Search results for: intensive or adapted cognitive behavioural therapy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5879

Search results for: intensive or adapted cognitive behavioural therapy

1799 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach

Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar

Abstract:

The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.

Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group

Procedia PDF Downloads 114
1798 Replica-Exchange Metadynamics Simulations of G-Quadruplex DNA Structures Under Substitution of K+ by Na+ Ions

Authors: Juan Antonio Mondragon Sanchez, Ruben Santamaria

Abstract:

The DNA G-quadruplex is a four-stranded DNA structure conformed by stacked planes of four base paired guanines (G-quartet). The guanine rich DNA sequences are present in many sites of genomic DNA and can potentially lead to the formation of G-quadruplexes, especially at the 3'-terminus of the human telomeric DNA with many TTAGGG repeats. The formation and stabilization of a G-quadruplex by small ligands at the telomeric region can inhibit the telomerase activity. In turn, the ligands can be used to regulate oncogene expression making the G-quadruplex an attractive target for anticancer therapy. Clearly, the G-quadruplex structured in the telomeric DNA is of fundamental importance for rational drug design. In this context, we investigate two G-quadruplex structures, the first follows from the sequence TTAGGG(TTAGGG)3TT (HUT1), and the second from AAAGGG(TTAGGG)3AA (HUT2), both in a K+ solution. We determine the free energy surfaces of the HUT1 and HUT2 structures and investigate their conformations using replica-exchange metadynamics simulations. The carbonyl-carbonyl distances belonging to different guanines residues are selected as the main collective variables to determine the free energy surfaces. The surfaces exhibit two main local minima, compatible with experiments on the conformational transformations of HUT1 and HUT2 under substitution of the K+ ions by the Na+ ions. The conformational transitions are not observed in short MD simulations without the use of the metadynamics approach. The results of this work should be of help to understand the formation and stability of human telomeric G-quadruplex in environments including the presence of K+ and Na+ ions.

Keywords: g-quadruplex, metadynamics, molecular dynamics, replica-exchange

Procedia PDF Downloads 343
1797 Investigation of Cold Atmospheric Plasma Exposure Protocol on Wound Healing in Diabetic Foot Ulcer

Authors: P. Akbartehrani, M. Khaledi Pour, M. Amini, M. Khani, M. Mohajeri Tehrani, E. Ghasemi, P. Charipoor, B. Shokri

Abstract:

A common problem between diabetic patients is foot ulcers which are chronic and require specialized treatment. Previous studies illustrate that Cold atmospheric plasma (CAP) has beneficial effects on wound healing and infection. Nevertheless, the comparison of different cap exposure protocols in diabetic ulcer wound healing remained to be studied. This study aims to determine the effect of two different exposure protocols on wound healing in diabetic ulcers. A prospective, randomized clinical trial was conducted at two clinics. Diabetic patients with G1 and G2 wanger classification diabetic foot ulcers were divided into two groups of study. One group was treated by the first protocol, which was treating wounds by argon-generated cold atmospheric plasma jet once a week for five weeks in a row. The other group was treated by the second protocol, which was treating wounds every three days for five weeks in a row. The wounds were treated for 40 seconds/cubic centimeter, while the nozzle tip was moved nonlocalized 1 cm above the wounds. A patient with one or more wounds could participate in different groups as wounds were separately randomized, which allow a participant to be treated several times during the study. The study's significant findings were two different reductions rate in wound size, microbial load, and two different healing speeds. This study concludes that CAP therapy by the second protocol yields more effective healing speeds, reduction in wound sizes, and microbial loads of foot ulcers in diabetic patients.

Keywords: wound healing, diabetic ulcers, cold atmospheric plasma, cold argon jet

Procedia PDF Downloads 215
1796 The Low-Cost Design and 3D Printing of Structural Knee Orthotics for Athletic Knee Injury Patients

Authors: Alexander Hendricks, Sean Nevin, Clayton Wikoff, Melissa Dougherty, Jacob Orlita, Rafiqul Noorani

Abstract:

Knee orthotics play an important role in aiding in the recovery of those with knee injuries, especially athletes. However, structural knee orthotics is often very expensive, ranging between $300 and $800. The primary reason for this project was to answer the question: can 3D printed orthotics represent a viable and cost-effective alternative to present structural knee orthotics? The primary objective for this research project was to design a knee orthotic for athletes with knee injuries for a low-cost under $100 and evaluate its effectiveness. The initial design for the orthotic was done in SolidWorks, a computer-aided design (CAD) software available at Loyola Marymount University. After this design was completed, finite element analysis (FEA) was utilized to understand how normal stresses placed upon the knee affected the orthotic. The knee orthotic was then adjusted and redesigned to meet a specified factor-of-safety of 3.25 based on the data gathered during FEA and literature sources. Once the FEA was completed and the orthotic was redesigned based from the data gathered, the next step was to move on to 3D-printing the first design of the knee brace. Subsequently, physical therapy movement trials were used to evaluate physical performance. Using the data from these movement trials, the CAD design of the brace was refined to accommodate the design requirements. The final goal of this research means to explore the possibility of replacing high-cost, outsourced knee orthotics with a readily available low-cost alternative.

Keywords: 3D printing, knee orthotics, finite element analysis, design for additive manufacturing

Procedia PDF Downloads 178
1795 Layer-by-Layer Coated Dexamethasone Microcrystals for Experimental Inflammatory Bowel Disease Therapy

Authors: Murtada Ahmed Oshi, Jin-Wook Yoo

Abstract:

Layer-by-layer (LBL) coating has gained popularity for drug delivery of therapeutic drugs. Herein we described a novel approach for enhancing the therapeutic efficiency of the locally administered dexamethasone (Dex) for inflammatory bowel disease (IBD). We utilized a LBL-coating technique on Dex microcrystals (DexMCs) with multiple layers of polyelectrolytes composed of poly (allylamine hydrochloride) (PAH), poly (sodium 4-styrene sulfonate) (PSS) and Eudragit® S100 (ES). The successful deposition of the layers onto DexMCs surfaces were confirmed through zeta potential measurement and confocal laser scanning microscopy. The surface morphology was investigated through scanning electron microscopy. The drug encapsulation efficiency was 95% with a mean particle size of 2 µm and negative surface charge (-40 mV). Moreover, in vitro drug release study showed a minimum release of the drug ( 15%) at an acidic condition during initial first 5 h, followed by sustained-release at an alkaline condition. For in vivo study, LBL-DxMCs were administered orally to ICR mice suffering from dextran sulfate sodium-induced colitis. LBL-DxMCs substantially enhanced anti-IBD activities as compared to DxMCs. Macroscopic, histological and biochemical (tumor necrosis factor-α, interleukin-6 and myeloperoxidase) examinations revealed marked improvements of colitis signs in the mice treated with LBL-DxMCs compared with those treated with DxMCs. Overall, LBL-DxMCs could be a suitable candidate for the treatment of IBD.

