Search results for: linear complexity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4919

Search results for: linear complexity

869 Establishing a Surrogate Approach to Assess the Exposure Concentrations during Coating Process

Authors: Shan-Hong Ying, Ying-Fang Wang

Abstract:

A surrogate approach was deployed for assessing exposures of multiple chemicals at the selected working area of coating processes and applied to assess the exposure concentration of similar exposed groups using the same chemicals but different formula ratios. For the selected area, 6 to 12 portable photoionization detector (PID) were placed uniformly in its workplace to measure its total VOCs concentrations (CT-VOCs) for 6 randomly selected workshifts. Simultaneously, one sampling strain was placed beside one of these portable PIDs, and the collected air sample was analyzed for individual concentration (CVOCi) of 5 VOCs (xylene, butanone, toluene, butyl acetate, and dimethylformamide). Predictive models were established by relating the CT-VOCs to CVOCi of each individual compound via simple regression analysis. The established predictive models were employed to predict each CVOCi based on the measured CT-VOC for each the similar working area using the same portable PID. Results show that predictive models obtained from simple linear regression analyses were found with an R2 = 0.83~0.99 indicating that CT-VOCs were adequate for predicting CVOCi. In order to verify the validity of the exposure prediction model, the sampling analysis of the above chemical substances was further carried out and the correlation between the measured value (Cm) and the predicted value (Cp) was analyzed. It was found that there is a good correction between the predicted value and measured value of each measured chemical substance (R2=0.83~0.98). Therefore, the surrogate approach could be assessed the exposure concentration of similar exposed groups using the same chemicals but different formula ratios. However, it is recommended to establish the prediction model between the chemical substances belonging to each coater and the direct-reading PID, which is more representative of reality exposure situation and more accurately to estimate the long-term exposure concentration of operators.

Keywords: exposure assessment, exposure prediction model, surrogate approach, TVOC

Procedia PDF Downloads 150
868 Balancing a Rotary Inverted Pendulum System Using Robust Generalized Dynamic Inverse: Design and Experiment

Authors: Ibrahim M. Mehedi, Uzair Ansari, Ubaid M. Al-Saggaf, Abdulrahman H. Bajodah

Abstract:

This paper presents a methodology for balancing a rotary inverted pendulum system using Robust Generalized Dynamic Inversion (RGDI) under influence of parametric variations and external disturbances. In GDI control, dynamic constraints are formulated in the form of asymptotically stable differential equation which encapsulates the control objectives. The constraint differential equations are based on the deviation function of the angular position and its rates from their reference values. The constraint dynamics are inverted using Moore-Penrose Generalized Inverse (MPGI) to realize the control expression. The GDI singularity problem is addressed by augmenting a dynamic scale factor in the interpretation of MPGI which guarantee asymptotically stable position tracking. An additional term based on Sliding Mode Control is appended within GDI control to make it robust against parametric variations, disturbances and tracking performance deterioration due to generalized inversion scaling. The stability of the closed loop system is ensured by using positive definite Lyapunov energy function that guarantees semi-global practically stable position tracking. Numerical simulations are conducted on the dynamic model of rotary inverted pendulum system to analyze the efficiency of proposed RGDI control law. The comparative study is also presented, in which the performance of RGDI control is compared with Linear Quadratic Regulator (LQR) and is verified through experiments. Numerical simulations and real-time experiments demonstrate better tracking performance abilities and robustness features of RGDI control in the presence of parametric uncertainties and disturbances.

Keywords: generalized dynamic inversion, lyapunov stability, rotary inverted pendulum system, sliding mode control

Procedia PDF Downloads 172
867 The Structural Behavior of Fiber Reinforced Lightweight Concrete Beams: An Analytical Approach

Authors: Jubee Varghese, Pouria Hafiz

Abstract:

Increased use of lightweight concrete in the construction industry is mainly due to its reduction in the weight of the structural elements, which in turn reduces the cost of production, transportation, and the overall project cost. However, the structural application of these lightweight concrete structures is limited due to its reduced density. Hence, further investigations are in progress to study the effect of fiber inclusion in improving the mechanical properties of lightweight concrete. Incorporating structural steel fibers, in general, enhances the performance of concrete and increases its durability by minimizing its potential to cracking and providing crack arresting mechanism. In this research, Geometric and Materially Non-linear Analysis (GMNA) was conducted for Finite Element Modelling using a software known as ABAQUS, to investigate the structural behavior of lightweight concrete with and without the addition of steel fibers and shear reinforcement. 21 finite element models of beams were created to study the effect of steel fibers based on three main parameters; fiber volume fraction (Vf = 0, 0.5 and 0.75%), shear span to depth ratio (a/d of 2, 3 and 4) and ratio of area of shear stirrups to spacing (As/s of 0.7, 1 and 1.6). The models created were validated with the previous experiment conducted by H.K. Kang et al. in 2011. It was seen that the lightweight fiber reinforcement can replace the use of fiber reinforced normal weight concrete as structural elements. The effect of an increase in steel fiber volume fraction is dominant for beams with higher shear span to depth ratio than for lower ratios. The effect of stirrups in the presence of fibers was very negligible; however; it provided extra confinement to the cracks by reducing the crack propagation and extra shear resistance than when compared to beams with no stirrups.

Keywords: ABAQUS, beams, fiber-reinforced concrete, finite element, light weight, shear span-depth ratio, steel fibers, steel-fiber volume fraction

Procedia PDF Downloads 107
866 Optimization of Traffic Agent Allocation for Minimizing Bus Rapid Transit Cost on Simplified Jakarta Network

Authors: Gloria Patricia Manurung

Abstract:

Jakarta Bus Rapid Transit (BRT) system which was established in 2009 to reduce private vehicle usage and ease the rush hour gridlock throughout the Jakarta Greater area, has failed to achieve its purpose. With gradually increasing the number of private vehicles ownership and reduced road space by the BRT lane construction, private vehicle users intuitively invade the exclusive lane of BRT, creating local traffic along the BRT network. Invaded BRT lanes costs become the same with the road network, making BRT which is supposed to be the main public transportation in the city becoming unreliable. Efforts to guard critical lanes with preventing the invasion by allocating traffic agents at several intersections have been expended, lead to the improving congestion level along the lane. Given a set of number of traffic agents, this study uses an analytical approach to finding the best deployment strategy of traffic agent on a simplified Jakarta road network in minimizing the BRT link cost which is expected to lead to the improvement of BRT system time reliability. User-equilibrium model of traffic assignment is used to reproduce the origin-destination demand flow on the network and the optimum solution conventionally can be obtained with brute force algorithm. This method’s main constraint is that traffic assignment simulation time escalates exponentially with the increase of set of agent’s number and network size. Our proposed metaheuristic and heuristic algorithms perform linear simulation time increase and result in minimized BRT cost approaching to brute force algorithm optimization. Further analysis of the overall network link cost should be performed to see the impact of traffic agent deployment to the network system.

