Search results for: module based teaching and learning
29429 Relationship between ISO 14001 and Market Performance of Firms in China: An Institutional and Market Learning Perspective
Authors: Hammad Riaz, Abubakr Saeed
Abstract:
Environmental Management System (EMS), i.e., ISO 14001 helps to build corporate reputation, legitimacy and can also be considered as firms’ strategic response to institutional pressure to reduce the impact of business activity on natural environment. The financial outcomes of certifying with ISO 14001 are still unclear and equivocal. Drawing on institutional and market learning theories, the impact of ISO 14001 on firms’ market performance is examined for Chinese firms. By employing rigorous event study approach, this paper compared ISO 14001 certified firms with non-certified counterpart firms based on different matching criteria that include size, return on assets and industry. The results indicate that the ISO 14001 has been negatively signed by the investors both in the short and long-run. This paper suggested implications for policy makers, managers, and other nonprofit organizations.Keywords: ISO 14001, legitimacy, institutional forces, event study approach, emerging markets
Procedia PDF Downloads 16729428 Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems
Authors: Ramdan B. A. Koad, Ahmed F. Zobaa
Abstract:
Since the output characteristics of Photovoltaic (PV) system depends on the ambient temperature, solar radiation and load impedance, its maximum Power Point (MPP) is not constant. Under each condition PV module has a point at which it can produce its MPP. Therefore, a Maximum Power Point Tracking (MPPT) method is needed to uphold the PV panel operating at its MPP. This paper presents comparative study between the conventional MPPT methods used in (PV) system: Perturb and Observe (P&O), Incremental Conductance (IncCond), and Particle Swarm Optimization (PSO) algorithm for (MPPT) of (PV) system. To evaluate the study, the proposed PSO MPPT is implemented on a DC-DC converter and has been compared with P&O and INcond methods in terms of their tracking speed, accuracy and performance by using the Matlab tool Simulink. The simulation result shows that the proposed algorithm is simple, and is superior to the P&O and IncCond methods.Keywords: photovoltaic systems, maximum power point tracking, perturb and observe method, incremental conductance, methods and practical swarm optimization algorithm
Procedia PDF Downloads 36329427 An Active Solar Energy System to Supply Heating Demands of the Teaching Staff Dormitory of Islamic Azad University Ramhormoz Branch
Authors: M. Talebzadegan, S. Bina, I. Riazi
Abstract:
The purpose of this paper is to present an active solar energy system to supply heating demands of the teaching staff dormitory of the Islamic Azad University of Ramhormoz. The design takes into account the solar radiations and climate data of Ramhormoz town and is based on the daily warm water consumption for health demands of 450 residents of the dormitory, which is equal to 27000 lit of 50-C° water, and building heating requirements with an area of 3500 m² well-protected by heatproof materials. First, heating demands of the building were calculated, then a hybrid system made up of solar and fossil energies was developed and finally, the design was economically evaluated. Since there is only roof space for using 110 flat solar water heaters, the calculations were made to hybridize solar water heating system with heat pumping system in which solar energy contributes 67% of the heat generated. According to calculations, the net present value “N.P.V.” of revenue stream exceeds “N.P.V.” of cash paid off in this project over three years, which makes economically quite promising. The return of investment and payback period of the project is 4 years. Also, the internal rate of return (IRR) of the project was 25%, which exceeds bank rate of interest in Iran and emphasizes the desirability of the project.Keywords: Solar energy, Heat Demand, Renewable , Pollution
Procedia PDF Downloads 25429426 Training to Evaluate Creative Activity in a Training Context, Analysis of a Learner Evaluation Model
Authors: Massy Guillaume
Abstract:
Introduction: The implementation of creativity in educational policies or curricula raises several issues, including the evaluation of creativity and the means to do so. This doctoral research focuses on the appropriation and transposition of creativity assessment models by future teachers. Our objective is to identify the elements of the models that are most transferable to practice in order to improve their implementation in the students' curriculum while seeking to create a new model for assessing creativity in the school environment. Methods: In order to meet our objective, this preliminary quantitative exploratory study by questionnaire was conducted at two points in the participants' training: at the beginning of the training module and throughout the practical work. The population is composed of 40 people of diverse origins with an average age of 26 (s:8,623) years. In order to be as close as possible to our research objective and to test our questionnaires, we set up a pre-test phase during the spring semester of 2022. Results: The results presented focus on aspects of the OECD Creative Competencies Assessment Model. Overall, 72% of participants support the model's focus on skill levels as appropriate for the school context. More specifically, the data indicate that the separation of production and process in the rubric facilitates observation by the assessor. From the