Keywords: dexamethasone, inflammatory bowel disease, LBL-coating, polyelectrolytes

Procedia PDF Downloads 194
1794 Improved Technology Portfolio Management via Sustainability Analysis

Authors: Ali Al-Shehri, Abdulaziz Al-Qasim, Abdulkarim Sofi, Ali Yousef

Abstract:

The oil and gas industry has played a major role in improving the prosperity of mankind and driving the world economy. According to the International Energy Agency (IEA) and Integrated Environmental Assessment (EIA) estimates, the world will continue to rely heavily on hydrocarbons for decades to come. This growing energy demand mandates taking sustainability measures to prolong the availability of reliable and affordable energy sources, and ensure lowering its environmental impact. Unlike any other industry, the oil and gas upstream operations are energy-intensive and scattered over large zonal areas. These challenging conditions require unique sustainability solutions. In recent years there has been a concerted effort by the oil and gas industry to develop and deploy innovative technologies to: maximize efficiency, reduce carbon footprint, reduce CO2 emissions, and optimize resources and material consumption. In the past, the main driver for research and development (R&D) in the exploration and production sector was primarily driven by maximizing profit through higher hydrocarbon recovery and new discoveries. Environmental-friendly and sustainable technologies are increasingly being deployed to balance sustainability and profitability. Analyzing technology and its sustainability impact is increasingly being used in corporate decision-making for improved portfolio management and allocating valuable resources toward technology R&D.This paper articulates and discusses a novel workflow to identify strategic sustainable technologies for improved portfolio management by addressing existing and future upstream challenges. It uses a systematic approach that relies on sustainability key performance indicators (KPI’s) including energy efficiency quotient, carbon footprint, and CO2 emissions. The paper provides examples of various technologies including CCS, reducing water cuts, automation, using renewables, energy efficiency, etc. The use of 4IR technologies such as Artificial Intelligence, Machine Learning, and Data Analytics are also discussed. Overlapping technologies, areas of collaboration and synergistic relationships are identified. The unique sustainability analyses provide improved decision-making on technology portfolio management.

Keywords: sustainability, oil& gas, technology portfolio, key performance indicator

Procedia PDF Downloads 181
1793 Adaption of the Design Thinking Method for Production Planning in the Meat Industry Using Machine Learning Algorithms

Authors: Alica Höpken, Hergen Pargmann

Abstract:

The resource-efficient planning of the complex production planning processes in the meat industry and the reduction of food waste is a permanent challenge. The complexity of the production planning process occurs in every part of the supply chain, from agriculture to the end consumer. It arises from long and uncertain planning phases. Uncertainties such as stochastic yields, fluctuations in demand, and resource variability are part of this process. In the meat industry, waste mainly relates to incorrect storage, technical causes in production, or overproduction. The high amount of food waste along the complex supply chain in the meat industry could not be reduced by simple solutions until now. Therefore, resource-efficient production planning by conventional methods is currently only partially feasible. The realization of intelligent, automated production planning is basically possible through the application of machine learning algorithms, such as those of reinforcement learning. By applying the adapted design thinking method, machine learning methods (especially reinforcement learning algorithms) are used for the complex production planning process in the meat industry. This method represents a concretization to the application area. A resource-efficient production planning process is made available by adapting the design thinking method. In addition, the complex processes can be planned efficiently by using this method, since this standardized approach offers new possibilities in order to challenge the complexity and the high time consumption. It represents a tool to support the efficient production planning in the meat industry. This paper shows an elegant adaption of the design thinking method to apply the reinforcement learning method for a resource-efficient production planning process in the meat industry. Following, the steps that are necessary to introduce machine learning algorithms into the production planning of the food industry are determined. This is achieved based on a case study which is part of the research project ”REIF - Resource Efficient, Economic and Intelligent Food Chain” supported by the German Federal Ministry for Economic Affairs and Climate Action of Germany and the German Aerospace Center. Through this structured approach, significantly better planning results are achieved, which would be too complex or very time consuming using conventional methods.

Keywords: change management, design thinking method, machine learning, meat industry, reinforcement learning, resource-efficient production planning

Procedia PDF Downloads 125
1792 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.

Keywords: classification, achine learning, predictive quality, feature selection

Procedia PDF Downloads 160
1791 Role of Pakistani Physicians in the Pharmacotherapy of Obesity

Authors: Sadia Suri Kashif, Raheeda Fatima, Maqsood Ahmed Khan

Abstract:

Purpose of the study: The objective of this research was to determine the perception of Pakistani physicians (whether primary care, specialists or residents) in Karachi, being one of the largest and highly populated cities of Pakistan, regarding clinical approaches towards diet, exercise, and therapy in obese patients. This research determines their understanding of obesity and employability of obesity management in their daily practices. Research methodology: This is a questionnaire-based survey. A minimum of 300 questionnaires (N=300) were distributed and filled by practicing physicians in a random selection of medical setups in Karachi. Randomly 246 physicians responded to the survey. The survey tested their views regarding weight management, importance of general awareness and their strategies to control weight. Results: In the first part of survey the physicians responded to almost 66% regarding the seriousness of obesity management with advising diet modification, physical exercise and decreasing calorie intake; 57% failed to employ Body Mass Index and Waist Hip Ratio as weight measurement tools in their daily practice; 50% disagreed on using pharmacotherapy as an option; 67% were not sure about the proper dosage and indication of anti-obesity medication while almost same disagreed on using surgical options for management of obesity; 83.3% physicians agreed on the increased obesity pandemic in Pakistan. Conclusion: The findings indicate that there is a gap between awareness and knowledge among Pakistani practicing physicians regarding pharmacotherapy for obesity. There is a need to frequently update latest guidelines to help manage this condition, which is becoming more prevalent in our country day by day. Physicians should be obligated to use updated knowledge for managing obesity.