Keywords: traffic assignment, user equilibrium, greedy algorithm, optimization

Procedia PDF Downloads 229
865 A 'Systematic Literature Review' of Specific Types of Inventory Faced by the Management of Firms

Authors: Rui Brito

Abstract:

This contribution regards a literature review of inventory management that is a relevant topic for the firms, due to its important use of capital with implications in firm’s profitability within the complexity of a more competitive and globalized world. Firms look for small inventories in order to reduce holding costs, namely opportunity cost, warehousing and handling costs, deterioration and being out of style, but larger inventories are required by some reasons, such as customer service, ordering cost, transportation cost, supplier’s payment to reduce unit costs or to take advantage of price increase in the near future, and equipment setup cost. Thus, management shall address a trade-off between small inventories and larger inventories. This literature review concerns three types of inventory (spare parts, safety stock, and vendor) whose management usually is beyond the scope of logistics. The applied methodology consisted of an online search of databases regarding scientific documents in English, namely Elsevier, Springer, Emerald, Wiley, and Taylor & Francis, but excluding books except if edited, using search engines, such as Google Scholar and B-on. The search was based on three keywords/strings (themes) which had to be included just as in the article title, suggesting themes were very relevant to the researchers. The whole search period was between 2009 and 2018 with the aim of collecting between twenty and forty studies considered relevant within each of the key words/strings specified. Documents were sorted by relevance and to prevent the exclusion of the more recent articles, based on lower quantity of citations partially due to less time to be cited in new research articles, the search period was divided into two sub-periods (2009-2015 and 2016-2018). The number of surveyed articles by theme showed a variation from 40 to 200 and the number of citations of those articles showed a wider variation from 3 to 216. Selected articles from the three themes were analyzed and the first seven of the first sub-period and the first three of the second sub-period with more citations were read in full to make a synopsis of each article. Overall, the findings show that the majority of article types were models, namely mathematical, although with different sub-types for each theme. Almost all articles suggest further studies, with some mentioning it for their own author(s), which widen the diversity of the previous research. Identified research gaps concern the use of surveys to know which are the models more used by firms, the reasons for not using the models with more performance and accuracy, and which are the satisfaction levels with the outcomes of the inventories management and its effect on the improvement of the firm’s overall performance. The review ends with the limitations and contributions of the study.

Keywords: inventory management, safety stock, spare parts inventory, vendor managed inventory

Procedia PDF Downloads 96
864 Numerical Solution of Portfolio Selecting Semi-Infinite Problem

Authors: Alina Fedossova, Jose Jorge Sierra Molina

Abstract:

SIP problems are part of non-classical optimization. There are problems in which the number of variables is finite, and the number of constraints is infinite. These are semi-infinite programming problems. Most algorithms for semi-infinite programming problems reduce the semi-infinite problem to a finite one and solve it by classical methods of linear or nonlinear programming. Typically, any of the constraints or the objective function is nonlinear, so the problem often involves nonlinear programming. An investment portfolio is a set of instruments used to reach the specific purposes of investors. The risk of the entire portfolio may be less than the risks of individual investment of portfolio. For example, we could make an investment of M euros in N shares for a specified period. Let yi> 0, the return on money invested in stock i for each dollar since the end of the period (i = 1, ..., N). The logical goal here is to determine the amount xi to be invested in stock i, i = 1, ..., N, such that we maximize the period at the end of ytx value, where x = (x1, ..., xn) and y = (y1, ..., yn). For us the optimal portfolio means the best portfolio in the ratio "risk-return" to the investor portfolio that meets your goals and risk ways. Therefore, investment goals and risk appetite are the factors that influence the choice of appropriate portfolio of assets. The investment returns are uncertain. Thus we have a semi-infinite programming problem. We solve a semi-infinite optimization problem of portfolio selection using the outer approximations methods. This approach can be considered as a developed Eaves-Zangwill method applying the multi-start technique in all of the iterations for the search of relevant constraints' parameters. The stochastic outer approximations method, successfully applied previously for robotics problems, Chebyshev approximation problems, air pollution and others, is based on the optimal criteria of quasi-optimal functions. As a result we obtain mathematical model and the optimal investment portfolio when yields are not clear from the beginning. Finally, we apply this algorithm to a specific case of a Colombian bank.

Keywords: outer approximation methods, portfolio problem, semi-infinite programming, numerial solution

Procedia PDF Downloads 309
863 A Comprehensive Finite Element Model for Incremental Launching of Bridges: Optimizing Construction and Design

Authors: Mohammad Bagher Anvari, Arman Shojaei

Abstract:

Incremental launching, a widely adopted bridge erection technique, offers numerous advantages for bridge designers. However, accurately simulating and modeling the dynamic behavior of the bridge during each step of the launching process proves to be tedious and time-consuming. The perpetual variation of internal forces within the deck during construction stages adds complexity, exacerbated further by considerations of other load cases, such as support settlements and temperature effects. As a result, there is an urgent need for a reliable, simple, economical, and fast algorithmic solution to model bridge construction stages effectively. This paper presents a novel Finite Element (FE) model that focuses on studying the static behavior of bridges during the launching process. Additionally, a simple method is introduced to normalize all quantities in the problem. The new FE model overcomes the limitations of previous models, enabling the simulation of all stages of launching, which conventional models fail to achieve due to underlying assumptions. By leveraging the results obtained from the new FE model, this study proposes solutions to improve the accuracy of conventional models, particularly for the initial stages of bridge construction that have been neglected in previous research. The research highlights the critical role played by the first span of the bridge during the initial stages, a factor often overlooked in existing studies. Furthermore, a new and simplified model termed the "semi-infinite beam" model, is developed to address this oversight. By utilizing this model alongside a simple optimization approach, optimal values for launching nose specifications are derived. The practical applications of this study extend to optimizing the nose-deck system of incrementally launched bridges, providing valuable insights for practical usage. In conclusion, this paper introduces a comprehensive Finite Element model for studying the static behavior of bridges during incremental launching. The proposed model addresses limitations found in previous approaches and offers practical solutions to enhance accuracy. The study emphasizes the importance of considering the initial stages and introduces the "semi-infinite beam" model. Through the developed model and optimization approach, optimal specifications for launching nose configurations are determined. This research holds significant practical implications and contributes to the optimization of incrementally launched bridges, benefiting both the construction industry and bridge designers.

Keywords: incremental launching, bridge construction, finite element model, optimization

Procedia PDF Downloads 102
862 Prediction of Pile-Raft Responses Induced by Adjacent Braced Excavation in Layered Soil

Authors: Linlong Mu, Maosong Huang

Abstract:

