Search results for: service learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10458

Search results for: service learning

6408 A Book Review of Inside the Battle of Algiers, by Zohra Drif: A Thematic Analysis on Women’s Agency

Authors: W. Zekri

Abstract:

This paper explores Zohra Drif’s memoir, Inside the Battle of Algiers, which narrates her desires as a student to become a revolutionary activist. She exemplified, in her narrative, the different roles, she and her fellows performed as combatants in the Casbah during the Algerian Revolution 1954-1962. This book review aims to evaluate the concept of women’s agency through education and language learning, and its impact on empowering women’s desires. Close-reading method and thematic analysis are used to explore the text. The analysis identified themes that refine the meaning of agency which are social and cultural supports, education, and language proficiency. These themes aim to contribute to the representation in Inside the Battle of Algiers of a woman guerrilla who engaged herself to perform national acts of resistance.

Keywords: agency, education, learning, women

Procedia PDF Downloads 176
6407 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index

Authors: Todd Zhou, Mikhail Yurochkin

Abstract:

Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.

Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index

Procedia PDF Downloads 124
6406 Residential and Care Model for Elderly People Based on “Internet Plus”

Authors: Haoyi Sheng

Abstract:

China's aging tendency is becoming increasingly severe, which leads to the embarrassing situation of "getting old before getting wealthy". The traditional pension model does not comply with the need of today. Relying on "Internet Plus", it can efficiently integrate information and resources and meet the personalized needs of elderly care. It can reduce the operating cost of community elderly care facilities and lay a technical foundation for providing better services for the elderly. The key for providing help for the elderly in the future is to effectively integrate technology, make good use of technology, and improve the efficiency of elderly care services. The effective integration of traditional home care, community care, intelligent elderly care equipment and medical resources to create the "Internet Plus" community intelligent pension service mode has become the future development trend of aging care. The research method of this paper is to collect literature and conduct theoretical research on community pension firstly. Secondly, the combination of suitable aging design and "Internet Plus" is elaborated through research. Finally, this paper states the current level of intelligent technology in old-age care and looks into the future by understanding multiple levels of "Internet Plus". The development of community intelligent pension mode and content under "Internet Plus" has enormous development potential. In addition to the characteristics and functions of ordinary houses, residential design of endowment housing has higher requirements for comfort and personalization, and the people-oriented is the principle of design.

Keywords: ageing tendency, 'Internet Plus', community intelligent elderly care, elderly care service model, technology

Procedia PDF Downloads 137
6405 Design and Implementation of Low-code Model-building Methods

Authors: Zhilin Wang, Zhihao Zheng, Linxin Liu

Abstract:

This study proposes a low-code model-building approach that aims to simplify the development and deployment of artificial intelligence (AI) models. With an intuitive way to drag and drop and connect components, users can easily build complex models and integrate multiple algorithms for training. After the training is completed, the system automatically generates a callable model service API. This method not only lowers the technical threshold of AI development and improves development efficiency but also enhances the flexibility of algorithm integration and simplifies the deployment process of models. The core strength of this method lies in its ease of use and efficiency. Users do not need to have a deep programming background and can complete the design and implementation of complex models with a simple drag-and-drop operation. This feature greatly expands the scope of AI technology, allowing more non-technical people to participate in the development of AI models. At the same time, the method performs well in algorithm integration, supporting many different types of algorithms to work together, which further improves the performance and applicability of the model. In the experimental part, we performed several performance tests on the method. The results show that compared with traditional model construction methods, this method can make more efficient use, save computing resources, and greatly shorten the model training time. In addition, the system-generated model service interface has been optimized for high availability and scalability, which can adapt to the needs of different application scenarios.

Keywords: low-code, model building, artificial intelligence, algorithm integration, model deployment

Procedia PDF Downloads 31
6404 A Digital Environment for Developing Mathematical Abilities in Children with Autism Spectrum Disorder

Authors: M. Isabel Santos, Ana Breda, Ana Margarida Almeida

Abstract:

Research on academic abilities of individuals with autism spectrum disorder (ASD) underlines the importance of mathematics interventions. Yet the proposal of digital applications for children and youth with ASD continues to attract little attention, namely, regarding the development of mathematical reasoning, being the use of the digital technologies an area of great interest for individuals with this disorder and its use is certainly a facilitative strategy in the development of their mathematical abilities. The use of digital technologies can be an effective way to create innovative learning opportunities to these students and to develop creative, personalized and constructive environments, where they can develop differentiated abilities. The children with ASD often respond well to learning activities involving information presented visually. In this context, we present the digital Learning Environment on Mathematics for Autistic children (LEMA) that was a research project conducive to a PhD in Multimedia in Education and was developed by the Thematic Line Geometrix, located in the Department of Mathematics, in a collaboration effort with DigiMedia Research Center, of the Department of Communication and Art (University of Aveiro, Portugal). LEMA is a digital mathematical learning environment which activities are dynamically adapted to the user’s profile, towards the development of mathematical abilities of children aged 6–12 years diagnosed with ASD. LEMA has already been evaluated with end-users (both students and teacher’s experts) and based on the analysis of the collected data readjustments were made, enabling the continuous improvement of the prototype, namely considering the integration of universal design for learning (UDL) approaches, which are of most importance in ASD, due to its heterogeneity. The learning strategies incorporated in LEMA are: (i) provide options to custom choice of math activities, according to user’s profile; (ii) integrates simple interfaces with few elements, presenting only the features and content needed for the ongoing task; (iii) uses a simple visual and textual language; (iv) uses of different types of feedbacks (auditory, visual, positive/negative reinforcement, hints with helpful instructions including math concept definitions, solved math activities using split and easier tasks and, finally, the use of videos/animations that show a solution to the proposed activity); (v) provides information in multiple representation, such as text, video, audio and image for better content and vocabulary understanding in order to stimulate, motivate and engage users to mathematical learning, also helping users to focus on content; (vi) avoids using elements that distract or interfere with focus and attention; (vii) provides clear instructions and orientation about tasks to ease the user understanding of the content and the content language, in order to stimulate, motivate and engage the user; and (viii) uses buttons, familiarly icons and contrast between font and background. Since these children may experience little sensory tolerance and may have an impaired motor skill, besides the user to have the possibility to interact with LEMA through the mouse (point and click with a single button), the user has the possibility to interact with LEMA through Kinect device (using simple gesture moves).