Keywords: obesity, physicians, BMI, weight management, obesity awareness

Procedia PDF Downloads 169
1790 GABARAPL1 (GEC1) mRNA Expression Levels in Patients with Alzheimer's Disease

Authors: Ali Bayram, Burak Uz, Ilhan Dolasik, Remzi Yiğiter

Abstract:

The GABARAP (GABAA-receptor-associated protein) family consists of GABARAP, GABARAPL1 (GABARAP-like 1) and GABARAPL2 (GABARAP-like 2). GABARAPL1, like GABARAP, was described to interact with both GABAA receptor and tubulin, and to be involved in intracellular GABAA receptor trafficking and promoting tubulin polymerization. In addition, GABARAPL1 is thought to be involved in various physiological (autophagosome closure, regulation of circadian rhythms) and/or pathological mechanisms (cancer, neurodegeneration). Alzheimer’s disease (AD) is a progressive neuro degenerative disorder characterized with impaired cognitive functions. Disruption of the GABAergic neuro transmission as well as cholinergic and glutamatergic interactions, may also be involved in the pathogenesis of AD. GABARAPL1 presents a regulated tissue expression and is the most expressed gene among the GABARAP family members in the central nervous system. We, herein, conducted a study to investigate the GABARAPL1 mRNA expression levels in patients with AD. 50 patients with AD and 49 control patients were enrolled to the present study. Messenger RNA expression levels of GABARAPL1 were detected by real-time polymerase chain reaction. GABARAPL1 mRNA expression in AD / control patients was 0,495 (95% confidence interval: 0,404-0,607), p= 0,00000002646. Reduced activity of GABARAPL1 gene might play a role, at least partly, in the pathophysiology of AD.

Keywords: Alzheimer’s disease, GABARAPL1, mRNA expression, RT-PCR

Procedia PDF Downloads 456
1789 From Transference Love to Self Alienation in the Therapeutic Relationship: A Case Study

Authors: Efi Koutantou

Abstract:

The foundation of successful therapy is the bond between the psychotherapist and the patient, Psychoanalysis would argue. The present study explores lived experiences of a psychotherapeutic relationship in different moments, initial and final with special reference to the transference love developed through the process. The fight between moments of ‘leaving a self’ behind and following ‘lines of flight’ in the process of creating a new subjectivity and ‘becoming-other’ will be explored. Moments between de-territorialisation – surpassing given constraints such as gender, family and religion, kinship bonds - freeing the space in favor of re-territorialisation – creation of oneself creation of oneself will also be analyzed. The generation of new possibilities of being, new ways of self-actualization for this patient will be discussed. The second part of this study will explore the extent to which this ‘transference love’ results for this specific patient to become ‘the discourse of the other’; it is a desideratum whether the patient finally becomes a subject of his/her own through his/her own self-exploration of new possibilities of existence or becomes alienated within the thought of the therapist. The way in which the patient uses or is (ab)used by the transference love in order to experience and undergo alienation from an ‘authority’ which may or may not sacrifice his/her own thought in favor of satisfying the therapist will be investigated. Finally, from an observer’s perspective and from the analysis of the results of this therapeutic relationship, the counter-transference will also be analyzed, in terms of an attempt of the analyst to relive and satisfy his/her own desires through the life of the analysand. The accession and fall of an idealized self will be analyzed, the turn of the transference love into ‘hate’ will conclude this case study through a lived experience in the therapeutic procedure; a relationship which can be called to be a mixture of a real relationship and remnants from a past object relationship.

Keywords: alienation, authority, counter-transference, hate, transference love

Procedia PDF Downloads 209
1788 The Impact of Direct and Indirect Pressure Measuring Systems on the Pressure Mapping for the Medical Compression Garments

Authors: Arash M. Shahidi, Tilak Dias, Gayani K. Nandasiri

Abstract:

While graduated compression is the foundation of treatment and management of many medical complications such as leg ulcer, varicose veins, and lymphedema, monitoring the interface pressure has been conducted using different sensors that operate based on diverse approaches. The variations existed from the pressure readings collected using different interface pressure measurement systems would cause difficulties in taking a decision regarding the compression therapy. It is crucial to acknowledge the differences existing between direct and indirect pressure measurement systems while considering the commercially available systems such as AMI, Picopress and OPM which are under direct measurements systems, and HATRA (BSI), HOSY (RAL-GZ) and FlexiForce which comes under the indirect measurement system. Furthermore, Piezo-resistive sensors (Flexiforce) can measure the changes in resistance corresponding to the applied force on the sensing area. Direct pressure measuring systems are capable of measuring interface pressure on the three-dimensional states, while the indirect pressure measuring systems stretch the fabric in the two-dimensional direction and extrapolate pressure from surface tension measured on the device and neglect the vital factor which is the radius of curvature. In this study, a leg mannequin of known dimensions is selected with a knitted class 3 compression stocking. It has been decided to evaluate the data collected from different available systems (AMI, PicoPress, FlexiForce, and HATRA) and compare the results. The results showed a discrepancy between Hatra, AMI, Picopress, and Flexiforce against the pressure standard used to generate class 3 compression stocking. As predicted a higher pressure value with direct interface measuring systems were monitored against HATRA due to the effect of the radius of curvature.

Keywords: AMI, FlexiForce, graduated compression, HATRA, interface pressure, PicoPress

Procedia PDF Downloads 349
1787 Compared Psychophysiological Responses under Stress in Patients of Chronic Fatigue Syndrome and Depressive Disorder

Authors: Fu-Chien Hung, Chi‐Wen Liang

Abstract:

Background: People who suffer from chronic fatigue syndrome (CFS) frequently complain about continuous tiredness, weakness or lack of strength, but without apparent organic etiology. The prevalence rate of the CFS is nearly from 3% to 20%, yet more than 80% go undiagnosed or misdiagnosed as depression. The biopsychosocial model has suggested the associations among the CFS, depressive syndrome, and stress. This study aimed to investigate the difference between individuals with the CFS and with the depressive syndrome on psychophysiological responses under stress. Method: There were 23 participants in the CFS group, 14 participants in the depression group, and 23 participants in the healthy control group. All of the participants first completed the measures of demographic data, CFS-related symptoms, daily life functioning, and depressive symptoms. The participants were then asked to perform a stressful cognitive task. The participants’ psychophysiological responses including the HR, BVP and SC were measured during the task. These indexes were used to assess the reactivity and recovery rates of the automatic nervous system. Results: The stress reactivity of the CFS and depression groups was not different from that of the healthy control group. However, the stress recovery rate of the CFS group was worse than that of the healthy control group. Conclusion: The results from this study suggest that the CFS is a syndrome which can be independent from the depressive syndrome, although the depressive syndrome may include fatigue syndrome.