Considering excavations in urban areas, the soil deformation induced by the excavations usually causes damage to the surrounding structures. Displacement control becomes a critical indicator of foundation design in order to protect the surrounding structures. Evaluation, the damage potential of the surrounding structures induced by the excavations, usually depends on the finite element method (FEM) because of the complexity of the excavation and the variety of the surrounding structures. Besides, evaluation the influence of the excavation on surrounding structures is a three-dimensional problem. And it is now well recognized that small strain behaviour of the soil influences the responses of the excavation significantly. Three-dimensional FEM considering small strain behaviour of the soil is a very complex method, which is hard for engineers to use. Thus, it is important to obtain a simplified method for engineers to predict the influence of the excavations on the surrounding structures. Based on large-scale finite element calculation with small-strain based soil model coupling with inverse analysis, an empirical method is proposed to calculate the three-dimensional soil movement induced by braced excavation. The empirical method is able to capture the small-strain behaviour of the soil. And it is suitable to be used in layered soil. Then the free-field soil movement is applied to the pile to calculate the responses of the pile in both vertical and horizontal directions. The asymmetric solutions for problems in layered elastic half-space are employed to solve the interactions between soil points. Both vertical and horizontal pile responses are solved through finite difference method based on elastic theory. Interactions among the nodes along a single pile, pile-pile interactions, pile-soil-pile interaction action and soil-soil interactions are counted to improve the calculation accuracy of the method. For passive piles, the shadow effects are also calculated in the method. Finally, the restrictions of the raft on the piles and the soils are summarized as: (1) the summations of the internal forces between the elements of the raft and the elements of the foundation, including piles and soil surface elements, is equal to 0; (2) the deformations of pile heads or of the soil surface elements are the same as the deformations of the corresponding elements of the raft. Validations are carried out by comparing the results from the proposed method with the results from the model tests, FEM and other existing literatures. From the comparisons, it can be seen that the results from the proposed method fit with the results from other methods very well. The method proposed herein is suitable to predict the responses of the pile-raft foundation induced by braced excavation in layered soil in both vertical and horizontal directions when the deformation is small. However, more data is needed to verify the method before it can be used in practice.

Keywords: excavation, pile-raft foundation, passive piles, deformation control, soil movement

Procedia PDF Downloads 231
861 Climate Change, Women's Labour Markets and Domestic Work in Mexico

Authors: Luis Enrique Escalante Ochoa

Abstract:

This paper attempts to assess the impacts of Climate change (CC) on inequalities in the labour market. CC will have the most serious effects on some vulnerable economic sectors, such as agriculture, livestock or tourism, but also on the most vulnerable population groups. The objective of this research is to evaluate the impact of CC on the labour market and particularly on Mexican women. Influential documents such as the synthesis reports produced by the Intergovernmental Panel on Climate Change (IPCC) in 2007 and 2014 revived a global effort to counteract the effects of CC, called for an analysis of the impacts on vulnerable socio-economic groups and on economic activities, and for the development of decision-making tools to enable policy and other decisions based on the complexity of the world in relation to climate change, taking into account socio-economic attributes. We follow up this suggestion and determine the impact of CC on vulnerable populations in the Mexican labour market, taking into account two attributes (gender and level of qualification of workers). Most studies have focused on the effects of CC on the agricultural sector, as it is considered a highly vulnerable economic sector to the effects of climate variability. This research seeks to contribute to the existing literature taking into account, in addition to the agricultural sector, other sectors such as tourism, water availability, and energy that are of vital importance to the Mexican economy. Likewise, the effects of climate change will be extended to the labour market and specifically to women who in some cases have been left out. The studies are sceptical about the impact of CC on the female labour market because of the perverse effects on women's domestic work, which are too often omitted from analyses. This work will contribute to the literature by integrating domestic work, which in the case of Mexico is much higher among women than among men (80.9% vs. 19.1%), according to the 2009 time use survey. This study is relevant since it will allow us to analyse impacts of climate change not only in the labour market of the formal economy, but also in the non-market sphere. Likewise, we consider that including the gender dimension is valid for the Mexican economy as it is a country with high degrees of gender inequality in the labour market. In the OECD economic study for Mexico (2017), the low labour participation of Mexican women is highlighted. Although participation has increased substantially in recent years (from 36% in 1990 to 47% in 2017), it remains low compared to the OECD average where women participate around 70% of the labour market. According to Mexico's 2009 time use survey, domestic work represents about 13% of the total time available. Understanding the interdependence between the market and non-market spheres, and the gender division of labour within them is the necessary premise for any economic analysis aimed at promoting gender equality and inclusive growth.

Keywords: climate change, labour market, domestic work, rural sector

Procedia PDF Downloads 130
860 Analysis of Lift Arm Failure and Its Improvement for the Use in Farm Tractor

Authors: Japinder Wadhawan, Pradeep Rajan, Alok K. Saran, Navdeep S. Sidhu, Daanvir K. Dhir

Abstract:

Currently, research focus in the development of agricultural equipment and tractor parts in India is innovation and use of alternate materials like austempered ductile iron (ADI). Three-point linkage mechanism of the tractor is susceptible to unpredictable load conditions in the field, and one of the critical components vulnerable to failure is lift arm. Conventionally, lift arm is manufactured either by forging or casting (SG Iron) and main objective of the present work is to reduce the failure occurrences in the lift arm, which is achieved by changing the manufacturing material, i.e ADI, without changing existing design. Effect of four pertinent variables of manufacturing ADI, viz. austenitizing temperature, austenitizing time, austempering temperature, austempering time, was investigated using Taguchi method for design of experiments. To analyze the effect of parameters on the mechanical properties, mean average and signal-to-noise (S/N) ratio was calculated based on the design of experiments with L9 orthogonal array and the linear graph. The best combination for achieving the desired mechanical properties of lift arm is austenitization at 860°C for 90 minutes and austempering at 350°C for 60 minutes. Results showed that the developed component is having 925 MPA tensile strength, 7.8 per cent elongation and 120 joules toughness making it more suitable material for lift arm manufacturing. The confirmatory experiment has been performed and found a good agreement between predicted and experimental value. Also, the CAD model of the existing design was developed in computer aided design software, and structural loading calculations were performed by a commercial finite element analysis package. An optimized shape of the lift arm has also been proposed resulting in light weight and cheaper product than the existing design, which can withstand the same loading conditions effectively.

Keywords: austempered ductile iron, design of experiment, finite element analysis, lift arm

Procedia PDF Downloads 233
859 NiSe-Ni₃Se₂/Multiwalled Carbon Nanotubes as Efficient Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Media

Authors: Oluwaseun A. Oyetade, Roelof J. Kriek

Abstract:

The development of effective catalysts for the oxygen evolution reaction (OER) is of great importance to combat energy-related concerns in the environment. Herein, we report a one-step solvothermal method employed for the fabrication of nickel selenide hybrids (NiSe-Ni₃Se₂) and a series of nickel selenide hybrid/multiwalled carbon nanotube composites (NiSe-Ni₃Se₂/MWCNT) as electrocatalysts for OER in alkaline media. The catalytic activities of these catalysts were investigated via several electrochemical characterization techniques, such as linear sweep voltammetry, chronoamperometric studies at constant potential, electrochemical surface area determination, and Tafel slope calculation, under alkaline conditions. Morphological observations demonstrated the agglomeration of non-uniform NiSe-Ni₃Se₂ microspheres around carbon nanotubes (CNTs), demonstrating the successful synthesis of NiSe-Ni₃Se₂/MWCNT nanocomposites. Among the tested electrocatalysts, the 20% NiSe-Ni₃Se₂/MWCNT nanocomposite demonstrated the highest activity, exhibiting an overpotential of 325 mV to achieve a current density of 10 mA.cm⁻² in 0.1 mol.dm⁻³ KOH solution. The NiSe-Ni₃Se₂/MWCNT nanocomposites showed improved activity toward OER compared to bare NiSe-Ni₃Se₂ hybrids and MWCNTs, exhibiting an overpotential of 528, 392 and 434 mV for 10%, 30% and 50% NiSe-Ni₃Se₂/MWCNT nanocomposites, respectively. These results compare favourably to the overpotential of noble catalysts, such as RuO₂ and IrO₂. Our results imply that the addition of MWCNTs increased the activity of NiSe-Ni₃Se₂ hybrids due to an increased number of catalytic sites, dispersion of NiSe-Ni₃Se₂ hybrid nanoparticles, and electronic conductivity of the nanocomposites. These nanocomposites also demonstrated better long-term stability compared to NiSe-Ni₃Se₂ hybrids and MWCNTs. Hence, NiSe-Ni₃Se₂/MWCNT nanocomposites possess the potential as effective electrocatalysts for OER in alkaline media.