Keywords: autism spectrum disorder, digital technologies, inclusion, mathematical abilities, mathematical learning activities

Procedia PDF Downloads 116
6403 Effect of Personality Traits on Classification of Political Orientation

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

Today as in the other domains, there are an enormous number of political transcripts available in the Web which is waiting to be mined and used for various purposes such as statistics and recommendations. Therefore, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do the automatic classification are based on different features such as Linguistic. Considering the ideology differences between Liberals and Conservatives, in this paper, the effect of Personality Traits on political orientation classification is studied. This is done by considering the correlation between LIWC features and the BIG Five Personality Traits. Several experiments are conducted on Convote U.S. Congressional-Speech dataset with seven benchmark classification algorithms. The different methodologies are applied on selecting different feature sets that constituted by 8 to 64 varying number of features. While Neuroticism is obtained to be the most differentiating personality trait on classification of political polarity, when its top 10 representative features are combined with several classification algorithms, it outperformed the results presented in previous research.

Keywords: politics, personality traits, LIWC, machine learning

Procedia PDF Downloads 495
6402 Investigation of Topic Modeling-Based Semi-Supervised Interpretable Document Classifier

Authors: Dasom Kim, William Xiu Shun Wong, Yoonjin Hyun, Donghoon Lee, Minji Paek, Sungho Byun, Namgyu Kim

Abstract:

There have been many researches on document classification for classifying voluminous documents automatically. Through document classification, we can assign a specific category to each unlabeled document on the basis of various machine learning algorithms. However, providing labeled documents manually requires considerable time and effort. To overcome the limitations, the semi-supervised learning which uses unlabeled document as well as labeled documents has been invented. However, traditional document classifiers, regardless of supervised or semi-supervised ones, cannot sufficiently explain the reason or the process of the classification. Thus, in this paper, we proposed a methodology to visualize major topics and class components of each document. We believe that our methodology for visualizing topics and classes of each document can enhance the reliability and explanatory power of document classifiers.

Keywords: data mining, document classifier, text mining, topic modeling

Procedia PDF Downloads 402
6401 Play-Based Early Education and Teachers’ Professional Development: Impact on Vulnerable Children

Authors: Chirine Dannaoui, Maya Antoun

Abstract:

This paper explores the intricate dynamics of play-based early childhood education (ECE) and the impact of professional development on teachers implementing play-based pedagogy, particularly in the context of vulnerable Syrian refugee children in Lebanon. By utilizing qualitative methodologies, including classroom observations and in-depth interviews with five early childhood educators and a field manager, this study delves into the challenges and transformations experienced by teachers in adopting play-based learning strategies. The research unveils the critical role of continuous and context-specific professional development in empowering teachers to implement play-based pedagogies effectively. When appropriately supported, it emphasizes how such educational approaches significantly enhance children's cognitive, social, and emotional development in crisis-affected environments. Key findings indicate that despite diverse educational backgrounds, teachers show considerable growth in their pedagogical skills through targeted professional development. This growth is vital for fostering a learning environment where vulnerable children can thrive, particularly in humanitarian settings. The paper also addresses educators' challenges, including adapting to play-based methodologies, resource limitations, and balancing curricular requirements with the need for holistic child development. This study contributes to the discourse on early childhood education in crisis contexts, emphasizing the need for sustainable, well-structured professional development programs. It underscores the potential of play-based learning to bridge educational gaps and contribute to the healing process of children facing calamity. The study highlights significant implications for policymakers, educators, schools, and not-for-profit organizations engaged in early childhood education in humanitarian contexts, stressing the importance of investing in teacher capacity and curriculum reform to enhance the quality of education for children in general and vulnerable ones in particular.