Keywords: chronic fatigue syndrome, depression, stress response, misdiagnosis

Procedia PDF Downloads 456
1786 Inhibitory Effect of Lactic Acid Bacteria on Uropathogenic Escherichia coli-Induced Urinary Tract Infections

Authors: Cheng-Chih Tsai, Yu-Hsuan Liu, Cheng-Ying Ho, Chun-Chin Huang

Abstract:

The aim of this study evaluated the in vitro and in vivo antimicrobial activity of selected lactic acid bacteria (LAB) against Uropathogenic Escherichia coli (UPEC) for prevention and amelioration of UTIs. We screened LAB strains with antimicrobial effects on UPEC using a well-diffusion assay, bacterial adherence to the uroepithelium cell line SV-HUC-1 (BCRC 60358), and a coculture inhibition assay. The results showed that the 7 LAB strains (Lactobacillus paracasei, L. salivarius, two Pediococcus pentosaceus strains, two L. plantarum strains, and L. crispatus) and the fermented probiotic products produced by these multi-LAB strains exhibited potent zones of inhibition against UPEC. Moreover, the LAB strains and probiotic products adhered strongly to the uroepithelium SV-HUC-1 cell line. The growth of UPEC strains was also markedly inhibited after co-culture with the LAB strains and probiotic products in human urine. In addition, the enhanced levels of IL-6, IL-8 and lactic acid dehydrogenase were significantly decreased by treatments with the LAB strains and probiotic products in UPEC-induced SV-HUC-1 cells. Furthermore, oral administration of probiotic products reduced the number of viable UPEC in the urine of UPEC-challenged BALB/c mice. Taken together, this study demonstrates that probiotic supplementation may be useful as an adjuvant therapy for the treatment of bacterial-induced urinary tract infections.

Keywords: lactic acid bacterium, SV-HUC-1 uroepithelium, urinary tract infection, uropathogenic Escherichia coli, BALB/c mice

Procedia PDF Downloads 382
1785 Artificial Intelligence in Melanoma Prognosis: A Narrative Review

Authors: Shohreh Ghasemi

Abstract:

Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.

Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine

Procedia PDF Downloads 78
1784 A Life History of a Female Counselor Participated in Sewol Ferry Disaster Counseling Korea: Based on Qualitative Analysis of Mandelbaum's Life History

Authors: Donghun Lee, Jiyoung Shin, Youjin Kim, Jin Joo Kim

Abstract:

The sinking of Sewol ferry occurred in Korea on the morning of 16 April 2014 while carrying 476 people. In all, 304 passengers, mostly secondary school students from Danwon High School in Ansan City died in the disaster. The sinking of Sewol ferry has resulted in widespread social and political turmoil within South Korea. Many criticize the actions of the captain and crews of the ferry as well as the ferry operator and the regulators who oversaw its operations. However, huge criticism has been directed at the South Korean government for its national disaster response system. This disaster has made Korean government build up a new disaster management and psychological support system. The purpose of this study was to understand developmental and change process of a female counselor in her late fifties participated in Sewol ferry disaster counseling for a year. She has participated in providing as a counselor counseling and psychological support for the victims' families of Sewol ferry disaster, additionally as a director of community youth counseling center operated by local government by establishing governmental psychological supports plan for recovering collective trauma in the community, through which she have gotten self-reflection of whole her life. For in-depth interview data analysis, Mandelbaum’s three conceptual frameworks were employed; dimensions, turnings, and adaptation. The result of the study indicates extracted categories of life dimension, turning point and adaptation. The details of these categories are ‘having a self-image in youth’, ‘marriage in fairy-tale’, ‘unexpected death of husband’, ‘taking a step forward from darkness’, the way of counselor’, nice grown child’, ‘Sewol ferry disaster’ in life dimension, ‘death in front of life’, ‘milestone in life, counseling’ in turning points, ‘before Sewol ferry disaster’, ‘after Sewol ferry disaster’ in adaptation. Life history methods revealed the counselor’s internal developmental process by analyzing what Sewol ferry disaster influenced on an individual life, especially a counselor's one, what changes she went through, and how she adapted herself to that. Based on the results, discussions and suggestions are provided.

Keywords: development and change, disaster counseling, identity of female counselor, Mandelbaum’s life history, Sewol ferry

Procedia PDF Downloads 333
1783 A Follow–Up Study of Bachelor of Science Graduates in Applied Statistics from Suan Sunandha Rajabhat University during the 1999-2012 Academic Years

Authors: Somruedee Pongsena

Abstract:

The purpose of this study is to follow up on the graduated students of Bachelor of Science in Applied Statistics from Suan Sunandha Rajabhat University (SSRU) during the 1999 – 2012 academic years and to provide the fundamental guideline for developing the current curriculum according to Thai Qualifications Framework for Higher Education (TQF: HEd). The sample was collected from 75 graduates by interview and online questionnaire. The content covered 5 subjects: ethics and moral, knowledge, cognitive skills, interpersonal skills and responsibility, numerical analysis as well as communication and information technology skills. Data were analyzed by using statistical methods as percentiles, means, standard deviation, t-tests, and F-tests. The findings showed that samples were mostly females younger than 26 years old. The majority of graduates had income in the range of 10,001-20,000 Baht and their experience range was 2-5 years. In addition, overall opinions from receiving knowledge to apply to work were at agree; mean score was 3.97 and standard deviation was 0.40. In terms of opinion difference, the hypothesis' testing results indicate gender only had different opinion at a significant level of 0.05.