Keywords: carbon nanotubes, electrocatalysts, nanocomposites, nickel selenide hybrids, oxygen evolution reaction

Procedia PDF Downloads 129
858 Economic Decision Making under Cognitive Load: The Role of Numeracy and Financial Literacy

Authors: Vânia Costa, Nuno De Sá Teixeira, Ana C. Santos, Eduardo Santos

Abstract:

Financial literacy and numeracy have been regarded as paramount for rational household decision making in the increasing complexity of financial markets. However, financial decisions are often made under sub-optimal circumstances, including cognitive overload. The present study aims to clarify how financial literacy and numeracy, taken as relevant expert knowledge for financial decision-making, modulate possible effects of cognitive load. Participants were required to perform a choice between a sure loss or a gambling pertaining a financial investment, either with or without a competing memory task. Two experiments were conducted varying only the content of the competing task. In the first, the financial choice task was made while maintaining on working memory a list of five random letters. In the second, cognitive load was based upon the retention of six random digits. In both experiments, one of the items in the list had to be recalled given its serial position. Outcomes of the first experiment revealed no significant main effect or interactions involving cognitive load manipulation and numeracy and financial literacy skills, strongly suggesting that retaining a list of random letters did not interfere with the cognitive abilities required for financial decision making. Conversely, and in the second experiment, a significant interaction between the competing mnesic task and level of financial literacy (but not numeracy) was found for the frequency of choice of a gambling option. Overall, and in the control condition, both participants with high financial literacy and high numeracy were more prone to choose the gambling option. However, and when under cognitive load, participants with high financial literacy were as likely as their illiterate counterparts to choose the gambling option. This outcome is interpreted as evidence that financial literacy prevents intuitive risk-aversion reasoning only under highly favourable conditions, as is the case when no other task is competing for cognitive resources. In contrast, participants with higher levels of numeracy were consistently more prone to choose the gambling option in both experimental conditions. These results are discussed in the light of the opposition between classical dual-process theories and fuzzy-trace theories for intuitive decision making, suggesting that while some instances of expertise (as numeracy) are prone to support easily accessible gist representations, other expert skills (as financial literacy) depend upon deliberative processes. It is furthermore suggested that this dissociation between types of expert knowledge might depend on the degree to which they are generalizable across disparate settings. Finally, applied implications of the present study are discussed with a focus on how it informs financial regulators and the importance and limits of promoting financial literacy and general numeracy.

Keywords: decision making, cognitive load, financial literacy, numeracy

Procedia PDF Downloads 182
857 A Study on the Acquisition of Chinese Classifiers by Vietnamese Learners

Authors: Quoc Hung Le Pham

Abstract:

In the field of language study, classifier is an interesting research feature. In the world’s languages, some languages have classifier system, some do not. Mandarin Chinese and Vietnamese languages are a rich classifier system, however, because of the language system, the cognitive, cultural differences, so that the syntactic structure of classifier of them also dissimilar. When using Mandarin Chinese classifiers must collocate with nouns or verbs, in the lexical category it is not like nouns or verbs, belong to the open class. But some scholars believe that Mandarin Chinese measure words are similar to English and other Indo European languages. The word hanging on the structure and word formation (suffix), is a closed class. Compared to other languages, such as Chinese, Vietnamese, Thai and other Asian languages are still belonging to the classifier language’s second type, this type of language is classifier, it is in the majority of quantity must exist, and following deictic, anaphoric or quantity appearing together, not separation between its modified noun, also known as numeral classifier language. Main syntactic structure of Chinese classifiers are as follows: ‘quantity+measure+noun’, ‘pronoun+measure+noun’, ‘pronoun+quantity+measure+noun’, ‘prefix+quantity+measure +noun’, ‘quantity +adjective + measure +noun’, ‘ quantity (above 10 whole number), + duo (多)measure +noun’, ‘ quantity (around 10) + measure + duo (多) +noun’. Main syntactic structure of Vietnamese classifiers are: ‘quantity+measure+noun’, ‘ measure+noun+pronoun’, ‘quantity+measure+noun+pronoun’, ‘measure+noun+prefix+ quantity’, ‘quantity+measure+noun+adjective', ‘duo (多) +quanlity+measure+noun’, ‘quantity+measure+adjective+pronoun (quantity word could not be 1)’, ‘measure+adjective+pronoun’, ‘measure+pronoun’. In daily life, classifiers are commonly used, if Chinese learners failed to standardize this using catergory, because the negative impact might occur on their verbal communication. The richness of the Chinese classifier system contributes to the complexity in the study of the system by foreign learners, especially in the inter language of Vietnamese learners. As above mentioned, Vietnamese language also has a rich system of classifiers, however, the basic structure order of two languages are similar but both still have differences. These similarities and dissimilarities between Chinese and Vietnamese classifier systems contribute significantly to the common errors made by Vietnamese students while they acquire Chinese, which are distinct from the errors made by students from the other language background. This article from a comparative perspective of language, has an orientation towards Chinese and Vietnamese languages commonly used in classifiers semantics and structural form two aspects. This comparative study aims to identity Vietnamese students while learning Chinese classifiers may face some negative transference of mother language, beside that through the analysis of the classifiers questionnaire, find out the causes and patterns of the errors they made. As the preliminary analysis shows, Vietnamese students while learning Chinese classifiers made some errors such as: overuse classifier ‘ge’(个); misuse the other classifiers ‘*yi zhang ri ji’(yi pian ri ji), ‘*yi zuo fang zi’(yi jian fang zi), ‘*si zhang jin pai’(si mei jin pai); homonym words ‘dui, shuang, fu, tao’ (对、双、副、套), ‘ke, li’ (颗、粒).