Keywords: play-based learning, professional development, vulnerable children, early childhood education

Procedia PDF Downloads 59
6400 Automatic Classification for the Degree of Disc Narrowing from X-Ray Images Using CNN

Authors: Kwangmin Joo

Abstract:

Automatic detection of lumbar vertebrae and classification method is proposed for evaluating the degree of disc narrowing. Prior to classification, deep learning based segmentation is applied to detect individual lumbar vertebra. M-net is applied to segment five lumbar vertebrae and fine-tuning segmentation is employed to improve the accuracy of segmentation. Using the features extracted from previous step, clustering technique, k-means clustering, is applied to estimate the degree of disc space narrowing under four grade scoring system. As preliminary study, techniques proposed in this research could help building an automatic scoring system to diagnose the severity of disc narrowing from X-ray images.

Keywords: Disc space narrowing, Degenerative disc disorders, Deep learning based segmentation, Clustering technique

Procedia PDF Downloads 125
6399 A Custom Convolutional Neural Network with Hue, Saturation, Value Color for Malaria Classification

Authors: Ghazala Hcini, Imen Jdey, Hela Ltifi

Abstract:

Malaria disease should be considered and handled as a potential restorative catastrophe. One of the most challenging tasks in the field of microscopy image processing is due to differences in test design and vulnerability of cell classifications. In this article, we focused on applying deep learning to classify patients by identifying images of infected and uninfected cells. We performed multiple forms, counting a classification approach using the Hue, Saturation, Value (HSV) color space. HSV is used since of its superior ability to speak to image brightness; at long last, for classification, a convolutional neural network (CNN) architecture is created. Clusters of focus were used to deliver the classification. The highlights got to be forbidden, and a few more clamor sorts are included in the information. The suggested method has a precision of 99.79%, a recall value of 99.55%, and provides 99.96% accuracy.

Keywords: deep learning, convolutional neural network, image classification, color transformation, HSV color, malaria diagnosis, malaria cells images

Procedia PDF Downloads 89
6398 Identification of Breast Anomalies Based on Deep Convolutional Neural Networks and K-Nearest Neighbors

Authors: Ayyaz Hussain, Tariq Sadad

Abstract:

Breast cancer (BC) is one of the widespread ailments among females globally. The early prognosis of BC can decrease the mortality rate. Exact findings of benign tumors can avoid unnecessary biopsies and further treatments of patients under investigation. However, due to variations in images, it is a tough job to isolate cancerous cases from normal and benign ones. The machine learning technique is widely employed in the classification of BC pattern and prognosis. In this research, a deep convolution neural network (DCNN) called AlexNet architecture is employed to get more discriminative features from breast tissues. To achieve higher accuracy, K-nearest neighbor (KNN) classifiers are employed as a substitute for the softmax layer in deep learning. The proposed model is tested on a widely used breast image database called MIAS dataset for experimental purposes and achieved 99% accuracy.

Keywords: breast cancer, DCNN, KNN, mammography

Procedia PDF Downloads 136
6397 Perceptions of Students toward ODL Services Quality in Facilitating Their Study: Experience of Universitas Terbuka in Managing ODL in Cultural Diversity Areas

Authors: Ribut Alam Malau, Durri Andriani, C. B. Supartomo

Abstract:

Universitas Terbuka (UT) as a higher education institution implements open and distance education is responsible to provide higher education to all Indonesian citizen wherever they live, including those reside in cultural diversity aras. Operate from Jakarta Head Office and 37 regional centers (ROs), UT is accustomed to the challenge. UT-Kupang and UT-Ambon which oversee East Nusa Tenggara and Maluku have successfully provided quality educational services for students. The two ROs have provided educational facilities which could assist the students to cope with their study in spite of the diversity situations. In order to analyze the effectiveness of the facilities provided, questionnaires focusing on tutorial services were sent to 90 students in the two ROs asking them to assess the facilities which best fulfills students’ needs in terms of their culture diversity. The results showed that UT-Kupang and UT-Ambon have successful in providing education for students in their areas as reflected in more than 80% of respondents aware of the facilities concerning tutorial service except for tutorial mechanism where only 34,5% of respondents aware of. However, despite lower rate of awareness in tutorial mechanism, majority of respondent 90.8% of respondents registered in tutorials and 95.4% will register in tutorials next semester. The majority of respondents showed appreciation for the ROs efforts to provide tutorials on weekdays which could accommodate their beliefs. In addition, conducting tutorials in all islands also perceived highly since students did not have to commute between islands. Efforts done by UT-Kupang and UT-Ambon have proven to be appreciated by students.

Keywords: archipelago, cultural diversity, ODL, service quality, Universitas Terbuka

Procedia PDF Downloads 472
6396 A Method of Manufacturing Low Cost Utility Robots and Vehicles

Authors: Gregory E. Ofili

Abstract:

Introduction and Objective: Climate change and a global economy mean farmers must adapt and gain access to affordable and reliable automation technologies. Key barriers include a lack of transportation, electricity, and internet service, coupled with costly enabling technologies and limited local subject matter expertise. Methodology/Approach: Resourcefulness is essential to mechanization on a farm. This runs contrary to the tech industry practice of planned obsolescence and disposal. One solution is plug-and-play hardware that allows farmer to assemble, repair, program, and service their own fleet of industrial machines. To that end, we developed a method of manufacturing low-cost utility robots, transport vehicles, and solar/wind energy harvesting systems, all running on an open-source Robot Operating System (ROS). We demonstrate this technology by fabricating a utility robot and an all-terrain (4X4) utility vehicle. Constructed of aluminum trusses and weighing just 40 pounds, yet capable of transporting 200 pounds of cargo, on sale for less than $2,000. Conclusions & Policy Implications: Electricity, internet, and automation are essential for productivity and competitiveness. With planned obsolescence, the priorities of technology suppliers are not aligned with the farmer’s realities. This patent-pending method of manufacturing low-cost industrial robots and electric vehicles has met its objective. To create low-cost machines, the farmer can assemble, program, and repair with basic hand tools.