Keywords: follow-up, graduates, knowledge, opinion, work performance.

Procedia PDF Downloads 210
1782 Semantic-Based Collaborative Filtering to Improve Visitor Cold Start in Recommender Systems

Authors: Baba Mbaye

Abstract:

In collaborative filtering recommendation systems, a user receives suggested items based on the opinions and evaluations of a community of users. This type of recommendation system uses only the information (notes in numerical values) contained in a usage matrix as input data. This matrix can be constructed based on users' behaviors or by offering users to declare their opinions on the items they know. The cold start problem leads to very poor performance for new users. It is a phenomenon that occurs at the beginning of use, in the situation where the system lacks data to make recommendations. There are three types of cold start problems: cold start for a new item, a new system, and a new user. We are interested in this article at the cold start for a new user. When the system welcomes a new user, the profile exists but does not have enough data, and its communities with other users profiles are still unknown. This leads to recommendations not adapted to the profile of the new user. In this paper, we propose an approach that improves cold start by using the notions of similarity and semantic proximity between users profiles during cold start. We will use the cold-metadata available (metadata extracted from the new user's data) useful in positioning the new user within a community. The aim is to look for similarities and semantic proximities with the old and current user profiles of the system. Proximity is represented by close concepts considered to belong to the same group, while similarity groups together elements that appear similar. Similarity and proximity are two close but not similar concepts. This similarity leads us to the construction of similarity which is based on: a) the concepts (properties, terms, instances) independent of ontology structure and, b) the simultaneous representation of the two concepts (relations, presence of terms in a document, simultaneous presence of the authorities). We propose an ontology, OIVCSRS (Ontology of Improvement Visitor Cold Start in Recommender Systems), in order to structure the terms and concepts representing the meaning of an information field, whether by the metadata of a namespace, or the elements of a knowledge domain. This approach allows us to automatically attach the new user to a user community, partially compensate for the data that was not initially provided and ultimately to associate a better first profile with the cold start. Thus, the aim of this paper is to propose an approach to improving cold start using semantic technologies.

Keywords: visitor cold start, recommender systems, collaborative filtering, semantic filtering

Procedia PDF Downloads 217
1781 A Smartphone-Based Real-Time Activity Recognition and Fall Detection System

Authors: Manutchanok Jongprasithporn, Rawiphorn Srivilai, Paweena Pongsopha

Abstract:

Fall is the most serious accident leading to increased unintentional injuries and mortality. Falls are not only the cause of suffering and functional impairments to the individuals, but also the cause of increasing medical cost and days away from work. The early detection of falls could be an advantage to reduce fall-related injuries and consequences of falls. Smartphones, embedded accelerometer, have become a common device in everyday life due to decreasing technology cost. This paper explores a physical activity monitoring and fall detection application in smartphones which is a non-invasive biomedical device to determine physical activities and fall event. The combination of application and sensors could perform as a biomedical sensor to monitor physical activities and recognize a fall. We have chosen Android-based smartphone in this study since android operating system is an open-source and no cost. Moreover, android phone users become a majority of Thai’s smartphone users. We developed Thai 3 Axis (TH3AX) as a physical activities and fall detection application which included command, manual, results in Thai language. The smartphone was attached to right hip of 10 young, healthy adult subjects (5 males, 5 females; aged< 35y) to collect accelerometer and gyroscope data during performing physical activities (e.g., walking, running, sitting, and lying down) and falling to determine threshold for each activity. Dependent variables are including accelerometer data (acceleration, peak acceleration, average resultant acceleration, and time between peak acceleration). A repeated measures ANOVA was performed to test whether there are any differences between DVs’ means. Statistical analyses were considered significant at p<0.05. After finding threshold, the results were used as training data for a predictive model of activity recognition. In the future, accuracies of activity recognition will be performed to assess the overall performance of the classifier. Moreover, to help improve the quality of life, our system will be implemented with patients and elderly people who need intensive care in hospitals and nursing homes in Thailand.

Keywords: activity recognition, accelerometer, fall, gyroscope, smartphone

Procedia PDF Downloads 691
1780 Fast Estimation of Fractional Process Parameters in Rough Financial Models Using Artificial Intelligence

Authors: Dávid Kovács, Bálint Csanády, Dániel Boros, Iván Ivkovic, Lóránt Nagy, Dalma Tóth-Lakits, László Márkus, András Lukács

Abstract:

The modeling practice of financial instruments has seen significant change over the last decade due to the recognition of time-dependent and stochastically changing correlations among the market prices or the prices and market characteristics. To represent this phenomenon, the Stochastic Correlation Process (SCP) has come to the fore in the joint modeling of prices, offering a more nuanced description of their interdependence. This approach has allowed for the attainment of realistic tail dependencies, highlighting that prices tend to synchronize more during intense or volatile trading periods, resulting in stronger correlations. Evidence in statistical literature suggests that, similarly to the volatility, the SCP of certain stock prices follows rough paths, which can be described using fractional differential equations. However, estimating parameters for these equations often involves complex and computation-intensive algorithms, creating a necessity for alternative solutions. In this regard, the Fractional Ornstein-Uhlenbeck (fOU) process from the family of fractional processes offers a promising path. We can effectively describe the rough SCP by utilizing certain transformations of the fOU. We employed neural networks to understand the behavior of these processes. We had to develop a fast algorithm to generate a valid and suitably large sample from the appropriate process to train the network. With an extensive training set, the neural network can estimate the process parameters accurately and efficiently. Although the initial focus was the fOU, the resulting model displayed broader applicability, thus paving the way for further investigation of other processes in the realm of financial mathematics. The utility of SCP extends beyond its immediate application. It also serves as a springboard for a deeper exploration of fractional processes and for extending existing models that use ordinary Wiener processes to fractional scenarios. In essence, deploying both SCP and fractional processes in financial models provides new, more accurate ways to depict market dynamics.