Keywords: acquisition, classifiers, negative transfer, Vietnamse learners

Procedia PDF Downloads 452
856 Performance Evaluation of Fingerprint, Auto-Pin and Password-Based Security Systems in Cloud Computing Environment

Authors: Emmanuel Ogala

Abstract:

Cloud computing has been envisioned as the next-generation architecture of Information Technology (IT) enterprise. In contrast to traditional solutions where IT services are under physical, logical and personnel controls, cloud computing moves the application software and databases to the large data centres, where the management of the data and services may not be fully trustworthy. This is due to the fact that the systems are opened to the whole world and as people tries to have access into the system, many people also are there trying day-in day-out on having unauthorized access into the system. This research contributes to the improvement of cloud computing security for better operation. The work is motivated by two problems: first, the observed easy access to cloud computing resources and complexity of attacks to vital cloud computing data system NIC requires that dynamic security mechanism evolves to stay capable of preventing illegitimate access. Second; lack of good methodology for performance test and evaluation of biometric security algorithms for securing records in cloud computing environment. The aim of this research was to evaluate the performance of an integrated security system (ISS) for securing exams records in cloud computing environment. In this research, we designed and implemented an ISS consisting of three security mechanisms of biometric (fingerprint), auto-PIN and password into one stream of access control and used for securing examination records in Kogi State University, Anyigba. Conclusively, the system we built has been able to overcome guessing abilities of hackers who guesses people password or pin. We are certain about this because the added security system (fingerprint) needs the presence of the user of the software before a login access can be granted. This is based on the placement of his finger on the fingerprint biometrics scanner for capturing and verification purpose for user’s authenticity confirmation. The study adopted the conceptual of quantitative design. Object oriented and design methodology was adopted. In the analysis and design, PHP, HTML5, CSS, Visual Studio Java Script, and web 2.0 technologies were used to implement the model of ISS for cloud computing environment. Note; PHP, HTML5, CSS were used in conjunction with visual Studio front end engine design tools and MySQL + Access 7.0 were used for the backend engine and Java Script was used for object arrangement and also validation of user input for security check. Finally, the performance of the developed framework was evaluated by comparing with two other existing security systems (Auto-PIN and password) within the school and the results showed that the developed approach (fingerprint) allows overcoming the two main weaknesses of the existing systems and will work perfectly well if fully implemented.

Keywords: performance evaluation, fingerprint, auto-pin, password-based, security systems, cloud computing environment

Procedia PDF Downloads 140
855 Video Analytics on Pedagogy Using Big Data

Authors: Jamuna Loganath

Abstract:

Education is the key to the development of any individual’s personality. Today’s students will be tomorrow’s citizens of the global society. The education of the student is the edifice on which his/her future will be built. Schools therefore should provide an all-round development of students so as to foster a healthy society. The behaviors and the attitude of the students in school play an essential role for the success of the education process. Frequent reports of misbehaviors such as clowning, harassing classmates, verbal insults are becoming common in schools today. If this issue is left unattended, it may develop a negative attitude and increase the delinquent behavior. So, the need of the hour is to find a solution to this problem. To solve this issue, it is important to monitor the students’ behaviors in school and give necessary feedback and mentor them to develop a positive attitude and help them to become a successful grownup. Nevertheless, measuring students’ behavior and attitude is extremely challenging. None of the present technology has proven to be effective in this measurement process because actions, reactions, interactions, response of the students are rarely used in the course of the data due to complexity. The purpose of this proposal is to recommend an effective supervising system after carrying out a feasibility study by measuring the behavior of the Students. This can be achieved by equipping schools with CCTV cameras. These CCTV cameras installed in various schools of the world capture the facial expressions and interactions of the students inside and outside their classroom. The real time raw videos captured from the CCTV can be uploaded to the cloud with the help of a network. The video feeds get scooped into various nodes in the same rack or on the different racks in the same cluster in Hadoop HDFS. The video feeds are converted into small frames and analyzed using various Pattern recognition algorithms and MapReduce algorithm. Then, the video frames are compared with the bench marking database (good behavior). When misbehavior is detected, an alert message can be sent to the counseling department which helps them in mentoring the students. This will help in improving the effectiveness of the education process. As Video feeds come from multiple geographical areas (schools from different parts of the world), BIG DATA helps in real time analysis as it analyzes computationally to reveal patterns, trends, and associations, especially relating to human behavior and interactions. It also analyzes data that can’t be analyzed by traditional software applications such as RDBMS, OODBMS. It has also proven successful in handling human reactions with ease. Therefore, BIG DATA could certainly play a vital role in handling this issue. Thus, effectiveness of the education process can be enhanced with the help of video analytics using the latest BIG DATA technology.

Keywords: big data, cloud, CCTV, education process

Procedia PDF Downloads 240
854 The Effect of Composite Hybridization on the Back Face Deformation of Armor Plates

Authors: Attef Kouadria, Yehya Bouteghrine, Amar Manaa, Tarek Mouats, Djalel Eddine Tria, Hamid Abdelhafid Ghouti

Abstract:

Personal protection systems have been used in several forms for centuries. The need for light-weight composite structures has been in great demand due to their weight and high mechanical properties ratios in comparison to heavy and cumbersome steel plates. In this regard, lighter ceramic plates with a backing plate made of high strength polymeric fibers, mostly aramids, are widely used for protection against ballistic threats. This study aims to improve the ballistic performance of ceramic/composite plates subjected to ballistic impact by reducing the back face deformation (BFD) measured after each test. A new hybridization technique was developed in this investigation to increase the energy absorption capabilities of the backing plates. The hybridization consists of combining different types of aramid fabrics with different linear densities of aramid fibers (Dtex) and areal densities with an epoxy resin to form the backing plate. Therefore, several composite structures architectures were prepared and tested. For better understanding the effect of the hybridization, a serial of tensile, compression, and shear tests were conducted to determine the mechanical properties of the homogeneous composite materials prepared from different fabrics. It was found that the hybridization allows the backing plate to combine between the mechanical properties of the used fabrics. Aramid fabrics with higher Dtex were found to increase the mechanical strength of the backing plate, while those with lower Dtex found to enhance the lateral wave dispersion ratio due to their lower areal density. Therefore, the back face deformation was significantly reduced in comparison to a homogeneous composite plate.

Keywords: aramid fabric, ballistic impact, back face deformation, body armor, composite, mechanical testing

Procedia PDF Downloads 151
853 Detailed Quantum Circuit Design and Evaluation of Grover's Algorithm for the Bounded Degree Traveling Salesman Problem Using the Q# Language

Authors: Wenjun Hou, Marek Perkowski

Abstract:

The Traveling Salesman problem is famous in computing and graph theory. In short, it asks for the Hamiltonian cycle of the least total weight in a given graph with N nodes. All variations on this problem, such as those with K-bounded-degree nodes, are classified as NP-complete in classical computing. Although several papers propose theoretical high-level designs of quantum algorithms for the Traveling Salesman Problem, no quantum circuit implementation of these algorithms has been created up to our best knowledge. In contrast to previous papers, the goal of this paper is not to optimize some abstract complexity measures based on the number of oracle iterations, but to be able to evaluate the real circuit and time costs of the quantum computer. Using the emerging quantum programming language Q# developed by Microsoft, which runs quantum circuits in a quantum computer simulation, an implementation of the bounded-degree problem and its respective quantum circuit were created. To apply Grover’s algorithm to this problem, a quantum oracle was designed, evaluating the cost of a particular set of edges in the graph as well as its validity as a Hamiltonian cycle. Repeating the Grover algorithm with an oracle that finds successively lower cost each time allows to transform the decision problem to an optimization problem, finding the minimum cost of Hamiltonian cycles. N log₂ K qubits are put into an equiprobablistic superposition by applying the Hadamard gate on each qubit. Within these N log₂ K qubits, the method uses an encoding in which every node is mapped to a set of its encoded edges. The oracle consists of several blocks of circuits: a custom-written edge weight adder, node index calculator, uniqueness checker, and comparator, which were all created using only quantum Toffoli gates, including its special forms, which are Feynman and Pauli X. The oracle begins by using the edge encodings specified by the qubits to calculate each node that this path visits and adding up the edge weights along the way. Next, the oracle uses the calculated nodes from the previous step and check that all the nodes are unique. Finally, the oracle checks that the calculated cost is less than the previously-calculated cost. By performing the oracle an optimal number of times, a correct answer can be generated with very high probability. The oracle of the Grover Algorithm is modified using the recalculated minimum cost value, and this procedure is repeated until the cost cannot be further reduced. This algorithm and circuit design have been verified, using several datasets, to generate correct outputs.

