Retinal Prostheses
Authors: William Huang
Abstract:
Retinal prostheses are currently limited to low resolution grayscale images that lack color and spatial information. This study develops a novel real-time image optimization framework and tools to encode maximum information to the prostheses which are constrained by the number of electrodes. One key idea is to localize main objects in images while reducing unnecessary background noise through region-contrast saliency maps. A novel color depth mapping technique was developed through MiniBatchKmeans clustering and color space selection. The resulting image was downsampled using bicubic interpolation to reduce image size while preserving color quality. In comparison to current schemes, the proposed framework demonstrated better visual quality in tested images. The use of the region-contrast saliency map showed improvements in efficacy up to 30%. Finally, the computational speed of this algorithm is less than 380 ms on tested cases, making real-time retinal prostheses feasible.Keywords: retinal implants, virtual processing unit, computer vision, saliency maps, color quantization
Procedia PDF Downloads 1532214 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running
Authors: Elnaz Lashgari, Emel Demircan
Abstract:
Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.Keywords: electromyography, manifold learning, ISOMAP, Laplacian Eigenmaps, locally linear embedding
Procedia PDF Downloads 3622213 A Combined Error Control with Forward Euler Method for Dynamical Systems
Authors: R. Vigneswaran, S. Thilakanathan
Abstract:
Variable time-stepping algorithms for solving dynamical systems performed poorly for long time computations which pass close to a fixed point. To overcome this difficulty, several authors considered phase space error controls for numerical simulation of dynamical systems. In one generalized phase space error control, a step-size selection scheme was proposed, which allows this error control to be incorporated into the standard adaptive algorithm as an extra constraint at negligible extra computational cost. For this generalized error control, it was already analyzed the forward Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues. In this paper, this result was extended to the linear system whose coefficient matrix has complex eigenvalues with negative real parts. Some theoretical results were obtained and numerical experiments were carried out to support the theoretical results.Keywords: adaptivity, fixed point, long time simulations, stability, linear system
Procedia PDF Downloads 3122212 Identification of Knee Dynamic Profiles in High Performance Athletes with the Use of Motion Tracking
Authors: G. Espriú-Pérez, F. A. Vargas-Oviedo, I. Zenteno-Aguirrezábal, M. D. Moya-Bencomo
Abstract:
One of the injuries with a higher incidence among university-level athletes in the North of Mexico is presented in the knee. This injury generates absenteeism in training and competitions for at least 8 weeks. There is no active quantitative methodology, or protocol, that directly contributes to the clinical evaluation performed by the medical personnel at the prevalence of knee injuries. The main objective is to contribute with a quantitative tool that allows further development of preventive and corrective measures to these injuries. The study analyzed 55 athletes for 6 weeks, belonging to the disciplines of basketball, volleyball, soccer and swimming. Using a motion capture system (Nexus®, Vicon®), a three-dimensional analysis was developed that allows the measurement of the range of movement of the joint. To focus on the performance of the lower limb, eleven different movements were chosen from the Functional Performance Test, Functional Movement Screen, and the Cincinnati Jump Test. The research identifies the profile of the natural movement of a healthy knee, with the use of medical guidance, and its differences between each sport. The data recovered by the single-leg crossover hop managed to differentiate the type of knee movement among athletes. A maximum difference of 60° of offset was found in the adduction movement between male and female athletes of the same discipline. The research also seeks to serve as a guideline for the implementation of protocols that help identify the recovery level of such injuries.Keywords: Cincinnati jump test, functional movement screen, functional performance test, knee, motion capture system
Procedia PDF Downloads 1252211 On the Algorithmic Iterative Solutions of Conjugate Gradient, Gauss-Seidel and Jacobi Methods for Solving Systems of Linear Equations
Authors: Hussaini Doko Ibrahim, Hamilton Cyprian Chinwenyi, Henrietta Nkem Ude
Abstract:
In this paper, efforts were made to examine and compare the algorithmic iterative solutions of the conjugate gradient method as against other methods such as Gauss-Seidel and Jacobi approaches for solving systems of linear equations of the form Ax=b, where A is a real n×n symmetric and positive definite matrix. We performed algorithmic iterative steps and obtained analytical solutions of a typical 3×3 symmetric and positive definite matrix using the three methods described in this paper (Gauss-Seidel, Jacobi, and conjugate gradient methods), respectively. From the results obtained, we discovered that the conjugate gradient method converges faster to exact solutions in fewer iterative steps than the two other methods, which took many iterations, much time, and kept tending to the exact solutions.Keywords: conjugate gradient, linear equations, symmetric and positive definite matrix, gauss-seidel, Jacobi, algorithm
Procedia PDF Downloads 1492210 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data
Authors: S. Nickolas, Shobha K.