Keywords: fractional Ornstein-Uhlenbeck process, fractional stochastic processes, Heston model, neural networks, stochastic correlation, stochastic differential equations, stochastic volatility

Procedia PDF Downloads 117
1779 Doxorubicin and Cyclosporine Loaded PLGA Nanoparticles to Combat Multidrug Resistance

Authors: Senthil Rajan Dharmalingam, Shamala Nadaraju, Srinivasan Ramamurthy

Abstract:

Doxorubicin is the most widely used anticancer drugs in chemotherapy treatment. However, problems related to the development of multidrug resistance (MDR) and acute cardiotoxicity have led researchers to investigate alternative forms of administering doxorubicin for cancer therapy. Several methods have been attempted to overcome MDR, including the co-administration of a chemosensitizer inhibiting the efflux caused by ATP binding cassette transporters with anticancer drugs, and the bypass of the efflux mechanism. Co encapsulation of doxorubicin (Dox) and cyclosporine A (CSA) into poly (DL-lactide-co-glycolide) nanoparticles was emulsification-solvent evaporation method using polyvinyl alcohol as emulsion stabilizers. The Dox-CSA loaded nanoparticles were evaluated for particle size, zeta potential and PDI by light scattering analysis and thermal characterizations by differential scanning calorimetry (DSC). Loading efficiency (LE %) and in-vitro dissolution samples were evaluated by developed and validated HPLC method. The optimum particle size obtained is 298.6.8±39.4 nm and polydispersity index (PDI) is 0.098±0.092. Zeta potential is found to be -29.9±4.23. Optimum pH to increase Dox LE% was found 7.1 which gave 42.5% and 58.9% increase of LE% for pH 6.6 and pH 8.6 compared respectively. LE% achieved for Dox is 0.07±0.01 % and CSA is 0.09±0.03%. Increased volume of PVA and weight of PLGA shows increase in size of nanoparticles. DSC thermograms showed shift in the melting peak for the nanoparticles compared to Dox and CSA indicating encapsulation of drugs. In conclusion, these preliminary studies showed the feasibility of PLGA nanoparticles to entrap Dox and CSA and require future in-vivo studies to be performed to establish its potential.

Keywords: doxorubicin, cyclosporine, PLGA, nanoparticles

Procedia PDF Downloads 458
1778 Tangible Losses, Intangible Traumas: Re-envisioning Recovery Following the Lytton Creek Fire 2021 through Place Attachment Lens

Authors: Tugba Altin

Abstract:

In an era marked by pronounced climate change consequences, communities are observed to confront traumatic events that yield both tangible and intangible repercussions. Such events not only cause discernible damage to the landscape but also deeply affect the intangible aspects, including emotional distress and disruptions to cultural landscapes. The Lytton Creek Fire of 2021 serves as a case in point. Beyond the visible destruction, the less overt but profoundly impactful disturbance to place attachment (PA) is scrutinized. PA, representing the emotional and cognitive bonds individuals establish with their environments, is crucial for understanding how such events impact cultural identity and connection to the land. The study underscores the significance of addressing both tangible and intangible traumas for holistic community recovery. As communities renegotiate their affiliations with altered environments, the cultural landscape emerges as instrumental in shaping place-based identities. This renewed understanding is pivotal for reshaping adaptation planning. The research advocates for adaptation strategies rooted in the lived experiences and testimonies of the affected populations. By incorporating both the tangible and intangible facets of trauma, planning efforts are suggested to be more culturally attuned and emotionally insightful, fostering true resonance with the affected communities. Through such a comprehensive lens, this study contributes enriching the climate change discourse, emphasizing the intertwined nature of tangible recovery and the imperative of emotional and cultural healing after environmental disasters. Following the pronounced aftermath of the Lytton Creek Fire in 2021, research aims to deeply understand its impact on place attachment (PA), encompassing the emotional and cognitive bonds individuals form with their environments. The interpretive phenomenological approach, enriched by a hermeneutic framework, is adopted, emphasizing the experiences of the Lytton community and co-researchers. Phenomenology informed the understanding of 'place' as the focal point of attachment, providing insights into its formation and evolution after traumatic events. Data collection departs from conventional methods. Instead of traditional interviews, walking audio sessions and photo elicitation methods are utilized. These allow co-researchers to immerse themselves in the environment, re-experience, and articulate memories and feelings in real-time. Walking audio facilitates reflections on spatial narratives post-trauma, while photo voices captured intangible emotions, enabling the visualization of place-based experiences. The analysis is collaborative, ensuring the co-researchers' experiences and interpretations are central. Emphasizing their agency in knowledge production, the process is rigorous, facilitated by the harmonious blend of interpretive phenomenology and hermeneutic insights. The findings underscore the need for adaptation and recovery efforts to address emotional traumas alongside tangible damages. By exploring PA post-disaster, the research not only fills a significant gap but advocates for an inclusive approach to community recovery. Furthermore, the participatory methodologies employed challenge traditional research paradigms, heralding potential shifts in qualitative research norms.

Keywords: wildfire recovery, place attachment, trauma recovery, cultural landscape, visual methodologies

Procedia PDF Downloads 88
1777 The Efficacy of Vestibular Rehabilitation Therapy for Mild Traumatic Brain Injury: A Systematic Review and Meta-Analysis

Authors: Ammar Aljabri, Alhussain Halawani, Alaa Ashqar, Omar Alageely

Abstract:

Objective: mild Traumatic Brain Injury (mTBI) or concussion is a common yet undermanaged and underreported condition. This systematic review and meta-analysis aim to determine the efficacy of VRT as a treatment option for mTBI. Method: This review and meta-analysis was performed following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and included RCTs and pre-VRT/post-VRT retrospective chart reviews. Records meeting the inclusion criteria were extracted from the following databases: Medline, Embase, and Cochrane Register of Controlled Trials (CENTRAL). Results: Eight articles met the inclusion criteria, and six RCTs were included in the meta-analysis. VRT demonstrated significant improvement in decreasing perceived dizziness at the end of the intervention program, as shown by DHI scores (SMD= -0.33, 95% CI -0.62 to -0.03, p=0.03, I2= 0%). However, no significant reduction in DHI was evident after two months of follow-up (SMD= 0.15, 95% CI -0.23 to 0.52, p=0.44, I2=0%). Quantitative analysis also depicts significant reduction in both VOMS (SMD=-0.40, 95% CI -0.60 to -0.20, p<0.0001, I2=0%) and PCSS (SMD= -0.39, 95% CI -0.71 to -0.07, p=0.02, I2=0%) following the intervention. Lastly, there was no significant difference between intervention groups on BESS scores (SMD= -31, 95% CI -0.71 to 0.10, p=0.14, I2=0%) and return to sport/function (95% CI 0.32 to 30.80, p=0.32, I2=82%). Conclusions: Current evidence on the efficacy of VRT for mTBI is limited. This review and analysis provide evidence that supports the role of VRT in improving perceived symptoms following concussion. There is still a need for high-quality trials evaluating the benefit of VRT using a standardized approach.