Keywords: quantum computing, quantum circuit optimization, quantum algorithms, hybrid quantum algorithms, quantum programming, Grover’s algorithm, traveling salesman problem, bounded-degree TSP, minimal cost, Q# language

Procedia PDF Downloads 190
852 An Adaptive Oversampling Technique for Imbalanced Datasets

Authors: Shaukat Ali Shahee, Usha Ananthakumar

Abstract:

A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.

Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling

Procedia PDF Downloads 418
851 Effect of Duration and Frequency on Ground Motion: Case Study of Guwahati City

Authors: Amar F. Siddique

Abstract:

The Guwahati city is one of the fastest growing cities of the north-eastern region of India, situated on the South Bank of the Brahmaputra River falls in the highest seismic zone level V. The city has witnessed many high magnitude earthquakes in the past decades. The Assam earthquake occurred on August 15, 1950, of moment magnitude 8.7 epicentered near Rima, Tibet was one of the major earthquakes which caused a serious structural damage and widespread soil liquefaction in and around the region. Hence the study of ground motion characteristics of Guwahati city is very essential. In this present work 1D equivalent linear ground response analysis (GRA) has been adopted using Deep soil software. The analysis has been done for two typical sites namely, Panbazar and Azara comprising total four boreholes location in Guwahati city of India. GRA of the sites is carried out by using an input motion recorded at Nongpoh station (recorded PGA 0.048g) and Nongstoin station (recorded PGA 0.047g) of 1997 Indo-Burma earthquake. In comparison to motion recorded at Nongpoh, different amplifications of bedrock peak ground acceleration (PGA) are obtained for all the boreholes by the motion recorded at Nongstoin station; although, the Fourier amplitude ratios (FAR) and fundamental frequencies remain almost same. The difference in recorded duration and frequency content of the two motions mainly influence the amplification of motions thus getting different surface PGA and amplification factor keeping a constant bedrock PGA. From the results of response spectra, it is found that at the period of less than 0.2 sec the ground motion recorded at Nongpoh station will give a high spectral acceleration (SA) on the structures than at Nongstoin station. Again for a period greater than 0.2 sec the ground motion recorded at Nongstoin station will give a high SA on the structures than at Nongpoh station.

Keywords: fourier amplitude ratio, ground response analysis, peak ground acceleration, spectral acceleration

Procedia PDF Downloads 179
850 Development of a Robust Protein Classifier to Predict EMT Status of Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC) Tumors

Authors: ZhenlinJu, Christopher P. Vellano, RehanAkbani, Yiling Lu, Gordon B. Mills

Abstract:

The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells acquire mesenchymal characteristics, such as profound disruption of cell-cell junctions, loss of apical-basolateral polarity, and extensive reorganization of the actin cytoskeleton to induce cell motility and invasion. A hallmark of EMT is its capacity to promote metastasis, which is due in part to activation of several transcription factors and subsequent downregulation of E-cadherin. Unfortunately, current approaches have yet to uncover robust protein marker sets that can classify tumors as possessing strong EMT signatures. In this study, we utilize reverse phase protein array (RPPA) data and consensus clustering methods to successfully classify a subset of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) tumors into an EMT protein signaling group (EMT group). The overall survival (OS) of patients in the EMT group is significantly worse than those in the other Hormone and PI3K/AKT signaling groups. In addition to a shrinkage and selection method for linear regression (LASSO), we applied training/test set and Monte Carlo resampling approaches to identify a set of protein markers that predicts the EMT status of CESC tumors. We fit a logistic model to these protein markers and developed a classifier, which was fixed in the training set and validated in the testing set. The classifier robustly predicted the EMT status of the testing set with an area under the curve (AUC) of 0.975 by Receiver Operating Characteristic (ROC) analysis. This method not only identifies a core set of proteins underlying an EMT signature in cervical cancer patients, but also provides a tool to examine protein predictors that drive molecular subtypes in other diseases.

Keywords: consensus clustering, TCGA CESC, Silhouette, Monte Carlo LASSO

Procedia PDF Downloads 468
849 Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting

Authors: Akaash Tawade, Manan Khattar, Lucas Spangher, Costas J. Spanos

Abstract:

Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control.

Keywords: energy demand forecasting, social cognitive behavioral modeling, social game, transfer learning

Procedia PDF Downloads 107
848 Evaluating the Teaching and Learning Value of Tablets

Authors: Willem J. A. Louw

Abstract:

The wave of new advanced computing technology that has been developed during the recent past has significantly changed the way we communicate, collaborate and collect information. It has created a new technology environment and paradigm in which our children and students grow-up and this impacts on their learning. Research confirmed that Generation Y students have a preference for learning in the new technology environment. The challenge or question is: How do we adjust our teaching and learning to make the most of these changes. The complexity of effective and efficient teaching and learning must not be underestimated and changes must be preceded by proper objective research to prevent any haphazard developments that could do more harm than benefit. A blended learning approach has been used in the Forestry department for a few numbers of years including the use of electronic-peer assisted learning (e-pal) in a fixed-computer set-up within a learning management system environment. It was decided to extend the investigation and do some exploratory research by using a range of different Tablet devices. For this purpose, learning activities or assignments were designed to cover aspects of communication, collaboration and collection of information. The Moodle learning management system was used to present normal module information, to communicate with students and for feedback and data collection. Student feedback was collected by using an online questionnaire and informal discussions. The research project was implemented in 2013, 2014 and 2015 amongst first and third-year students doing a forestry three-year technical tertiary qualification in commercial plantation management. In general, more than 80% of the students alluded to that the device was very useful in their learning environment while the rest indicated that the devices were not very useful. More than ninety percent of the students acknowledged that they would like to continue using the devices for all of their modules whilst the rest alluded to functioning efficiently without the devices. Results indicated that information collection (access to resources) was rated the highest advantageous factor followed by communication and collaboration. The main general advantages of using Tablets were listed by the students as being mobility (portability), 24/7 access to learning material and information of any kind on a user friendly device in a Wi-Fi environment, fast computing process speeds, saving time, effort and airtime through skyping and e-mail, and use of various applications. Ownership of the device is a critical factor while the risk was identified as a major potential constraint. Significant differences were reported between the different types and quality of Tablets. The preferred types are those with a bigger screen and the ones with overall better functionality and quality features. Tablets significantly increase the collaboration, communication and information collection needs of the students. It does, however, not replace the need of a computer/laptop because of limited storage and computation capacity, small screen size and inefficient typing.