Abstract:
The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing
Procedia PDF Downloads 2742209 Optimal Solutions for Real-Time Scheduling of Reconfigurable Embedded Systems Based on Neural Networks with Minimization of Power Consumption
Authors: Ghofrane Rehaiem, Hamza Gharsellaoui, Samir Benahmed
Abstract:
In this study, Artificial Neural Networks (ANNs) were used for modeling the parameters that allow the real-time scheduling of embedded systems under resources constraints designed for real-time applications running. The objective of this work is to implement a neural networks based approach for real-time scheduling of embedded systems in order to handle real-time constraints in execution scenarios. In our proposed approach, many techniques have been proposed for both the planning of tasks and reducing energy consumption. In fact, a combination of Dynamic Voltage Scaling (DVS) and time feedback can be used to scale the frequency dynamically adjusting the operating voltage. Indeed, we present in this paper a hybrid contribution that handles the real-time scheduling of embedded systems, low power consumption depending on the combination of DVS and Neural Feedback Scheduling (NFS) with the energy Priority Earlier Deadline First (PEDF) algorithm. Experimental results illustrate the efficiency of our original proposed approach.Keywords: optimization, neural networks, real-time scheduling, low-power consumption
Procedia PDF Downloads 3712208 Improvement of Central Composite Design in Modeling and Optimization of Simulation Experiments
Authors: A. Nuchitprasittichai, N. Lerdritsirikoon, T. Khamsing
Abstract:
Simulation modeling can be used to solve real world problems. It provides an understanding of a complex system. To develop a simplified model of process simulation, a suitable experimental design is required to be able to capture surface characteristics. This paper presents the experimental design and algorithm used to model the process simulation for optimization problem. The CO2 liquefaction based on external refrigeration with two refrigeration circuits was used as a simulation case study. Latin Hypercube Sampling (LHS) was purposed to combine with existing Central Composite Design (CCD) samples to improve the performance of CCD in generating the second order model of the system. The second order model was then used as the objective function of the optimization problem. The results showed that adding LHS samples to CCD samples can help capture surface curvature characteristics. Suitable number of LHS sample points should be considered in order to get an accurate nonlinear model with minimum number of simulation experiments.Keywords: central composite design, CO2 liquefaction, latin hypercube sampling, simulation-based optimization
Procedia PDF Downloads 1662207 Using the Simple Fixed Rate Approach to Solve Economic Lot Scheduling Problem under the Basic Period Approach
Authors: Yu-Jen Chang, Yun Chen, Hei-Lam Wong
Abstract:
The Economic Lot Scheduling Problem (ELSP) is a valuable mathematical model that can support decision-makers to make scheduling decisions. The basic period approach is effective for solving the ELSP. The assumption for applying the basic period approach is that a product must use its maximum production rate to be produced. However, a product can lower its production rate to reduce the average total cost when a facility has extra idle time. The past researches discussed how a product adjusts its production rate under the common cycle approach. To the best of our knowledge, no studies have addressed how a product lowers its production rate under the basic period approach. This research is the first paper to discuss this topic. The research develops a simple fixed rate approach that adjusts the production rate of a product under the basic period approach to solve the ELSP. Our numerical example shows our approach can find a better solution than the traditional basic period approach. Our mathematical model that applies the fixed rate approach under the basic period approach can serve as a reference for other related researches.Keywords: economic lot, basic period, genetic algorithm, fixed rate
Procedia PDF Downloads 5632206 Intrusion Detection System Using Linear Discriminant Analysis
Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou
Abstract:
Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99
Procedia PDF Downloads 2262205 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul
Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini
Abstract:
The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.Keywords: decision tree, breast cancer, probability, data mining
Procedia PDF Downloads 1382204 A Comparative Analysis of Geometric and Exponential Laws in Modelling the Distribution of the Duration of Daily Precipitation
Authors: Mounia El Hafyani, Khalid El Himdi
Abstract:
Precipitation is one of the key variables in water resource planning. The importance of modeling wet and dry durations is a crucial pointer in engineering hydrology. The objective of this study is to model and analyze the distribution of wet and dry durations. For this purpose, the daily rainfall data from 1967 to 2017 of the Moroccan city of Kenitra’s station are used. Three models are implemented for the distribution of wet and dry durations, namely the first-order Markov chain, the second-order Markov chain, and the truncated negative binomial law. The adherence of the data to the proposed models is evaluated using Chi-square and Kolmogorov-Smirnov tests. The Akaike information criterion is applied to assess the most effective model distribution. We go further and study the law of the number of wet and dry days among k consecutive days. The calculation of this law is done through an algorithm that we have implemented based on conditional laws. We complete our work by comparing the observed moments of the numbers of wet/dry days among k consecutive days to the calculated moment of the three estimated models. The study shows the effectiveness of our approach in modeling wet and dry durations of daily precipitation.Keywords: Markov chain, rainfall, truncated negative binomial law, wet and dry durations
Procedia PDF Downloads 1252203 Stability-Indicating High-Performance Thin-Layer Chromatography Method for Estimation of Naftopidil
Authors: P. S. Jain, K. D. Bobade, S. J. Surana
Abstract:
A simple, selective, precise and Stability-indicating High-performance thin-layer chromatographic method for analysis of Naftopidil both in a bulk and in pharmaceutical formulation has been developed and validated. The method employed, HPTLC aluminium plates precoated with silica gel as the stationary phase. The solvent system consisted of hexane: ethyl acetate: glacial acetic acid (4:4:2 v/v). The system was found to give compact spot for Naftopidil (Rf value of 0.43±0.02). Densitometric analysis of Naftopidil was carried out in the absorbance mode at 253 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r2=0.999±0.0001 with respect to peak area in the concentration range 200-1200 ng per spot. The method was validated for precision, recovery and robustness. The limits of detection and quantification were 20.35 and 61.68 ng per spot, respectively. Naftopidil was subjected to acid and alkali hydrolysis, oxidation and thermal degradation. The drug undergoes degradation under acidic, basic, oxidation and thermal conditions. This indicates that the drug is susceptible to acid, base, oxidation and thermal conditions. The degraded product was well resolved from the pure drug with significantly different Rf value. Statistical analysis proves that the method is repeatable, selective and accurate for the estimation of investigated drug. The proposed developed HPTLC method can be applied for identification and quantitative determination of Naftopidil in bulk drug and pharmaceutical formulation.Keywords: naftopidil, HPTLC, validation, stability, degradation
Procedia PDF Downloads 4002202 Determination of Stresses in Vlasov Beam Sections
Authors: Semih Erdogan
Abstract:
In this paper, the normal and shear stress distributions in Vlasov beams are determined by two-dimensional triangular finite element formulations. The proposed formulations take into account the warping effects along the beam axis. The shape of the considered beam sections may be arbitrary and varied throughout its length. The stiffness matrices and force vectors are derived for transversal forces, uniform torsion, and nonuniform torsion. The proposed finite element algorithm is validated by comparing the analytical solutions, structural engineering books, and related articles. The numerical examples include beams with different cross-section types such as solid, thick-walled, closed-thin-walled, and open-thin-walled sections. Materials defined in the examples are homogeneous, isotropic, and linearly elastic. Through these examples, the study demonstrates the capability of the proposed method to address a wide range of practical engineering scenarios.Keywords: Vlasov beams, warping function, nonuniform torsion, finite element method, normal and shear stresses, cross-section properties
Procedia PDF Downloads 642201 An Improved Particle Swarm Optimization Technique for Combined Economic and Environmental Power Dispatch Including Valve Point Loading Effects
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In recent years, the combined economic and emission power dispatch is one of the main problems of electrical power system. It aims to schedule the power generation of generators in order to minimize cost production and emission of harmful gases caused by fossil-fueled thermal units such as CO, CO2, NOx, and SO2. To solve this complicated multi-objective problem, an improved version of the particle swarm optimization technique that includes non-dominated sorting concept has been proposed. Valve point loading effects and system losses have been considered. The three-unit and ten-unit benchmark systems have been used to show the effectiveness of the suggested optimization technique for solving this kind of nonconvex problem. The simulation results have been compared with those obtained using genetic algorithm based method. Comparison results show that the proposed approach can provide a higher quality solution with better performance.Keywords: power dispatch, valve point loading effects, multiobjective optimization, Pareto solutions