Keywords: concussion, traumatic brain injury, vestibular rehabilitation, neurorehabilitation

Procedia PDF Downloads 141
1776 New Targets Promoting Oncolytic Virotherapy

Authors: Felicia Segeth, Florian G. Klein, Lea Berger, Andreas Kolk, Per S. Holm

Abstract:

The entry of oncolytic viruses (OVs) into clinical application opens groundbreaking changes in current and future treatment regimens. However, despite their potent anti-cancer activity in vitro, clinical studies revealed limitations of OVs as monotherapy. The same applies to CDK 4/6 inhibitors (CDK4/6i) targeting cell cycle as well as bromodomain and extra-terminal domain inhibitors (BETi) targeting gene expression. In this study, the anti-tumoral effect of XVir-N-31, an YB-1 dependent oncolytic adenovirus, was evaluated in combination with Ribociclib, a CDK4/6i, and JQ1, a BETi. The head and neck squamous cell carcinoma (HNSCC) cell lines Fadu, SAS, and Cal-33 were used. DNA replication and gene expression of XVir-N-31 was measured by RT-qPCR, protein expression by western blotting, and cell lysis by SRB assays. Treatment with CDK4/6i and BETi increased viral gene expression, viral DNA replication, and viral particle formation. The data show that the combination of oncolytic adenovirus XVir-N-31 with CDK4/6i & BETi acts highly synergistic in cancer cell lysis. Furthermore, additional molecular analyses on this subject demonstrate that the positive transcription elongation factor P-TEFb plays a decisive role in this regard, indicating an influence of the combinational therapy on gene transcription control. The combination of CDK4/6i & BETi and XVir-N-31 is an attractive strategy to achieve substantial cancer cell killing and is highly suitable for clinical testing.

Keywords: adenovirus, BET, CDK4/6, HNSCC, P-TEFb, YB-1

Procedia PDF Downloads 116
1775 Enhancing Experiential Learning in a Smart Flipped Classroom: A Case Study

Authors: Fahri Benli, Sitalakshmi Venkartraman, Ye Wei, Fiona Wahr

Abstract:

A flipped classroom which is a form of blended learning shifts the focus from a teacher-centered approach to a learner-centered approach. However, not all learners are ready to take the active role of knowledge and skill acquisition through a flipped classroom and they continue to delve in a passive mode of learning. This challenges educators in designing, scaffolding and facilitating in-class activities for students to have active learning experiences in a flipped classroom environment. Experiential learning theories have been employed by educators in the past in physical classrooms based on the principle that knowledge could be actively developed through direct experience. However, with more of online teaching witnessed recently, there are inherent limitations in designing and simulating an experiential learning activity for an online environment. In this paper, we explore enhancing experiential learning using smart digital tools that could be employed in a flipped classroom within a higher education setting. We present the use of smart collaborative tools online to enhance the experiential learning activity to teach higher-order cognitive concepts of business process modelling as a case study.

Keywords: experiential learning, flipped classroom, smart software tools, online learning higher-order learning attributes

Procedia PDF Downloads 188
1774 Application of Neutron-Gamma Technologies for Soil Elemental Content Determination and Mapping

Authors: G. Yakubova, A. Kavetskiy, S. A. Prior, H. A. Torbert

Abstract:

In-situ soil carbon determination over large soil surface areas (several hectares) is required in regard to carbon sequestration and carbon credit issues. This capability is important for optimizing modern agricultural practices and enhancing soil science knowledge. Collecting and processing representative field soil cores for traditional laboratory chemical analysis is labor-intensive and time-consuming. The neutron-stimulated gamma analysis method can be used for in-situ measurements of primary elements in agricultural soils (e.g., Si, Al, O, C, Fe, and H). This non-destructive method can assess several elements in large soil volumes with no need for sample preparation. Neutron-gamma soil elemental analysis utilizes gamma rays issued from different neutron-nuclei interactions. This process has become possible due to the availability of commercial portable pulse neutron generators, high-efficiency gamma detectors, reliable electronics, and measurement/data processing software complimented by advances in state-of-the-art nuclear physics methods. In Pulsed Fast Thermal Neutron Analysis (PFTNA), soil irradiation is accomplished using a pulsed neutron flux, and gamma spectra acquisition occurs both during and between pulses. This method allows the inelastic neutron scattering (INS) gamma spectrum to be separated from the thermal neutron capture (TNC) spectrum. Based on PFTNA, a mobile system for field-scale soil elemental determinations (primarily carbon) was developed and constructed. Our scanning methodology acquires data that can be directly used for creating soil elemental distribution maps (based on ArcGIS software) in a reasonable timeframe (~20-30 hectares per working day). Created maps are suitable for both agricultural purposes and carbon sequestration estimates. The measurement system design, spectra acquisition process, strategy for acquiring field-scale carbon content data, and mapping of agricultural fields will be discussed.

Keywords: neutron gamma analysis, soil elemental content, carbon sequestration, carbon credit, soil gamma spectroscopy, portable neutron generators, ArcMap mapping

Procedia PDF Downloads 89
1773 Biodiesel Production from Edible Oil Wastewater Sludge with Bioethanol Using Nano-Magnetic Catalysis

Authors: Wighens Ngoie Ilunga, Pamela J. Welz, Olewaseun O. Oyekola, Daniel Ikhu-Omoregbe

Abstract:

Currently, most sludge from the wastewater treatment plants of edible oil factories is disposed to landfills, but landfill sites are finite and potential sources of environmental pollution. Production of biodiesel from wastewater sludge can contribute to energy production and waste minimization. However, conventional biodiesel production is energy and waste intensive. Generally, biodiesel is produced from the transesterification reaction of oils with alcohol (i.e., Methanol, ethanol) in the presence of a catalyst. Homogeneously catalysed transesterification is the conventional approach for large-scale production of biodiesel as reaction times are relatively short. Nevertheless, homogenous catalysis presents several challenges such as high probability of soap. The current study aimed to reuse wastewater sludge from the edible oil industry as a novel feedstock for both monounsaturated fats and bioethanol for the production of biodiesel. Preliminary results have shown that the fatty acid profile of the oilseed wastewater sludge is favourable for biodiesel production with 48% (w/w) monounsaturated fats and that the residue left after the extraction of fats from the sludge contains sufficient fermentable sugars after steam explosion followed by an enzymatic hydrolysis for the successful production of bioethanol [29% (w/w)] using a commercial strain of Saccharomyces cerevisiae. A novel nano-magnetic catalyst was synthesised from mineral processing alkaline tailings, mainly containing dolomite originating from cupriferous ores using a modified sol-gel. The catalyst elemental chemical compositions and structural properties were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR) and the BET for the surface area with 14.3 m²/g and 34.1 nm average pore diameter. The mass magnetization of the nano-magnetic catalyst was 170 emu/g. Both the catalytic properties and reusability of the catalyst were investigated. A maximum biodiesel yield of 78% was obtained, which dropped to 52% after the fourth transesterification reaction cycle. The proposed approach has the potential to reduce material costs, energy consumption and water usage associated with conventional biodiesel production technologies. It may also mitigate the impact of conventional biodiesel production on food and land security, while simultaneously reducing waste.

Keywords: biodiesel, bioethanol, edible oil wastewater sludge, nano-magnetism

Procedia PDF Downloads 143
1772 Sense Environmental Hormones in Elementary School Teachers and Their in Service Learning Motivation

Authors: Fu-Chi Chuang, Yu-Liang, Chang, Wen-Der Wang

Abstract:

Our environment has been contaminated by many artificial chemicals, such as plastics, pesticides. Many of them have hormone-like activity and are classified as 'environmental hormone (also named endocrine disruptors)'. These chemicals interfere with or mimic hormones have adverse effects that persist into adulthood. Environmental education is an important way to teach students to become engaged in real-world issues that transcend classroom walls. Elementary education is the first stage to perform environmental education and it is an important component to help students develop adequate environmental knowledge, attitudes, and behavior. However, elementary teachers' knowledge plays a critical role in this mission. Therefore, we use a questionnaire to survey the knowledge of environmental hormone of elementary school teachers and their learning motivation of the environmental hormone-regarding knowledge. We collected 218 questionnaires from Taiwanese elementary teachers and the results indicate around 73% of elementary teachers do not have enough knowledge about environmental hormones. Our results also reveal the in-service elementary teachers’ learning motivation of environmental hormones knowledge is positively enhanced once they realized their insufficient cognitive ability of environmental hormones. We believe our study will provide the powerful reference for Ministry of Education to set up the policy of environmental education to enrich all citizens sufficient knowledge of the effects of the environmental hormone on organisms, and further to enhance our correct environmental behaviors.

Keywords: elementary teacher, environmental hormones, learning motivation, questionnaire

Procedia PDF Downloads 312
1771 The Immediate Effects of Thrust Manipulation for Thoracic Hyperkyphosis

Authors: Betul Taspinar, Eda O. Okur, Ismail Saracoglu, Ismail Okur, Ferruh Taspinar

Abstract:

Thoracic hyperkyphosis, is a well-known spinal phenomenon, refers to an excessive curvature (> 40 degrees) of the thoracic spine. The aim of this study was to explore the effectiveness of thrust manipulation on thoracic spine alignment. 31 young adults with hyperkyphosis diagnosed with Spinal Mouse® device were randomly assigned either thrust manipulation group (n=16, 11 female, 5 male) or sham manipulation group (n=15, 8 female, 7 male). Thrust and sham manipulations were performed by a blinded physiotherapist who is a certificated expert in musculoskeletal physiotherapy. Thoracic kyphosis degree was measured after the interventions via Spinal Mouse®. Wilcoxon test was used to analyse the data obtained before and after the manipulation for each group, whereas Mann-Whitney U test was used to compare the groups. The mean of baseline thoracic kyphosis degrees in thrust and sham groups were 50.69 o ± 7.73 and 48.27o ± 6.43, respectively. There was no statistically significant difference between groups in terms of initial thoracic kyphosis degrees (p=0.51). After the interventions, the mean of thoracic kyphosis degree in thrust and sham groups were measured as 44.06o ± 6.99 and 48.93o ± 6.57 respectively (p=0.03). There was no statistically significant difference between before and after interventions in sham group (p=0.33), while the mean of thoracic kyphosis degree in thrust group decreased significantly (p=0.00). Thrust manipulation can attenuate thoracic hyperkyphosis immediately in young adults by not using placebo effect. Manipulation might provide accurate proprioceptive (sensory) input to the spine joints and reduce kyphosis by restoring normal segment mobility. Therefore thoracic manipulation might be included in the physiotherapy programs to treat hyperkyphosis.

Keywords: hyperkyphosis, manual therapy, spinal mouse, physiotherapy

Procedia PDF Downloads 339
1770 Using Storytelling Tasks to Enhance Language Acquisition in Young Learners

Authors: Sinan Serkan Çağlı

Abstract:

This study explores the effectiveness of incorporating storytelling tasks into language acquisition programs for young learners. The research investigates how storytelling, as a pedagogical tool, can contribute to the enhancement of language acquisition skills in children. Drawing upon relevant literature and empirical data, this article examines the impact of storytelling on vocabulary development, comprehension, and overall language proficiency in early childhood education in Turkey. The study adopts a qualitative approach, including classroom observations and interviews with teachers and students. Findings suggest that storytelling tasks not only foster linguistic competence but also stimulate cognitive and socio-emotional development in young learners. Additionally, the article explores various storytelling techniques and strategies suitable for different age groups. It is evident that integrating storytelling tasks into language learning environments can create engaging and effective opportunities for young learners to acquire language skills in a natural and enjoyable way. This research contributes valuable insights into the pedagogical practices that promote language acquisition in early childhood, emphasizing the significance of storytelling as a powerful educational tool, especially in Turkey for EFL students.

Keywords: storytelling, language acquisition, young learners, early childhood education, pedagogy, language proficiency

Procedia PDF Downloads 76