Keywords: tablets, teaching, blended learning, tablet quality

Procedia PDF Downloads 248
847 Angiogenic Potential of Collagen Based Biomaterials Implanted on Chick Embryo Chorioallantoic Membrane as Alternative Microenvironment for in Vitro and in Vivo Angiogenesis Assays

Authors: Anca Maria Cimpean, Serban Comsa

Abstract:

Chick embryo chorioallantoic membrane (CAM) is a well vascularised in vivo experimental model used as a platform for testing the behavior of different implants inserted on it from tumor fragments to therapeutic agents or various biomaterials. Five types of collagen-based biomaterials with 2D and 3D structure (MotifMesh, Optimaix2D, Optimaix3D, Dual Layer Collagen and Xenoderm) were implanted on CAM and continuously evaluated by stereomicroscope for up to 5 days post-implant with an emphasis of their ability to requisite and develop new blood vessels (BVs) followed by microscopic analysis. MotifMEsh did not induce any angiogenic response lacking to be invaded by BVs from the CAM, but it induced intense inflammatory response necrosis and fibroblastic reaction around the implant. Optimaix2D has good adherence. CAM with minimal or no inflammatory reaction, a good integration of the CAM between the collagen mesh’s fibers, consistent adhesion of the cells to the collagen fibers,and a good ability to form pseudo-vascular channels filled with cells. Optimaix3D induced the highest angiogenic effects on CAM. The material shows good integration on CAM. The collagen fibers of the material show the ability to organize themselves into linear and tubular structures. It is possible to see blood elements, especially at the periphery of the implant. Dual-layer collagen behaves similar to Optimaix 3D, while Xenoderm induced a moderate angiogenic effect on CAM. Based on these data, we may conclude that collagen-based materials have variable ability to requisite and develop new blood vessels. A proper selection of collagen-based biomaterial scaffolds may crucially influence the acquisition and development of blood vessels during angiogenesis assays.

Keywords: chick embryo chorioallantoic membrane, collagen scaffolds, blood vessels, vascular microenvironment

Procedia PDF Downloads 193
846 Case Study of Human Factors and Ergonomics in the Design and Use of Harness-Embedded Costumes in the Entertainment Industry

Authors: Marielle Hanley, Brandon Takahashi, Gerry Hanley, Gabriella Hancock

Abstract:

Safety harnesses and their protocols are very common within the construction industry, and the Occupational Safety and Health Administration has provided extensive guidelines with protocols being constantly updated to ensure the highest level of safety within construction sites. There is also extensive research on harnesses that are meant to keep people in place in moving vehicles, such as seatbelts. Though this research is comprehensive in these areas, the findings and recommendations are not generally applicable to other industry sectors where harnesses are used, such as the entertainment industry. The focus of this case study is on the design and use of harnesses used by theme park employees wearing elaborate costumes in parades and performances. The key factors of posture, kinesthetic factors, and harness engineering interact in significantly different ways when the user is performing repetitive choreography with 20 to 40 lbs. of apparatus connected to harnesses that need to be hidden from the audience’s view. Human factors and ergonomic analysis take into account the required performers’ behaviors, the physical and mental preparation and posture of the performer, the design of the harness-embedded costume, and the environmental conditions during the performance (e.g., wind) that can determine the physical stresses placed on the harness and performer. The uniqueness and expense of elaborate costumes frequently result in one or two costumes created for production, and a variety of different performers need to fit into the same costume. Consequently, the harnesses should be adjustable if they are to minimize the physical and cognitive loads on the performer, but they are frequently more a “one-size fits all”. The complexity of human and technology interactions produces a range of detrimental outcomes, from muscle strains to nerve damage, mental and physical fatigue, and reduced motivation to perform at peak levels. Based on observations conducted over four years for this case study, a number of recommendations to institutionalize the human factors and ergonomic analyses can significantly improve the safety, reliability, and quality of performances with harness-embedded costumes in the entertainment industry. Human factors and ergonomic analyses can be integrated into the engineering design of the performance costumes with embedded harnesses, the conditioning and training of the performers using the costumes, the choreography of the performances within the staged setting and the maintenance of the harness-embedded costumes. By applying human factors and ergonomic methodologies in the entertainment industry, the industry management and support staff can significantly reduce the risks of injury, improve the longevity of unique performers, increase the longevity of the harness-embedded costumes, and produce the desired entertainment value for audiences.

Keywords: ergonomics in entertainment industry, harness-embedded costumes, performer safety, injury prevention

Procedia PDF Downloads 91
845 Comparative Study on the Social Behaviour of Sambar Deer (Rusa unicolor) in Captive Facilities in Peninsular Malaysia

Authors: Kushaal Selvarajah, Geetha Annavi, Mohd Noor Hisham Mohd Nadzir

Abstract:

Sambar deer (Rusa unicolor) was uplisted from Least Concern to Vulnerable by the International Union for Conservation of Nature Red list in 2015 due to drastic population decline in the wild throughout its geographical range. Sambar deer is a valued prey for the highly endangered species such as the Malayan tiger. Ex-situ conservation efforts, i.e., captive breeding, initiated by local government to boost sambar deer numbers in captivity and to reintroduce into the wild to support a higher number of tigers, consistent with the goal of our National Tiger Conservation Action Plan. The reproductive success of sambar deer and their welfare management practices in captivity are important components for effective captive breeding programs. However, there is a lack of study carried out on sambar deer in recent years and their behavior in captivity. Three captive sites (Zoo Negara, Zoo Taiping, and Sungkai Conservation Centre) were selected and observed for an average of 40 days each site (6 hours/day). A Generalized Linear Model (GLM) was used to determine the correlation between social behavior and extrinsic parameters. A comparison between all three captive sites showed the strongest correlation in behavioral variability, followed by a time of observation. This proves that there is a difference between in behavioral consistency and frequency between herds across captive sites rising to the possibility of external factors that are influential. Time of day of observation also had significant influence on certain extrinsic parameters being skewed to morning observations and this could be due to an adaptive behavior to the feeding time in the captive sites being in the morning which caused the deer to be resting towards the afternoon. Extensive study need to be done on sambar deer to pinpoint the specifics and better understanding of these possible influential factors in their behavior.

Keywords: behaviour ecology, captivity, ex-situ conservation, husbandry

Procedia PDF Downloads 158
844 Earthquake Identification to Predict Tsunami in Andalas Island, Indonesia Using Back Propagation Method and Fuzzy TOPSIS Decision Seconder

Authors: Muhamad Aris Burhanudin, Angga Firmansyas, Bagus Jaya Santosa

Abstract:

Earthquakes are natural hazard that can trigger the most dangerous hazard, tsunami. 26 December 2004, a giant earthquake occurred in north-west Andalas Island. It made giant tsunami which crushed Sumatra, Bangladesh, India, Sri Lanka, Malaysia and Singapore. More than twenty thousand people dead. The occurrence of earthquake and tsunami can not be avoided. But this hazard can be mitigated by earthquake forecasting. Early preparation is the key factor to reduce its damages and consequences. We aim to investigate quantitatively on pattern of earthquake. Then, we can know the trend. We study about earthquake which has happened in Andalas island, Indonesia one last decade. Andalas is island which has high seismicity, more than a thousand event occur in a year. It is because Andalas island is in tectonic subduction zone of Hindia sea plate and Eurasia plate. A tsunami forecasting is needed to mitigation action. Thus, a Tsunami Forecasting Method is presented in this work. Neutral Network has used widely in many research to estimate earthquake and it is convinced that by using Backpropagation Method, earthquake can be predicted. At first, ANN is trained to predict Tsunami 26 December 2004 by using earthquake data before it. Then after we get trained ANN, we apply to predict the next earthquake. Not all earthquake will trigger Tsunami, there are some characteristics of earthquake that can cause Tsunami. Wrong decision can cause other problem in the society. Then, we need a method to reduce possibility of wrong decision. Fuzzy TOPSIS is a statistical method that is widely used to be decision seconder referring to given parameters. Fuzzy TOPSIS method can make the best decision whether it cause Tsunami or not. This work combines earthquake prediction using neural network method and using Fuzzy TOPSIS to determine the decision that the earthquake triggers Tsunami wave or not. Neural Network model is capable to capture non-linear relationship and Fuzzy TOPSIS is capable to determine the best decision better than other statistical method in tsunami prediction.