Keywords: automation, robotics, utility robot, small-hold farm, robot operating system

Procedia PDF Downloads 70
6395 Simulating an Interprofessional Hospital Day Shift: A Student Interprofessional (IP) Collaborative Learning Activity

Authors: Fiona Jensen, Barb Goodwin, Nancy Kleiman, Rhonda Usunier

Abstract:

Background: Clinical simulation is now a common component in many health profession curricula in preparation for clinical practice. In the Rady Faculty of Health Sciences (RFHS) college leads in simulation and interprofessional (IP) education, planned an eight hour simulated hospital day shift, where seventy students from six health professions across two campuses, learned with each other in a safe, realistic environment. Learning about interprofessional collaboration, an expected competency for many health professions upon graduation, was a primary focus of the simulation event. Method: Faculty representatives from the Colleges of Nursing, Medicine, Pharmacy and Rehabilitation Sciences (Physical Therapy, Occupation Therapy, Respiratory Therapy) and Pharmacy worked together to plan the IP event in a simulation facility in the College of Nursing. Each college provided a faculty mentor to guide the same profession students. Students were placed in interprofessional teams consisting of a nurse, physician, pharmacist, and then sharing respiratory, occupational, and physical therapists across the team depending on the needs of the patients. Eight patient scenarios were role played by health profession students, who had been provided with their patient’s story shortly before the event. Each team was guided by a facilitator. Results and Outcomes: On the morning of the event, all students gathered in a large group to meet mentors and facilitators and have a brief overview of the six competencies for effective collaboration and the session objectives. The students assuming their same profession roles were provided with their patient’s chart at the beginning of the shift, met with their team, and then completed professional specific assessments. Shortly into the shift, IP team rounds began, facilitated by the team facilitator. During the shift, each patient role-played a spontaneous health incident, which required collaboration between the IP team members for assessment and management. The afternoon concluded with team rounds, a collaborative management plan, and a facilitated de-brief. Conclusions: During the de-brief sessions, students responded to set questions related to the session learning objectives and expressed many positive learning moments. We believe that we have a sustainable simulation IP collaborative learning opportunity, which can be embedded into curricula, and has the capacity to grow to include more health profession faculties and students. Opportunities are being explored in the RFHS at the administrative level, to offer this event more frequently in the academic year to reach more students. In addition, a formally structured event evaluation tool would provide important feedback and inform the qualitative feedback to event organizers and the colleges about the significance of the simulation event to student learning.

Keywords: simulation, collaboration, teams, interprofessional

Procedia PDF Downloads 131
6394 Benefits of Gamification in Agile Software Project Courses

Authors: Nina Dzamashvili Fogelström

Abstract:

This paper examines concepts of Game-Based Learning and Gamification. Conducted literature survey found an increased interest in the academia in these concepts, limited evidence of a positive effect on student motivation and academic performance, but also certain scepticism for adding games to traditional educational activities. A small-scale empirical study presented in this paper aims to evaluate student experience and usefulness of GameBased Learning and Gamification for a better understanding of the threshold concepts in software engineering project courses. The participants of the study were 22 second year students from bachelor’s program in software engineering at Blekinge Institute of Technology. As a part of the course instruction, the students were introduced to a digital game specifically designed to simulate agile software project. The game mechanics were designed as to allow manipulation of the agile concept of team velocity. After the application of the game, the students were surveyed to measure the degree of a perceived increase in understanding of the studied threshold concept. The students were also asked whether they would like to have games included in their education. The results show that majority of the students found the game helpful in increasing their understanding of the threshold concept. Most of the students have indicated that they would like to see games included in their education. These results are encouraging. Since the study was of small scale and based on convenience sampling, more studies in the area are recommended.

Keywords: agile development, gamification, game based learning, digital games, software engineering, threshold concepts

Procedia PDF Downloads 167
6393 TechWhiz: Empowering Deaf Students through Inclusive Education

Authors: Paula Escudeiro, Nuno Escudeiro, Márcia Campos, Francisca Escudeiro

Abstract:

In today's world, technical and scientific knowledge plays a vital role in education, research, and employment. Deaf students face unique challenges in educational settings, particularly when it comes to understanding technical and scientific terminology. The reliance on written and spoken languages can create barriers for deaf individuals who primarily communicate using sign language. This lack of accessibility can hinder their learning experience and compromise equity in education. To address this issue, the TechWhiz project has been developed as a comprehensive glossary of scientific and technical concepts explained in sign language. By providing deaf students with access to education in their first language, TechWhiz aims to enhance their learning achievements and promote inclusivity while also fostering equity in education for all students.