Procedia PDF Downloads 2732200 Geophysical Mapping of the Groundwater Aquifer System in Gode Area, Northeastern Hosanna, Ethiopia
Authors: Esubalew Yehualaw Melaku
Abstract:
In this study, two basic geophysical methods are applied for mapping the groundwater aquifer system in the Gode area along the Guder River, northeast of Hosanna town, near the western margin of the Central Main Ethiopian Rift. The main target of the study is to map the potential aquifer zone and investigate the groundwater potential for current and future development of the resource in the Gode area. The geophysical methods employed in this study include, Vertical Electrical Sounding (VES) and magnetic survey techniques. Electrical sounding was used to examine and map the depth to the potential aquifer zone of the groundwater and its distribution over the area. On the other hand, a magnetic survey was used to delineate contact between lithologic units and geological structures. The 2D magnetic modeling and the geoelectric sections are used for the identification of weak zones, which control the groundwater flow and storage system. The geophysical survey comprises of twelve VES readings collected by using a Schlumberger array along six profile lines and more than four hundred (400) magnetic readings at about 10m station intervals along four profiles and 20m along three random profiles. The study result revealed that the potential aquifer in the area is obtained at a depth range from 45m to 92m. This is the response of the highly weathered/ fractured ignimbrite and pumice layer with sandy soil, which is the main water-bearing horizon. Overall, in the neighborhood of four VES points, VES- 2, VES- 3, VES-10, and VES-11, shows good water-bearing zones in the study area.Keywords: vertical electrical sounding, magnetic survey, aquifer, groundwater potential
Procedia PDF Downloads 1282199 Parameter Selection for Computationally Efficient Use of the Bfvrns Fully Homomorphic Encryption Scheme
Authors: Cavidan Yakupoglu, Kurt Rohloff
Abstract:
In this study, we aim to provide a novel parameter selection model for the BFVrns scheme, which is one of the prominent FHE schemes. Parameter selection in lattice-based FHE schemes is a practical challenges for experts or non-experts. Towards a solution to this problem, we introduce a hybrid principles-based approach that combines theoretical with experimental analyses. To begin, we use regression analysis to examine the parameters on the performance and security. The fact that the FHE parameters induce different behaviors on performance, security and Ciphertext Expansion Factor (CEF) that makes the process of parameter selection more challenging. To address this issue, We use a multi-objective optimization algorithm to select the optimum parameter set for performance, CEF and security at the same time. As a result of this optimization, we get an improved parameter set for better performance at a given security level by ensuring correctness and security against lattice attacks by providing at least 128-bit security. Our result enables average ~ 5x smaller CEF and mostly better performance in comparison to the parameter sets given in [1]. This approach can be considered a semiautomated parameter selection. These studies are conducted using the PALISADE homomorphic encryption library, which is a well-known HE library. The abstract goes here.Keywords: lattice cryptography, fully homomorphic encryption, parameter selection, LWE, RLWE
Procedia PDF Downloads 1552198 Genome-Wide Analysis of Long Terminal Repeat (LTR) Retrotransposons in Rabbit (Oryctolagus cuniculus)
Authors: Zeeshan Khan, Faisal Nouroz, Shumaila Noureen
Abstract:
European or common rabbit (Oryctolagus cuniculus) belongs to class Mammalia, order Lagomorpha of family Leporidae. They are distributed worldwide and are native to Europe (France, Spain and Portugal) and Africa (Morocco and Algeria). LTR retrotransposons are major Class I mobile genetic elements of eukaryotic genomes and play a crucial role in genome expansion, evolution and diversification. They were mostly annotated in various genomes by conventional approaches of homology searches, which restricted the annotation of novel elements. Present work involved de novo identification of LTR retrotransposons by LTR_FINDER in haploid genome of rabbit (2247.74 Mb) distributed in 22 chromosomes, of which 7,933 putative full-length or partial copies were identified containing 69.38 Mb of elements, accounting 3.08% of the genome. Highest copy numbers (731) were found on chromosome 7, followed by chromosome 12 (705), while the lowest copy numbers (27) were detected in chromosome 19 with no elements identified from chromosome 21 due to partially sequenced chromosome, unidentified nucleotides (N) and repeated simple sequence repeats (SSRs). The identified elements ranged in sizes from 1.2 - 25.8 Kb with average sizes between 2-10 Kb. Highest percentage (4.77%) of elements was found in chromosome 15, while lowest (0.55%) in chromosome 19. The most frequent tRNA type was Arginine present in majority of the elements. Based on gained results, it was estimated that rabbit exhibits 15,866 copies having 137.73 Mb of elements accounting 6.16% of diploid genome (44 chromosomes). Further molecular analyses will be helpful in chromosomal localization and distribution of these elements on chromosomes.Keywords: rabbit, LTR retrotransposons, genome, chromosome