point of view of transposing the grid into teaching practice, the participants emphasised that production is easier to plan and observe in students than in the process. This difference is reinforced by a lack of knowledge about certain concepts such as innovation or risktaking in schools. Finally, the qualitative results indicate that the addition of multiple levels of competencies to the OECD rubric would allow for better implementation in the classroom. Conclusion: The identification by the students of the elements allowing the evaluation of creativity in the school environment generates an innovative approach to the training contents. These first data, from the test phase of our research, demonstrate the difficulty that exists between the implementation of an evaluation model in a training program and its potential transposition by future teachers.Keywords: creativity, evaluation, schooling, training
Procedia PDF Downloads 9729425 Multimodal Characterization of Emotion within Multimedia Space
Authors: Dayo Samuel Banjo, Connice Trimmingham, Niloofar Yousefi, Nitin Agarwal
Abstract:
Technological advancement and its omnipresent connection have pushed humans past the boundaries and limitations of a computer screen, physical state, or geographical location. It has provided a depth of avenues that facilitate human-computer interaction that was once inconceivable such as audio and body language detection. Given the complex modularities of emotions, it becomes vital to study human-computer interaction, as it is the commencement of a thorough understanding of the emotional state of users and, in the context of social networks, the producers of multimodal information. This study first acknowledges the accuracy of classification found within multimodal emotion detection systems compared to unimodal solutions. Second, it explores the characterization of multimedia content produced based on their emotions and the coherence of emotion in different modalities by utilizing deep learning models to classify emotion across different modalities.Keywords: affective computing, deep learning, emotion recognition, multimodal
Procedia PDF Downloads 16429424 Using 'Know, Want to Know, Learned' Strategy to Enhance the Seventh C Grade Students' Reading Comprehension Achievement at SMPN 1 Mumbulsari
Authors: Abdul Rofiq Badril Rizal M. Z.
Abstract:
Reading becomes one of the most important skills in teaching and learning English. The purpose of this research was to improve the students' active participation, and reading comprehension achievement by using Know, Want to Know, Learned (KWL) strategy. The research design was Classroom Action Research. The area and participants of this research were chosen by using purposive method. The data were collected by observation, a reading comprehension test, interview, and documentation. The results showed that there was significant improvement in Cycle 1 to Cycle 2 of the research. In cycle 1, the students’ active participation increased 49.77% from 28% to 77.77. In addition, in cycle 2, the students’ active participation also increased by 14.17% from 77.77% to 81.94%. The students’ reading comprehension achievement also increased by 52.14% from 25% to 77.14% in Cycle 1 and increased by 5.71% from 77.14% to 82.85% in cycle 2. It indicated that using Know, Want to Know, Learned (KWL) strategy could enhance the Seventh C grade students’ descriptive text reading comprehension achievement, and active participation.Keywords: active participation, reading comprehension, classroom action research, Indonesian folktales
Procedia PDF Downloads 13629423 The Influence of Teachers Anxiety-Reducing Strategies on Learners Foreign Language Anxiety
Authors: Fakieh Alrabai
Abstract:
This study investigated the effects on learner anxiety of anxiety-reducing strategies utilized by English as foreign language teachers in Saudi Arabia. The study was conducted in two stages. In the first stage, sources of foreign language anxiety for Saudi learners of English (N = 596) were identified using The Foreign Language Classroom Anxiety Scale (FLCAS). In the second stage, 465 learners who were divided almost equally into two groups (experimental vs. control) and 12 teachers were recruited. Anxiety-reducing strategies were implemented exclusively in the treatment group for approximately eight weeks. FLCAS was used to assess learners’ FL anxiety levels before and after treatment. Statistical analyses (e.g. ANOVA and ANCOVA) were used to evaluate the study findings. These findings revealed that the intervention led to significantly decreased levels of FL anxiety for learners in the experimental group compared with increased levels of anxiety for those in the control group.Keywords: communication apprehension, EFL teaching/learning, fear of negative evaluation, foreign language anxiety
Procedia PDF Downloads 35929422 Exponential Value and Learning Effects in VR-Cutting-Vegetable Training
Authors: Jon-Chao Hong, Tsai-Ru Fan, Shih-Min Hsu
Abstract:
Virtual reality (VR) can generate mirror neurons that facilitate learners to transfer virtual skills to a real environment in skill training, and most studies approved the positive effect of applying in many domains. However, rare studies have focused on the experiential values of participants from a gender perspective. To address this issue, the present study used a VR program named kitchen assistant training, focusing on cutting vegetables and invited 400 students to practice for 20 minutes. Useful data from 367 were subjected to statistical analysis. The results indicated that male participants. From the comparison of average, it seems that females perceived higher than males in learning effectiveness. Expectedly, the VR-Cutting vegetables can be used for pre-training of real vegetable cutting.Keywords: exponential value, facilitate learning, gender difference, virtual reality