Keywords: deaf students, technical and scientific knowledge, automatic sign language, inclusive education

Procedia PDF Downloads 68
6392 Urban Transport Demand Management Multi-Criteria Decision Using AHP and SERVQUAL Models: Case Study of Nigerian Cities

Authors: Suleiman Hassan Otuoze, Dexter Vernon Lloyd Hunt, Ian Jefferson

Abstract:

Urbanization has continued to widen the gap between demand and resources available to provide resilient and sustainable transport services in many fast-growing developing countries' cities. Transport demand management is a decision-based optimization concept for both benchmarking and ensuring efficient use of transport resources. This study assesses the service quality of infrastructure and mobility services in the Nigerian cities of Kano and Lagos through five dimensions of quality (i.e., Tangibility, Reliability, Responsibility, Safety Assurance and Empathy). The methodology adopts a hybrid AHP-SERVQUAL model applied on questionnaire surveys to gauge the quality of satisfaction and the views of experts in the field. The AHP results prioritize tangibility, which defines the state of transportation infrastructure and services in terms of satisfaction qualities and intervention decision weights in the two cities. The results recorded ‘unsatisfactory’ indices of quality of performance and satisfaction rating values of 48% and 49% for Kano and Lagos, respectively. The satisfaction indices are identified as indicators of low performances of transportation demand management (TDM) measures and the necessity to re-order priorities and take proactive steps towards infrastructure. The findings pilot a framework for comparative assessment of recognizable standards in transport services, best ethics of management and a necessity of quality infrastructure to guarantee both resilient and sustainable urban mobility.

Keywords: transportation demand management, multi-criteria decision support, transport infrastructure, service quality, sustainable transport

Procedia PDF Downloads 224
6391 Traditional Farming Practices and Climate Change Adaptation among the Dumagats of Tanay, Rizal and Their Implications to the Delivery of Extension and Advisory Services

Authors: Janika Vien K. Valsorable, Filma C. Calalo

Abstract:

Climate change is one of the most damaging and serious environmental threats worldwide being faced today. While almost everyone highly depends and puts their trust on what technology, innovations, and initiatives from hard-core science can do to cope with the changing climate, there are still people who find hope on indigenous knowledge systems. The study aimed to analyze the traditional farming practices of the Dumagats in Tanay, Rizal and how these relate to their adaptation and mitigation of climate change. The analysis is based on interviews with 17 members of the Dumagat tribe specifically residing in Barangay Cuyambay, San Andres, and Mamuyao, and supported by Key Informant Interview and Focus Group Discussion as well as document reviews. Results of the study showed that the Dumagats adopt indigenous knowledge systems and their high sensitivity and resilience to climate change aid them in their farming system and activities. These traditional farming practices are exemplified from land preparation to planting, fertilizer application, weed and pest management, harvesting and post-harvest activities. Owing to their dependence upon, and close relationship with the environment and its resources, the Dumagats have learned to interpret and react to the impacts of climate change in creative ways, drawing on their traditional knowledge to cope with the impending changes. With the increasing trend at all levels of government to service the needs of rural communities, there is the need for the extension to contextualize advisory service delivery for indigenous communities.

Keywords: climate change, Dumagat tribe, indigenous knowledge systems, traditional farming practices

Procedia PDF Downloads 264
6390 Image Processing-Based Maize Disease Detection Using Mobile Application

Authors: Nathenal Thomas

Abstract:

In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.

Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot

Procedia PDF Downloads 74
6389 Muscle: The Tactile Texture Designed for the Blind

Authors: Chantana Insra

Abstract:

The research objective focuses on creating a prototype media of the tactile texture of muscles for educational institutes to help visually impaired students learn massage extra learning materials further than the ordinary curriculum. This media is designed as an extra learning material. The population in this study was 30 blinded students between 4th - 6th grades who were able to read Braille language. The research was conducted during the second semester in 2012 at The Bangkok School for the Blind. The method in choosing the population in the study was purposive sampling. The methodology of the research includes collecting data related to visually impaired people, the production of the tactile texture media, human anatomy and Thai traditional massage from literature reviews and field studies. This information was used for analyzing and designing 14 tactile texture pictures presented to experts to evaluate and test the media.

Keywords: blind, tactile texture, muscle, visual arts and design

Procedia PDF Downloads 269
6388 Future-Proofing the Workforce: A Case Study of Integrated Human Capability Frameworks to Support Business Success

Authors: Penelope Paliadelis, Asheley Jones, Glenn Campbell

Abstract:

This paper discusses the development of co-designed capability frameworks for two large multinational organizations led by a university department. The aim was to create evidence-based, integrated capability frameworks that could define, identify, and measure human skill capabilities independent of specific work roles. The frameworks capture and cluster human skills required in the workplace and capture their application at various levels of mastery. Identified capability gaps inform targeted learning opportunities for workers to enhance their employability skills. The paper highlights the value of this evidence-based framework development process in capturing, defining, and assessing desired human-focused capabilities for organizational growth and success.