Procedia PDF Downloads 1492197 Simulation of Flow through Dam Foundation by FEM and ANN Methods Case Study: Shahid Abbaspour Dam
Authors: Mehrdad Shahrbanozadeh, Gholam Abbas Barani, Saeed Shojaee
Abstract:
In this study, a finite element (Seep3D model) and an artificial neural network (ANN) model were developed to simulate flow through dam foundation. Seep3D model is capable of simulating three-dimensional flow through a heterogeneous and anisotropic, saturated and unsaturated porous media. Flow through the Shahid Abbaspour dam foundation has been used as a case study. The FEM with 24960 triangular elements and 28707 nodes applied to model flow through foundation of this dam. The FEM being made denser in the neighborhood of the curtain screen. The ANN model developed for Shahid Abbaspour dam is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning. The water level elevations of the upstream and downstream of the dam have been used as input variables and the piezometric heads as the target outputs in the ANN model. The two models are calibrated and verified using the Shahid Abbaspour’s dam piezometric data. Results of the models were compared with those measured by the piezometers which are in good agreement. The model results also revealed that the ANN model performed as good as and in some cases better than the FEM.Keywords: seepage, dam foundation, finite element method, neural network, seep 3D model
Procedia PDF Downloads 4742196 Identification of Phenolic Compounds with Antibacterial Activity in Raisin Extract
Authors: Yousef M. Abouzeed A. Elfahem, F. Zgheel, M. A. Saad, Mohamed O. Ahmed
Abstract:
The bioactive properties of phytochemicals indicate their potential as natural drug products to prevent and treat human disease; in particular, compounds with antioxidant and antimicrobial activities may represent a novel class of safe and effective drugs. Following desiccation, grapes (Vitis vinifera) become more resistant to microbial-based degradation, suggesting that raisins may be a source of antimicrobial compounds. To investigate this hypothesis, total phenolic extracts were obtained from common raisins, local market-sourced. The acetone extract was tested for antibacterial activity against four prevalent bacterial pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella spp. and Escherichia coli). Antibiotic sensitivity and the Minimum Inhibitory Concentration (MIC) were determined for each bacterium. High performance liquid chromatography was used to identify compounds in the total phenolic extract. The raisin phenolic extract inhibited growth of all the tested bacteria; the greatest inhibitive effect (normalized to cefotaxime sodium control antibiotic) occurred against P. aeruginosa, followed by S. aureus > Salmonella spp.= E. coli. The phenolic extracts contained the bioactive compounds catechin, quercetin, and rutin. Thus, phytochemicals in raisin extract have antibacterial properties; this plant-based extract, or its bioactive constituents, may represent a promising natural preservative or antimicrobial agent for the food industry or anti-infective drug.Keywords: Vitis vinifera raisin, extraction, phenolic compounds, antibacterial activity
Procedia PDF Downloads 6062195 A Bio-Inspired Approach for Self-Managing Wireless Sensor and Actor Networks
Authors: Lyamine Guezouli, Kamel Barka, Zineb Seghir
Abstract:
Wireless sensor and actor networks (WSANs) present a research challenge for different practice areas. Researchers are trying to optimize the use of such networks through their research work. This optimization is done on certain criteria, such as improving energy efficiency, exploiting node heterogeneity, self-adaptability and self-configuration. In this article, we present our proposal for BIFSA (Biologically-Inspired Framework for Wireless Sensor and Actor networks). Indeed, BIFSA is a middleware that addresses the key issues of wireless sensor and actor networks. BIFSA consists of two types of agents: sensor agents (SA) that operate at the sensor level to collect and transport data to actors and actor agents (AA) that operate at the actor level to transport data to base stations. Once the sensor agent arrives at the actor, it becomes an actor agent, which can exploit the resources of the actors and vice versa. BIFSA allows agents to evolve their genetic structures and adapt to the current network conditions. The simulation results show that BIFSA allows the agents to make better use of all the resources available in each type of node, which improves the performance of the network.Keywords: wireless sensor and actor networks, self-management, genetic algorithm, agent.