Procedia PDF Downloads 9729421 Podcasting as an Instructional Method: Case Study of a School Psychology Class
Authors: Jeff A. Tysinger, Dawn P. Tysinger
Abstract:
There has been considerable growth in online learning. Researchers continue to explore the impact various methods of delivery. Podcasting is a popular method for sharing information. The purpose of this study was to examine the impact of student motivation and the perception of the acquisition of knowledge in an online environment of a skill-based class. 25 students in a school psychology graduate class completed a pretest and posttest examining podcast use and familiarity. In addition, at the completion of the course they were administered a modified version of the Instructional Materials Motivation Survey. The four subscales were examined (attention, relevance, confidence, and satisfaction). Results indicated that students are motivated, they perceive podcasts as positive instructional tools, and students are successful in acquiring the needed information. Additional benefits of using podcasts and recommendations in school psychology training are discussed.Keywords: motivation, online learning, pedagogy, podcast
Procedia PDF Downloads 13629420 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms
Authors: Rikson Gultom
Abstract:
Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.Keywords: abusive language, hate speech, machine learning, optimization, social media
Procedia PDF Downloads 13129419 An Ethnographic Inquiry: Exploring the Saudi Students’ Motivation to Learn English Language
Authors: Musa Alghamdi
Abstract:
Although Saudi students’ motivation to learn English language as a foreign language in Saudi Arabia have been investigated by a number of studies; these have appeared almost completely as using the quantitative research paradigm. There is a significant lack of research that explores the Saudi students’ motivation using qualitative methods. It was essential, as an investigator, to be immersed in the community to understand the individuals under study via their actions and words, their thoughts, views and beliefs, and how those individuals credited to activities. Thus, the study aims to explore the Saudi students’ motivation to learn English language as a foreign language in Saudi Arabia employing qualitative methodology via applying ethnography. The study will be carried out in Saudi Arabia. Ethnography qualitative approach will be used in the current study by employing formal and informal interview instruments. Gardner’s motivation theory is used as frameworks for this study to aid the understanding of the research findings. The author, an English language lecturer, will undertake participant observations for 4 months. He will work as teaching-assistant (on an unpaid basis) with EFL lecturers in different discipline department at a Saudi university where students study English language as a minor course. The researcher will start with informal ethnographical interview with students during his existence with the informants in their natural context. Then the researcher will utilize the semi-structural interview. The informal interview will be with 14-16 students, then, he will carry out semi-structural interview with the same informants to go deep in their natural context to find out to what extent the Saudi university students are motivated to learn English as a foreign language. As well as, to find out the reasons that played roles in that. The findings of this study will add new knowledge about what factors motivate universities’ Saudi students to learn English language in Saudi Arabia. Very few chances have given to students to express themselves and to speak about their feelings in a more comfortable way in order to gain a clear image of those factors. The working author as an EFL teacher and lecturer will provide him secure access into EFL teaching and learning setting. It will help him attain richer insights into the nature EFL context in universities what will provide him with richer insights into the reasons behind the weakness of EFL level among Saudi students.Keywords: motivation, ethnography, Saudi, language
Procedia PDF Downloads 29929418 The Face Sync-Smart Attendance
Authors: Bekkem Chakradhar Reddy, Y. Soni Priya, Mathivanan G., L. K. Joshila Grace, N. Srinivasan, Asha P.
Abstract:
Currently, there are a lot of problems related to marking attendance in schools, offices, or other places. Organizations tasked with collecting daily attendance data have numerous concerns. There are different ways to mark attendance. The most commonly used method is collecting data manually by calling each student. It is a longer process and problematic. Now, there are a lot of new technologies that help to mark attendance automatically. It reduces work and records the data. We have proposed to implement attendance marking using the latest technologies. We have implemented a system based on face identification and analyzing faces. The project is developed by gathering faces and analyzing data, using deep learning algorithms to recognize faces effectively. The data is recorded and forwarded to the host through mail. The project was implemented in Python and Python libraries used are CV2, Face Recognition, and Smtplib.Keywords: python, deep learning, face recognition, CV2, smtplib, Dlib.