Keywords: capability framework, human skills, work-integrated learning, credentialing, digital badging

Procedia PDF Downloads 79
6387 Rapid Sexual and Reproductive Health Pathways for Women Accessing Drug and Alcohol Treatment

Authors: Molly Parker

Abstract:

Unintended pregnancy rates in Australia are amongst the highest in the developed world. Women with Substance Use Disorder often have riskier sexual behavior with nil contraceptive use and face disproportionately higher unintended pregnancies and Sexually Transmitted Infections, alongside Substance Use in Pregnancy (SUP) climbing at an alarming rate. In an inner-city Drug and Alcohol (D&A) service, significant barriers to sexual and reproductive health services have been identified, aligning with research. Rapid pathways were created for women seeking D&A treatment to be referred to Sexual and Reproductive Health services for the administration of Long-acting reversible contraception (LARC) and sexual health screening. For clients attending a D&A service, this is an opportunistic time to offer sexual and reproductive health services. Collaboration and multidisciplinary team input between D&A and sexual health and reproductive services are paramount, with rapid referral pathways being identified as the main strategy to improve access to sexual and reproductive health support for this population. With this evidence, a rapid referral pathway was created for women using the D&A service to access LARC, particularly in view of fertility often returning once stable on D&A treatment. A closed-ended survey was used for D&A staff to identify gaps in reproductive health knowledge and views of referral accessibility. Results demonstrated a lack of knowledge of contraception and appropriate referral processes. A closed-ended survey for clients was created to establish the need and access to services and to quantify data. A follow-up data collection will be reviewed to access uptake and satisfaction of the intervention from clients. Sexual health screening access was also identified as a deficit, particularly concerning due to the higher rates of STIs in this cohort. A rapid referral pathway will be undergoing implementation, reducing risks of untreated STIS both pre and post-conception. Similarly, pre and post-intervention structured surveys will be used to identify client satisfaction from the pathway. Although currently in progress, the research and pathway aim to be completed by December 2023. This research and implementation of sexual and reproductive health pathways from the D&A service have significant health and well-being benefits to clients and the wider community, including possible fetal/infancy outcomes. Women now have rapid access to sexual and reproductive health services, with the aim of reducing unplanned pregnancies, poor outcomes associated with SUP, client/staff trauma from termination of pregnancy, and client/staff trauma following the assumption of care of the child due to substance use, the financial cost for out of home care as required, the poor outcomes of untreated STIs to the fetus in pregnancy and the spread of STIs in the wider community. As evidence suggests, the implementation of a streamlined referral process is required between D&A and sexual and reproductive health services and has positive feedback from both clinicians and clients in improving care.

Keywords: substance use in pregnancy, drug and alcohol, substance use disorder, sexual health, reproductive health, contraception, long-acting reversible contraception, neonatal abstinence syndrome, FASD, sexually transmitted infections, sexually transmitted infections pregnancy

Procedia PDF Downloads 65
6386 A System to Detect Inappropriate Messages in Online Social Networks

Authors: Shivani Singh, Shantanu Nakhare, Kalyani Nair, Rohan Shetty

Abstract:

As social networking is growing at a rapid pace today it is vital that we work on improving its management. Research has shown that the content present in online social networks may have significant influence on impressionable minds. If such platforms are misused, it will lead to negative consequences. Detecting insults or inappropriate messages continues to be one of the most challenging aspects of Online Social Networks (OSNs) today. We address this problem through a Machine Learning Based Soft Text Classifier approach using Support Vector Machine algorithm. The proposed system acts as a screening mechanism the alerts the user about such messages. The messages are classified according to their subject matter and each comment is labeled for the presence of profanity and insults.

Keywords: machine learning, online social networks, soft text classifier, support vector machine

Procedia PDF Downloads 508
6385 The History and Plausible Future of Assistive Technology and What It Might Mean for Singapore Students With Disabilities

Authors: Thomas Chong, Irene Victor

Abstract:

This paper discusses the history and plausible future of assistive technology and what it means for students with disabilities in Singapore, a country known for its high quality of education in the world. Over more than a century, students with disabilities have benefitted from relatively low-tech assistive technology (like eye-glasses, Braille, magnifiers and wheelchairs) to high-tech assistive technology including electronic mobility switches, alternative keyboards, computer-screen enlargers, text-to-speech readers, electronic sign-language dictionaries and signing avatars for individuals with hearing impairments. Driven by legislation, the use of assistive technology in many countries is becoming so ubiquitous that more and more students with disabilities are able to perform as well as if not better than their counterparts. Yet in many other learning environments where assistive technology is not affordable or mandated, the learning gaps can be quite significant. Without stronger legislation, Singapore may still have a long way to go in levelling the playing field for its students with disabilities.

Keywords: assistive technology, students with disabilities, disability laws in Singapore, inclusiveness

Procedia PDF Downloads 74
6384 Musical Notation Reading versus Alphabet Reading-Comparison and Implications for Teaching Music Reading to Students with Dyslexia

Authors: Ora Geiger

Abstract:

Reading is a cognitive process of deciphering visual signs to produce meaning. During the reading process, written information of symbols and signs is received in the person’s eye and processed in the brain. This definition is relevant to both the reading of letters and the reading of musical notation. But while the letters of the alphabet are signs determined arbitrarily, notes are recorded systematically on a staff, with the location of each note on the staff indicating its relative pitch. In this paper, the researcher specifies the characteristics of alphabet reading in comparison to musical notation reading, and discusses the question whether a person diagnosed with dyslexia will necessarily have difficulty in reading musical notes. Dyslexia is a learning disorder that makes it difficult to acquire alphabet-reading skills due to difficulties expressed in the identification of letters, spelling, and other language deciphering skills. In order to read, one must be able to connect a symbol with a sound and to join the sounds into words. A person who has dyslexia finds it difficult to translate a graphic symbol into the sound that it represents. When teaching reading to children diagnosed with dyslexia, the multi-sensory approach, supporting the activation and involvement of most of the senses in the learning process, has been found to be particularly effective. According to this approach, when most senses participate in the reading learning process, it becomes more effective. During years of experience, the researcher, who is a music specialist, has been following the music reading learning process of elementary school age students, some of them diagnosed with Dyslexia, while studying to play soprano (descant) recorder. She argues that learning music reading while studying to play a musical instrument is a multi-sensory experience by its nature. The senses involved are: sight, hearing, touch, and the kinesthetic sense (motion), which provides the brain with information on the relative positions of the body. In this way, the learner experiences simultaneously visual, auditory, tactile, and kinesthetic impressions. The researcher concludes that there should be no contra-indication for teaching standard music reading to children with dyslexia if an appropriate process is offered. This conclusion is based on two main characteristics of music reading: (1) musical notation system is a systematic, logical, relative set of symbols written on a staff; and (2) music reading learning connected with playing a musical instrument is by its nature a multi-sensory activity since it combines sight, hearing, touch, and movement. This paper describes music reading teaching procedures and provides unique teaching methods that have been found to be effective for students who were diagnosed with Dyslexia. It provides theoretical explanations in addition to guidelines for music education practices.

Keywords: alphabet reading, dyslexia, multisensory teaching method, music reading, recorder playing

Procedia PDF Downloads 365
6383 Exploring the Determinants of Personal Finance Difficulties by Machine Learning: Focus on Socio-Economic and Behavioural Changes Brought by COVID-19

Authors: Brian Tung, Yam Wing Siu, Tsun Se Cheong

Abstract:

Purpose: This research aims to explore how personal and environmental factors, especially the socio-economic changes and behavioral changes fostered by the COVID-19 outbreak pandemic, affect the financial vulnerability of a specific segment of people in financial distress. Innovative research methodology of machine learning will be applied to data collected from over 300 local individuals in Hong Kong seeking counseling or similar services in recent years. Results: First, machine learning has found that too much exposure to digital services and information on digitized services may lead to adverse effects on respondents’ financial vulnerability. Second, the improvement in financial literacy level provides benefits to the financially vulnerable group, especially those respondents who have started with a lower level. Third, serious addiction to digital technology can lead to worsened debt servicing ability. Machine learning also has found a strong correlation between debt servicing situations and income-seeking behavior as well as spending behavior. In addition, if the vulnerable groups are able to make appropriate investments, they can reduce the probability of incurring financial distress. Finally, being too active in borrowing and repayment can result in a higher likelihood of over-indebtedness. Conclusion: Findings can be employed in formulating a better counseling strategy for professionals. Debt counseling services can be more preventive in nature. For example, according to the findings, with a low level of financial literacy, the respondents are prone to overspending and unable to react properly to the e-marketing promotion messages pop-up from digital services or even falling into financial/investment scams. In addition, people with low levels of financial knowledge will benefit from financial education. Therefore, financial education programs could include tech-savvy matters as special features.

Keywords: personal finance, digitization of the economy, COVID-19 pandemic, addiction to digital technology, financial vulnerability

Procedia PDF Downloads 58
6382 Monitoring and Evaluation of Master Science Trainee Educational Students to their Practicum in Teaching Physics for Improving and Creating Attitude Skills for Sustainable Developing Upper Secondary Students in Thailand

Authors: T. Santiboon, S. Tongbu, P. S. Saihong

Abstract:

This study focuses on investigating students' perceptions of their physics classroom learning environments of their individualizations and their interactions with the instructional practicum in teaching physics of the master science trainee educational students for improving and creating attitude skills’ sustainable development toward physics for upper secondary educational students in Thailand. Associations between these perceptions and students' attitudes toward physics were also determined. The learning environment perceptions were obtained using the 35-item Physics Laboratory Environment Inventory (PLEI) modified from the original Science Laboratory Environment Inventory. The 25-item Individualized Classroom Environment Questionnaire (ICEQ) was assessed those dimensions which distinguish individualized physics classrooms from convention on individualized open and inquiry-based education Teacher-student interactions were assessed with the 48-item Questionnaires on Teacher Interaction (QTI). Both these questionnaires have an Actual Form (assesses the class as it actually is) and a Preferred Form (asks the students what they would prefer their class to be like - the ideal situation). Students’ creating attitude skills’ sustainable development toward physics were assessed with the Test Of Physics-Related Attitude (TOPRA) modified from the original Test Of Science-Related Attitude (TOSRA) The questionnaires were administered in three phases with the Custer Random Sampling technique to a sample consisted of 989 students in 28 physics classes from 10 schools at the grade 10, 11, and 12 levels in the Secondary Educational Service Area 26 (Maha Sarakham Province) and Area 27 (Roi-Et). Statistically significant differences were found between the students' perceptions of actual-1, actual-2 and preferred environments of their physics laboratory and distinguish individualized classrooms, and teacher interpersonal behaviors with their improving and creating attitudes skills’ sustainable development to their physics classes also were found. Predictions of the monitoring and evaluation of master science trainee educational students of their practicum in teaching physics; students’ skills developments of their physics achievements’ sustainable for the set of actual and preferred environments as a whole and physics related attitudes also were correlated. The R2 values indicate that 58%, 67%, and 84% of the variances in students’ attitudes to their actuale-1, actual-2 and preferred for the PLEI; 42%,science trainee educational students of their practicum in teaching physics; students’ skill developments of their physics achievements’ sustainable for the set of actual and preferred environments as a whole and physics related attitudes also were correlated. The R2 values indicate that 58%, 67%, and 84% of the variances in students’ attitudes to their actuale-1, actual-2 and preferred for the PLEI; 42%, 63%, and 72% for the ICEQ, and 38%, 59%, and 68% for the QTI in physics environment classes were attributable to their perceptions of their actual and preferred physics environments and their developing creative science skills’ sustainable toward physics, consequently. Based on all the findings, suggestions for improving the physics laboratory and individualized classes and teacher interpersonal behaviors with students' perceptions are provided of their improving and creating attitude skills’ sustainable development by the master science trainee educational students ’ instructional administrations.