Procedia PDF Downloads 892194 Multi-Criteria Optimization of High-Temperature Reversed Starter-Generator
Authors: Flur R. Ismagilov, Irek Kh. Khayrullin, Vyacheslav E. Vavilov, Ruslan D. Karimov, Anton S. Gorbunov, Danis R. Farrakhov
Abstract:
The paper presents another structural scheme of high-temperature starter-generator with external rotor to be installed on High Pressure Shaft (HPS) of aircraft engines (AE) to implement More Electrical Engine concept. The basic materials to make this starter-generator (SG) were selected and justified. Multi-criteria optimization of the developed structural scheme was performed using a genetic algorithm and Pareto method. The optimum (in Pareto terms) active length and thickness of permanent magnets of SG were selected as a result of the optimization. Using the dimensions obtained, allowed to reduce the weight of the designed SG by 10 kg relative to a base option at constant thermal loads. Multidisciplinary computer simulation was performed on the basis of the optimum geometric dimensions, which proved performance efficiency of the design. We further plan to make a full-scale sample of SG of HPS and publish the results of its experimental research.Keywords: high-temperature starter-generator, more electrical engine, multi-criteria optimization, permanent magnet
Procedia PDF Downloads 3682193 The Qualitative and Quantitative Detection of Pistachio in Processed Food Products Using Florescence Dye Based PCR
Authors: Ergün Şakalar, Şeyma Özçirak Ergün
Abstract:
Pistachio nuts, the fruits of the pistachio tree (Pistacia vera), are edible tree nuts highly valued for their organoleptic properties. Pistachio nuts used in snack foods, chocolates, baklava, meat products, ice-cream industries and other gourmet products as ingredients. Undeclared pistachios may be present in food products as a consequence of fraudulent substitution. Control of food samples is very important for safety and fraud. Mix of pistachio, peanut (Arachis hypogaea), pea (Pisum sativum L.) used instead of pistachio in food products, because pistachio is a considerably expensive nut. To solve this problem, a sensitive polymerase chain reaction PCR has been developed. A real-time PCR assay for the detection of pea, peanut and pistachio in baklava was designed by using EvaGreen fluorescence dye. Primers were selected from powerful regions for identification of pea, peanut and pistachio. DNA from reference samples and industrial products were successfully extracted with the GIDAGEN® Multi-Fast DNA Isolation Kit. Genomes were identified based on their specific melting peaks (Mp) which are 77°C, 85.5°C and 82.5°C for pea, peanut and pistachio, respectively. Homogenized mixtures of raw pistachio, pea and peanut were prepared with the ratio of 0.01%, 0.1%, 1%, 10%, 40% and 70% of pistachio. Quantitative detection limit of assay was 0.1% for pistachio. Also, real-time PCR technique used in this study allowed the qualitative detection of as little as 0.001% level of peanut DNA, 0,000001% level of pistachio DNA and 0.000001% level of pea DNA in the experimental admixtures. This assay represents a potentially valuable diagnostic method for detection of nut species adulterated with pistachio as well as for highly specific and relatively rapid detection of small amounts of pistachio in food samples.Keywords: pea, peanut, pistachio, real-time PCR
Procedia PDF Downloads 2652192 Growth Inhibition of Candida Albicans Strains Co-Cultured with Lactobacillus Strains in a Cereal Medium
Authors: Richard Nyanzi, Maupi E. Letsoalo, Jacobus N. Eloff, Piet J. Jooste
Abstract:
Candida albicans naturally occurs in the gastrointestinal tract (GIT) of more than 50% of humans. Overgrowth of the fungus causes several forms of candidiasis including oral thrush. Overgrowth tends to occur in immunocompromised humans such as diabetic, cancer and HIV patients. Antifungal treatment is available, but not without shortcomings. In this study, inhibitory activity of five probiotic Lactobacillus strains was demonstrated against the growth of seven clinical strains of Candida albicans by co-culturing of the organisms in a maize gruel (MG) medium. Phenotypic tests, molecular techniques and phylogenetic analysis have enabled precise identification of the organisms used in the study. The quantitative pour plate technique was used to enumerate colonies of the yeasts and the lactobacilli and the Kruskal-Wallis test and ANOVA tests were employed to compare the distributions of the colonies of the organisms. The cereal medium, containing added carbon sources, was inoculated with a Candida and a Lactobacillus strain in combination and incubated at 37 °C for 168 h. Aliquots were regularly taken and subjected to pH determination and colony enumeration. Certain Lactobacillus strains proved to be inhibitory and also lethal to some Candida albicans strains. A low pH due to Lactobacillus acid production resulted in significant low Candida colony counts. Higher Lactobacillus colony counts did not necessarily result in lower Candida counts suggesting that inhibitory factors besides low pH and competitive growth by lactobacilli contributed to the reduction in Candida counts. Such anti-Candida efficacy however needs to be confirmed by in vivo studies.Keywords: candida albicans, oral thrush, candidiasis, lactobacillus, probiotics
Procedia PDF Downloads 3992191 Neural Network Approach to Classifying Truck Traffic
Authors: Ren Moses
Abstract:
The process of classifying vehicles on a highway is hereby viewed as a pattern recognition problem in which connectionist techniques such as artificial neural networks (ANN) can be used to assign vehicles to their correct classes and hence to establish optimum axle spacing thresholds. In the United States, vehicles are typically classified into 13 classes using a methodology commonly referred to as “Scheme F”. In this research, the ANN model was developed, trained, and applied to field data of vehicles. The data comprised of three vehicular features—axle spacing, number of axles per vehicle, and overall vehicle weight. The ANN reduced the classification error rate from 9.5 percent to 6.2 percent when compared to an existing classification algorithm that is not ANN-based and which uses two vehicular features for classification, that is, axle spacing and number of axles. The inclusion of overall vehicle weight as a third classification variable further reduced the error rate from 6.2 percent to only 3.0 percent. The promising results from the neural networks were used to set up new thresholds that reduce classification error rate.Keywords: artificial neural networks, vehicle classification, traffic flow, traffic analysis, and highway opera-tions
Procedia PDF Downloads 3092190 Analyzing Microblogs: Exploring the Psychology of Political Leanings
Authors: Meaghan Bowman
Abstract:
Microblogging has become increasingly popular for commenting on current events, spreading gossip, and encouraging individualism--which favors its low-context communication channel. These social media (SM) platforms allow users to express opinions while interacting with a wide range of populations. Hashtags allow immediate identification of like-minded individuals worldwide on a vast array of topics. The output of the analytic tool, Linguistic Inquiry and Word Count (LIWC)--a program that associates psychological meaning with the frequency of use of specific words--may suggest the nature of individuals’ internal states and general sentiments. When applied to groupings of SM posts unified by a hashtag, such information can be helpful to community leaders during periods in which the forming of public opinion happens in parallel with the unfolding of political, economic, or social events. This is especially true when outcomes stand to impact the well-being of the group. Here, we applied the online tools, Google Translate and the University of Texas’s LIWC, to a 90-posting sample from a corpus of Colombian Spanish microblogs. On translated disjoint sets, identified by hashtag as being authored by advocates of voting “No,” advocates voting “Yes,” and entities refraining from hashtag use, we observed the value of LIWC’s Tone feature as distinguishing among the categories and the word “peace,” as carrying particular significance, due to its frequency of use in the data.Keywords: Colombia peace referendum, FARC, hashtags, linguistics, microblogging, social media
Procedia PDF Downloads 107