Procedia PDF Downloads 6129417 A Practical Survey on Zero-Shot Prompt Design for In-Context Learning
Authors: Yinheng Li
Abstract:
The remarkable advancements in large language models (LLMs) have brought about significant improvements in natural language processing tasks. This paper presents a comprehensive review of in-context learning techniques, focusing on different types of prompts, including discrete, continuous, few-shot, and zero-shot, and their impact on LLM performance. We explore various approaches to prompt design, such as manual design, optimization algorithms, and evaluation methods, to optimize LLM performance across diverse tasks. Our review covers key research studies in prompt engineering, discussing their methodologies and contributions to the field. We also delve into the challenges faced in evaluating prompt performance, given the absence of a single ”best” prompt and the importance of considering multiple metrics. In conclusion, the paper highlights the critical role of prompt design in harnessing the full potential of LLMs and provides insights into the combination of manual design, optimization techniques, and rigorous evaluation for more effective and efficient use of LLMs in various Natural Language Processing (NLP) tasks.Keywords: in-context learning, prompt engineering, zero-shot learning, large language models
Procedia PDF Downloads 8829416 Holistic Approach to Teaching Mathematics in Secondary School as a Means of Improving Students’ Comprehension of Study Material
Authors: Natalia Podkhodova, Olga Sheremeteva, Mariia Soldaeva
Abstract:
Creating favorable conditions for students’ comprehension of mathematical content is one of the primary problems in teaching mathematics in secondary school. Psychology research has demonstrated that positive comprehension becomes possible when new information becomes part of student’s subjective experience and when linkages between the attributes of notions and various ways of their presentations can be established. The fact of comprehension includes the ability to build a working situational model and thus becomes an important means of solving mathematical problems. The article describes the implementation of a holistic approach to teaching mathematics designed to address the primary challenges of such teaching, specifically, the challenge of students’ comprehension. This approach consists of (1) establishing links between the attributes of a notion: the sense, the meaning, and the term; (2) taking into account the components of student’s subjective experience -emotional and value, contextual, procedural, communicative- during the educational process; (3) links between different ways to present mathematical information; (4) identifying and leveraging the relationships between real, perceptual and conceptual (scientific) mathematical spaces by applying real-life situational modeling. The article describes approaches to the practical use of these foundational concepts. Identifying how proposed methods and technology influence understanding of material used in teaching mathematics was the research’s primary goal. The research included an experiment in which 256 secondary school students took part: 142 in the experimental group and 114 in the control group. All students in these groups had similar levels of achievement in math and studied math under the same curriculum. In the course of the experiment, comprehension of two topics -'Derivative' and 'Trigonometric functions'- was evaluated. Control group participants were taught using traditional methods. Students in the experimental group were taught using the holistic method: under the teacher’s guidance, they carried out problems designed to establish linkages between notion’s characteristics, to convert information from one mode of presentation to another, as well as problems that required the ability to operate with all modes of presentation. The use of the technology that forms inter-subject notions based on linkages between perceptional, real, and conceptual mathematical spaces proved to be of special interest to the students. Results of the experiment were analyzed by presenting students in each of the groups with a final test in each of the studied topics. The test included problems that required building real situational models. Statistical analysis was used to aggregate test results. Pierson criterion was used to reveal the statistical significance of results (pass-fail the modeling test). A significant difference in results was revealed (p < 0.001), which allowed the authors to conclude that students in the study group showed better comprehension of mathematical information than those in the control group. Also, it was revealed (used Student’s t-test) that the students of the experimental group performed reliably (p = 0.0001) more problems in comparison with those in the control group. The results obtained allow us to conclude that increasing comprehension and assimilation of study material took place as a result of applying implemented methods and techniques.Keywords: comprehension of mathematical content, holistic approach to teaching mathematics in secondary school, subjective experience, technology of the formation of inter-subject notions
Procedia PDF Downloads 18229415 Lexical-Semantic Processing by Chinese as a Second Language Learners
Authors: Yi-Hsiu Lai
Abstract:
The present study aimed to elucidate the lexical-semantic processing for Chinese as second language (CSL) learners. Twenty L1 speakers of Chinese and twenty CSL learners in Taiwan participated in a picture naming task and a category fluency task. Based on their Chinese proficiency levels, these CSL learners were further divided into two sub-groups: ten CSL learners of elementary Chinese proficiency level and ten CSL learners of intermediate Chinese proficiency level. Instruments for the naming task were sixty black-and-white pictures: thirty-five object pictures and twenty-five action pictures. Object pictures were divided into two categories: living objects and non-living objects. Action pictures were composed of two categories: action verbs and process verbs. As in the naming task, the category fluency task consisted of two semantic categories – objects (i.e., living and non-living objects) and actions (i.e., action and process verbs). Participants were asked to report as many items within a category as possible in one minute. Oral productions were tape-recorded and transcribed for further analysis. Both error types and error frequency were calculated. Statistical analysis was further conducted to examine these error types and frequency made by CSL learners. Additionally, category effects, pictorial effects and L2 proficiency were discussed. Findings in the present study helped characterize the lexical-semantic process of Chinese naming in CSL learners of different Chinese proficiency levels and made contributions to Chinese vocabulary teaching and learning in the future.Keywords: lexical-semantic processing, Mandarin Chinese, naming, category effects
Procedia PDF Downloads 46629414 Automated Process Quality Monitoring and Diagnostics for Large-Scale Measurement Data
Authors: Hyun-Woo Cho
Abstract:
Continuous monitoring of industrial plants is one of necessary tasks when it comes to ensuring high-quality final products. In terms of monitoring and diagnosis, it is quite critical and important to detect some incipient abnormal events of manufacturing processes in order to improve safety and reliability of operations involved and to reduce related losses. In this work a new multivariate statistical online diagnostic method is presented using a case study. For building some reference models an empirical discriminant model is constructed based on various past operation runs. When a fault is detected on-line, an on-line diagnostic module is initiated. Finally, the status of the current operating conditions is compared with the reference model to make a diagnostic decision. The performance of the presented framework is evaluated using a dataset from complex industrial processes. It has been shown that the proposed diagnostic method outperforms other techniques especially in terms of incipient detection of any faults occurred.Keywords: data mining, empirical model, on-line diagnostics, process fault, process monitoring
Procedia PDF Downloads 40429413 A Machine Learning Framework Based on Biometric Measurements for Automatic Fetal Head Anomalies Diagnosis in Ultrasound Images
Authors: Hanene Sahli, Aymen Mouelhi, Marwa Hajji, Amine Ben Slama, Mounir Sayadi, Farhat Fnaiech, Radhwane Rachdi
Abstract:
Fetal abnormality is still a public health problem of interest to both mother and baby. Head defect is one of the most high-risk fetal deformities. Fetal head categorization is a sensitive task that needs a massive attention from neurological experts. In this sense, biometrical measurements can be extracted by gynecologist doctors and compared with ground truth charts to identify normal or abnormal growth. The fetal head biometric measurements such as Biparietal Diameter (BPD), Occipito-Frontal Diameter (OFD) and Head Circumference (HC) needs to be monitored, and expert should carry out its manual delineations. This work proposes a new approach to automatically compute BPD, OFD and HC based on morphological characteristics extracted from head shape. Hence, the studied data selected at the same Gestational Age (GA) from the fetal Ultrasound images (US) are classified into two categories: Normal and abnormal. The abnormal subjects include hydrocephalus, microcephaly and dolichocephaly anomalies. By the use of a support vector machines (SVM) method, this study achieved high classification for automated detection of anomalies. The proposed method is promising although it doesn't need expert interventions.Keywords: biometric measurements, fetal head malformations, machine learning methods, US images
Procedia PDF Downloads 29229412 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree
Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli
Abstract:
Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture
Procedia PDF Downloads 42529411 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI
Authors: James Rigor Camacho, Wansu Lim
Abstract:
Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors
Procedia PDF Downloads 10929410 The Relationship among EFL Learners’ Creativity, Emotional Intelligence and Self-Efficacy
Authors: Behdoukht Mall Amiri, Zohreh Gheydar
Abstract:
The thrust of the current study was to investigate the relationship among EFL learners' creativity (CR), emotional intelligence (EI), and self-efficacy (SE). To this end, a group of 120 male and female learners, between the ages of 19 and 35 studying BA in English Translation and MA in Teaching English at Islamic Azad University, Central Tehran were selected using convenient sampling and were given three questionnaires: Bar-On’s EQ-I questionnaire by Bar-On (1997), the General Self-Efficacy Scale questionnaire (SGSES) by Sherer et al. (1982), and a questionnaire of creativity (CR) by O'Neil, Abedi, and Spielberger (1992). Analysis of the results through Pearson Moment Correlation Coefficient showed that there was not a significant relationship between students’ CR and EI, and EI and SE. In addition, CR and SE were correlated significantly but negatively. Multiple regressions revealed that CR could significantly predict SE. Regarding the findings of the study, the obtained results may help EFL teachers, teacher trainers, materials developers, and educational policy makers to possess a broader perspective and heightened degree knowledge toward the TEFL practice and to take practical steps toward the attainments of the desired objectives of the profession.Keywords: creativity, emotional intelligence, self-efficacy, learning
Procedia PDF Downloads 45129409 Becoming a Teacher in Kazakhstan
Authors: D. Shamatov
Abstract:
Becoming a teacher is a journey with significant learning experiences. Exploring teachers’ lives and experiences can provide much-needed insights into the multiple realities of teaching. Teachers’ stories through qualitative narrative studies help understand and appreciate the complexities of the socio-political, economic and practical realities facing teachers. Events and experiences, both past and present, that take place at home, school, and in the broader social sphere help to shape these teachers’ lives and careers. Researchers and educators share the responsibility of listening to these teachers’ stories and life experiences and being sensitive to their voices in order to develop effective models for teacher development. A better understanding of how teachers learn to become teachers can help teacher educators prepare more effective teacher education programs. This paper is based on qualitative research which includes individual and focus group interviews, as well as auto-biography stories of Master of Science in School Leadership students at Graduate School of Education of Nazarbayev University. Twenty five MSc students from across Kazakhstan reflected on their professional journey and wrote their professional autobiographies as teachers. Their autobiographies capture the richness of their experiences and beliefs as a teacher, but also serve as window to understand broader socio-economic and political contexts where these teachers live and work. The study also provides an understanding of the systemic and socio-economic challenges of teachers in the context of post-Soviet Kazakhstan. It helps the reader better understand how wider societal forces interact and frame the development of teachers. The paper presents the findings from these stories of MSc students and offers some practical and policy implications for teacher preparation and teacher development.Keywords: becoming a teacher, Kazakhstan, teacher stories, teacher development
Procedia PDF Downloads 43429408 The Development and Validation of the Awareness to Disaster Risk Reduction Questionnaire for Teachers
Authors: Ian Phil Canlas, Mageswary Karpudewan, Joyce Magtolis, Rosario Canlas
Abstract:
This study reported the development and validation of the Awareness to Disaster Risk Reduction Questionnaire for Teachers (ADRRQT). The questionnaire is a combination of Likert scale and open-ended questions that were grouped into two parts. The first part included questions relating to the general awareness on disaster risk reduction. Whereas, the second part comprised questions regarding the integration of disaster risk reduction in the teaching process. The entire process of developing and validating of the ADRRQT was described in this study. Statistical and qualitative findings revealed that the ADRRQT is significantly valid and reliable and has the potential of measuring awareness to disaster risk reduction of stakeholders in the field of teaching. Moreover, it also shows the potential to be adopted in other fields.Keywords: awareness, development, disaster risk reduction, questionnaire, validation
Procedia PDF Downloads 23229407 Solutions to Reduce CO2 Emissions in Autonomous Robotics
Authors: Antoni Grau, Yolanda Bolea, Alberto Sanfeliu
Abstract:
Mobile robots can be used in many different applications, including mapping, search, rescue, reconnaissance, hazard detection, and carpet cleaning, exploration, etc. However, they are limited due to their reliance on traditional energy sources such as electricity and oil which cannot always provide a convenient energy source in all situations. In an ever more eco-conscious world, solar energy offers the most environmentally clean option of all energy sources. Electricity presents threats of pollution resulting from its production process, and oil poses a huge threat to the environment. Not only does it pose harm by the toxic emissions (for instance CO2 emissions), it produces the combustion process necessary to produce energy, but there is the ever present risk of oil spillages and damages to ecosystems. Solar energy can help to mitigate carbon emissions by replacing more carbon intensive sources of heat and power. The challenge of this work is to propose the design and the implementation of electric battery recharge stations. Those recharge docks are based on the use of renewable energy such as solar energy (with photovoltaic panels) with the object to reduce the CO2 emissions. In this paper, a comparative study of the CO2 emission productions (from the use of different energy sources: natural gas, gas oil, fuel and solar panels) in the charging process of the Segway PT batteries is carried out. To make the study with solar energy, a photovoltaic panel, and a Buck-Boost DC/DC block has been used. Specifically, the STP005S-12/Db solar panel has been used to carry out our experiments. This module is a 5Wp-photovoltaic (PV) module, configured with 36 monocrystalline cells serially connected. With those elements, a battery recharge station is made to recharge the robot batteries. For the energy storage DC/DC block, a series of ultracapacitors have been used. Due to the variation of the PV panel with the temperature and irradiation, and the non-integer behavior of the ultracapacitors as well as the non-linearities of the whole system, authors have been used a fractional control method to achieve that solar panels supply the maximum allowed power to recharge the robots in the lesser time. Greenhouse gas emissions for production of electricity vary due to regional differences in source fuel. The impact of an energy technology on the climate can be characterised by its carbon emission intensity, a measure of the amount of CO2, or CO2 equivalent emitted by unit of energy generated. In our work, the coal is the fossil energy more hazardous, providing a 53% more of gas emissions than natural gas and a 30% more than fuel. Moreover, it is remarkable that existing fossil fuel technologies produce high carbon emission intensity through the combustion of carbon-rich fuels, whilst renewable technologies such as solar produce little or no emissions during operation, but may incur emissions during manufacture. The solar energy thus can help to mitigate carbon emissions.Keywords: autonomous robots, CO2 emissions, DC/DC buck-boost, solar energy
Procedia PDF Downloads 42329406 ChatGPT as a “Foreign Language Teacher”: Attitudes of Tunisian English Language Learners
Authors: Leila Najeh Bel'Kiry
Abstract:
Artificial intelligence (AI) brought about many language robots, with ChatGPT being the most sophisticated thanks to its human-like linguistic capabilities. This aspect raises the idea of using ChatGPT in learning foreign languages. Starting from the premise that positions ChatGPT as a mediator between the language and the leaner, functioning as a “ghost teacher" offering a peaceful and secure learning space, this study aims to explore the attitudes of Tunisian students of English towards ChatGPT as a “Foreign Language Teacher” . Forty-five students, in their third year of fundamental English at Tunisian universities and high institutes, completed a Likert scale questionnaire consisting of thirty-two items and covering various aspects of language (phonology, morphology, syntax, semantics, and pragmatics). A scale ranging from 'Strongly Disagree,' 'Disagree,' 'Undecided,' 'Agree,' to 'Strongly Agree.' is used to assess the attitudes of the participants towards the integration of ChaGPTin learning a foreign language. Results indicate generally positive attitudes towards the reliance on ChatGPT in learning foreign languages, particularly some compounds of language like syntax, phonology, and morphology. However, learners show insecurity towards ChatGPT when it comes to pragmatics and semantics, where the artificial model may fail when dealing with deeper contextual and nuanced language levels.Keywords: artificial language model, attitudes, foreign language learning, ChatGPT, linguistic capabilities, Tunisian English language learners
Procedia PDF Downloads 6829405 Development of a Smart Liquid Level Controller
Authors: Adamu Mudi, Ibrahim Wahab Fawole, Abubakar Abba Kolo
Abstract:
In this research paper, we present a microcontroller-based liquid level controller that identifies the various levels of a liquid, carries out certain actions, and is capable of communicating with the human being and other devices through the GSM network. This project is useful in ensuring that a liquid is not wasted. It also contributes to the internet of things paradigm, which is the future of the internet. The method used in this work includes designing the circuit and simulating it. The circuit is then implemented on a solderless breadboard, after which it is implemented on a strip board. A C++ computer program is developed and uploaded into the microcontroller. This program instructs the microcontroller on how to carry out its actions. In other to determine levels of the liquid, an ultrasonic wave is sent to the surface of the liquid similar to radar or the method for detecting the level of sea bed. Message is sent to the phone of the user similar to the way computers send messages to phones of GSM users. It is concluded that the routine of observing the levels of a liquid in a tank, refilling the tank when the liquid level is too low can be entirely handled by a programmable device without wastage of the liquid or bothering a human being with such tasks.Keywords: Arduino Uno, HC-SR04 ultrasonic sensor, internet of things, IoT, SIM900 GSM module
Procedia PDF Downloads 13629404 BERT-Based Chinese Coreference Resolution
Authors: Li Xiaoge, Wang Chaodong
Abstract:
We introduce the first Chinese Coreference Resolution Model based on BERT (CCRM-BERT) and show that it significantly outperforms all previous work. The key idea is to consider the features of the mention, such as part of speech, width of spans, distance between spans, etc. And the influence of each features on the model is analyzed. The model computes mention embeddings that combine BERT with features. Compared to the existing state-of-the-art span-ranking approach, our model significantly improves accuracy on the Chinese OntoNotes benchmark.Keywords: BERT, coreference resolution, deep learning, nature language processing
Procedia PDF Downloads 22229403 Embedded Hybrid Intuition: A Deep Learning and Fuzzy Logic Approach to Collective Creation and Computational Assisted Narratives
Authors: Roberto Cabezas H
Abstract:
The current work shows the methodology developed to create narrative lighting spaces for the multimedia performance piece 'cluster: the vanished paradise.' This empirical research is focused on exploring unconventional roles for machines in subjective creative processes, by delving into the semantics of data and machine intelligence algorithms in hybrid technological, creative contexts to expand epistemic domains trough human-machine cooperation. The creative process in scenic and performing arts is guided mostly by intuition; from that idea, we developed an approach to embed collective intuition in computational creative systems, by joining the properties of Generative Adversarial Networks (GAN’s) and Fuzzy Clustering based on a semi-supervised data creation and analysis pipeline. The model makes use of GAN’s to learn from phenomenological data (data generated from experience with lighting scenography) and algorithmic design data (augmented data by procedural design methods), fuzzy logic clustering is then applied to artificially created data from GAN’s to define narrative transitions built on membership index; this process allowed for the creation of simple and complex spaces with expressive capabilities based on position and light intensity as the parameters to guide the narrative. Hybridization comes not only from the human-machine symbiosis but also on the integration of different techniques for the implementation of the aided design system. Machine intelligence tools as proposed in this work are well suited to redefine collaborative creation by learning to express and expand a conglomerate of ideas and a wide range of opinions for the creation of sensory experiences. We found in GAN’s and Fuzzy Logic an ideal tool to develop new computational models based on interaction, learning, emotion and imagination to expand the traditional algorithmic model of computation.Keywords: fuzzy clustering, generative adversarial networks, human-machine cooperation, hybrid collective data, multimedia performance
Procedia PDF Downloads 14529402 E-Learning Network Support Services: A Comparative Case Study of Australian and United States Universities
Authors: Sayed Hadi Sadeghi
Abstract:
This research study examines the current state of support services for e-network practice in an Australian and an American university. It identifies information that will be of assistance to Australian and American universities to improve their existing online programs. The study investigated the two universities using a quantitative methodological approach. Participants were students, lecturers and admins of universities engaged with online courses and learning management systems. The support services for e-network practice variables, namely academic support services, administrative support and technical support, were investigated for e-practice. Evaluations of e-network support service and its sub factors were above average and excellent in both countries, although the American admins and lecturers tended to evaluate this factor higher than others did. Support practice was evaluated higher by all participants of an American university than by Australians. One explanation for the results may be that most suppliers of the Australian university e-learning system were from eastern Asian cultural backgrounds with a western networking support perspective about e-learning.Keywords: support services, e-Network practice, Australian universities, United States universities
Procedia PDF Downloads 17029401 Remedying Students' Misconceptions in Learning of Chemical Bonding and Spontaneity through Intervention Discussion Learning Model (IDLM)
Authors: Ihuarulam A. Ikenna
Abstract:
In the past few decades, the field of chemistry education has grown tremendously and researches indicated that after traditional chemistry instruction students often lacked deep conceptual understanding and failed to integrate their ideas into coherent conceptual framework. For several concepts in chemistry, students at all levels have demonstrated difficulty in changing their initial perceptions. Their perceptions are most often wrong and do not agree with correct scientific concepts. This study explored the effectiveness of intervention discussion sections for a college general chemistry course designed to apply research on students preconceptions, knowledge integration and student explanation. Three interventions discussions lasting three hours on bond energy and spontaneity were done tested and intervention (treatment) students’ performances were compared with that of control group which did not use the experimental pedagogy. Results indicated that this instruction which was capable of identifying students' misconceptions, initial conceptions and integrating those ideas into class discussion led to enhanced conceptual understanding and better achievement for the experimental group.Keywords: remedying, students’ misconceptions, learning, intervention discussion, learning model
Procedia PDF Downloads 42329400 Towards Bridging the Gap between the ESP Classroom and the Workplace: Content and Language Needs Analysis in English for an Administrative Studies Course
Authors: Vesna Vulić
Abstract:
Croatia has made large steps forward in the development of higher education over the past 10 years. Purposes and objectives of the tertiary education system are focused on the personal development of young people so that they obtain competences for employment on a flexible labour market. The most frequent tensions between the tertiary institutions and employers are complaints that the current tertiary education system still supplies students with an abundance of theoretical knowledge and not enough practical skills. Polytechnics and schools of professional higher education should deliver professional education and training that will satisfy the needs of their local communities. The 21st century sets demand on undergraduates as well as their lecturers to strive for the highest standards. The skills students acquire during their studies should serve the needs of their future professional careers. In this context, teaching English for Specific Purposes (ESP) presents an enormous challenge for teachers. They have to cope with teaching the language in classes with a large number of students, limitations of time, inadequate equipment and teaching material; most frequently, this leads to focusing on specialist vocabulary neglecting the development of skills and competences required for future employment. Globalization has transformed the labour market and set new standards a perspective employee should meet. When knowledge of languages is considered, new generic skills and competences are required. Not only skillful written and oral communication is needed, but also information, media, and technology literacy, learning skills which include critical and creative thinking, collaborating and communicating, as well as social skills. The aim of this paper is to evaluate the needs of two groups of ESP first year Undergraduate Professional Administrative Study students taking ESP as a mandatory course: 47 first-year Undergraduate Professional Administrative Study students, 21 first-year employed part-time Undergraduate Professional Administrative Study students and 30 graduates with a degree in Undergraduate Professional Administrative Study with various amounts of work experience. The survey adopted a quantitative approach with the aim to determine the differences between the groups in their perception of the four language skills and different areas of law, as well as getting the insight into students' satisfaction with the current course and their motivation for studying ESP. Their perceptions will be compared to the results of the questionnaire conducted among sector professionals in order to examine how they perceive the same elements of the ESP course content and to what extent it fits into their working environment. The results of the survey indicated that there is a strong correlation between acquiring work experience and the level of importance given to particular areas of law studied in an ESP course which is in line with our initial hypothesis. In conclusion, the results of the survey should help lecturers in re-evaluating and updating their ESP course syllabi.Keywords: English for Specific Purposes (ESP), language skills, motivation, needs analysis
Procedia PDF Downloads 306