Keywords: promotion, instructional model, qualitative method, reflective thinking, trainee teacher student

Procedia PDF Downloads 268
6381 Prevention of Road Accidents by Computerized Drowsiness Detection System

Authors: Ujjal Chattaraj, P. C. Dasbebartta, S. Bhuyan

Abstract:

This paper aims to propose a method to detect the action of the driver’s eyes, using the concept of face detection. There are three major key contributing methods which can rapidly process the framework of the facial image and hence produce results which further can program the reactions of the vehicles as pre-programmed for the traffic safety. This paper compares and analyses the methods on the basis of their reaction time and their ability to deal with fluctuating images of the driver. The program used in this study is simple and efficient, built using the AdaBoost learning algorithm. Through this program, the system would be able to discard background regions and focus on the face-like regions. The results are analyzed on a common computer which makes it feasible for the end users. The application domain of this experiment is quite wide, such as detection of drowsiness or influence of alcohols in drivers or detection for the case of identification.

Keywords: AdaBoost learning algorithm, face detection, framework, traffic safety

Procedia PDF Downloads 157
6380 A Time-Varying and Non-Stationary Convolution Spectral Mixture Kernel for Gaussian Process

Authors: Kai Chen, Shuguang Cui, Feng Yin

Abstract:

Gaussian process (GP) with spectral mixture (SM) kernel demonstrates flexible non-parametric Bayesian learning ability in modeling unknown function. In this work a novel time-varying and non-stationary convolution spectral mixture (TN-CSM) kernel with a significant enhancing of interpretability by using process convolution is introduced. A way decomposing the SM component into an auto-convolution of base SM component and parameterizing it to be input dependent is outlined. Smoothly, performing a convolution between two base SM component yields a novel structure of non-stationary SM component with much better generalized expression and interpretation. The TN-CSM perfectly allows compatibility with the stationary SM kernel in terms of kernel form and spectral base ignored and confused by previous non-stationary kernels. On synthetic and real-world datatsets, experiments show the time-varying characteristics of hyper-parameters in TN-CSM and compare the learning performance of TN-CSM with popular and representative non-stationary GP.

Keywords: Gaussian process, spectral mixture, non-stationary, convolution

Procedia PDF Downloads 196
6379 The Significance of Computer Assisted Language Learning in Teaching English Grammar in Tribal Zone of Chhattisgarh

Authors: Yogesh Kumar Tiwari

Abstract:

Chhattisgarh has realized the fundamental role of information and communication technology in the globalized world where knowledge is at the top for the growth and intellectual development. They are spreading so widely that one feels lagging behind if not using them. The influence of these radiating and technological tools has encompassed all aspects of the educational, business, and economic sectors of our world. Undeniably the computer has not only established itself globally in all walks of life but has acquired a fundamental role of paramount importance in the educational process also. This role is getting all pervading and more powerful as computers are being manufactured to be cheaper, smaller in size, adaptable and easy to handle. Computers are becoming indispensable to teachers because of their enormous capabilities and extensive competence. This study aims at observing the effect of using computer based software program of English language on the achievement of undergraduate level students studying in tribal area like Sarguja Division, Chhattisgarh, India. To testify the effect of an innovative teaching in the graduate classroom in tribal area 50 students were randomly selected and separated into two groups. The first group of 25 students were taught English grammar i.e., passive voice/narration, through traditional method using chalk and blackboard asking some formal questions. The second group, the experimental one, was taught English grammar i.e., passive voice/narration, using computer, projector with power point presentation of grammatical items. The statistical analysis was done on the students’ learning capacities and achievement. The result was extremely mesmerizing not only for the teacher but for taught also. The process of the recapitulation demonstrated that the students of experimental group responded the answers of the questions enthusiastically with innovative sense of learning. In light of the findings of the study, it was recommended that teachers and professors of English ought to use self-made instructional program in their teaching process particularly in tribal areas.

Keywords: achievement computer assisted language learning, use of instructional program

Procedia PDF Downloads 149