Keywords: earthquake, fuzzy TOPSIS, neural network, tsunami

Procedia PDF Downloads 493
843 The Relationship between Resilient Qualities and Health Management in Video Testimonials of Adolescents and Young Adults with Cancer

Authors: A. Sainvil, J. Mallela, L. M. Pereira

Abstract:

Adolescents and young adults (AYA) diagnosed with cancer are tasked with managing their health through treatment, a time when reliance on and independence from parents may change in unexpected ways. Resilience allows patients to cope and manage their own health through treatment, promoting motivation and a healthier lifestyle. The film acts as a source of reflection through the cancer journey, which may have an impact on how patients cope. The current research investigated relationships between resilient linguistic qualities of the video narratives and attitudes toward personal health management. N=24 patients diagnosed between ages 11-18 were recruited. First, participants provided demographic information, then made a video testimonial about their cancer experience. After filming, participants then completed a questionnaire on the perceived benefits for themselves and others for making the video. Videos were transcribed and analyzed for thematic content via codebook and for linguistic qualities, indicating resilience with the use of the Linguistic Inquiry and Word Count Analysis Program (LIWC). Linear regressions were then calculated to explore relationships between resilient qualities, thematic content, and participants’ perceptions of their medical team and willingness to care for themselves. Participants who spoke with greater narrator connectedness were more likely to change their view of their medical team (β=.628 p=.034). When a participant believed that providers were likely to view their video, they were marginally more likely to want to take better care of themselves (β=.367, p=.078). Participants who spoke in depth about their health reported higher intention to take better care of themselves (β=.785, p=.033). AYAs with cancer who showcased certain resilient qualities within their narrative were more likely to consider taking better care of themselves. Additionally, the more patients reflected on their health, the more they wanted to take better care of themselves. These relationships were stronger when a patient believed that a provider would watch their video. Study findings highlight the utility of film in uncovering aspects of resilience and coping that may lead to healthier behaviors in AYAs with cancer.

Keywords: adolescents, cancer, resilience, health management

Procedia PDF Downloads 89
842 Synthesis of Double Dye-Doped Silica Nanoparticles and Its Application in Paper-Based Chromatography

Authors: Ka Ho Yau, Jan Frederick Engels, Kwok Kei Lai, Reinhard Renneberg

Abstract:

Lateral flow test is a prevalent technology in various sectors such as food, pharmacology and biomedical sciences. Colloidal gold (CG) is widely used as the signalling molecule because of the ease of synthesis, bimolecular conjugation and its red colour due to intrinsic SPRE. However, the production of colloidal gold is costly and requires vigorous conditions. The stability of colloidal gold are easily affected by environmental factors such as pH, high salt content etc. Silica nanoparticles are well known for its ease of production and stability over a wide range of solvents. Using reverse micro-emulsion (w/o), silica nanoparticles with different sizes can be produced precisely by controlling the amount of water. By incorporating different water-soluble dyes, a rainbow colour of the silica nanoparticles could be produced. Conjugation with biomolecules such as antibodies can be achieved after surface modification of the silica nanoparticles with organosilane. The optimum amount of the antibodies to be labelled was determined by Bradford Assay. In this work, we have demonstrated the ability of the dye-doped silica nanoparticles as a signalling molecule in lateral flow test, which showed a semi-quantitative measurement of the analyte. The image was further analysed for the LOD=10 ng of the analyte. The working range and the linear range of the test were from 0 to 2.15μg/mL and from 0 to 1.07 μg/mL (R2=0.988) respectively. The performance of the tests was comparable to those using colloidal gold with the advantages of lower cost, enhanced stability and having a wide spectrum of colours. The positives lines can be imaged by naked eye or by using a mobile phone camera for a better quantification. Further research has been carried out in multicolour detection of different biomarkers simultaneously. The preliminary results were promising as there was little cross-reactivity being observed for an optimized system. This approach provides a platform for multicolour detection for a set of biomarkers that enhances the accuracy of diseases diagnostics.

Keywords: colorimetric detection, immunosensor, paper-based biosensor, silica

Procedia PDF Downloads 385
841 A Novel Mediterranean Diet Index from the Middle East and North Africa Region: Comparison with Europe

Authors: Farah Naja, Nahla Hwalla, Leila Itani, Shirine Baalbaki, Abla Sibai, Lara Nasreddine

Abstract:

Purpose: To propose an index for assessing adherence to a Middle-Eastern version of the Mediterranean diet as represented by the traditional Lebanese Mediterranean diet (LMD), to evaluate the association between the LMD and selected European Mediterranean diets (EMD); to examine socio-demographic and lifestyle correlates of adherence to Mediterranean diet (MD) among Lebanese adults. Methods: Using nationally representative dietary intake data of Lebanese adults, an index to measure adherence to the LMD was derived. The choice of food groups used for calculating the LMD score was based on results of previous factor analyses conducted on the same dataset. These food groups included fruits, vegetables, legumes, olive oil, burghol, dairy products, starchy vegetables, dried fruits, and eggs. Using Pearson’s correlation and scores tertiles distributions agreement, the derived LMD index was compared to previously published EMD indexes from Greece, Spain, Italy, France, and EPIC. Results: Fruits, vegetables and olive oil were common denominators to all MD scores. Food groups, specific to the LMD, included burghol and dried fruits. The LMD score significantly correlated with the EMD scores, while being closest to the Italian (r=0.57) and farthest from the French (r=0.21). Percent agreement between scores’ tertile distributions and Kappa statistics confirmed these findings. Multivariate linear regression showed that older age, higher educational, female gender, and healthy lifestyle characteristics were associated with increased adherence to all MD studied. Conclusion: A novel LMD index was proposed to characterize Mediterranean diet in Lebanon, complementing international efforts to characterize the MD and its association with disease risk.

Keywords: mediterranean diet, adherence, Middle-East, Lebanon, Europe

Procedia PDF Downloads 409
840 A Methodology of Using Fuzzy Logics and Data Analytics to Estimate the Life Cycle Indicators of Solar Photovoltaics

Authors: Thor Alexis Sazon, Alexander Guzman-Urbina, Yasuhiro Fukushima

Abstract:

This study outlines the method of how to develop a surrogate life cycle model based on fuzzy logic using three fuzzy inference methods: (1) the conventional Fuzzy Inference System (FIS), (2) the hybrid system of Data Analytics and Fuzzy Inference (DAFIS), which uses data clustering for defining the membership functions, and (3) the Adaptive-Neuro Fuzzy Inference System (ANFIS), a combination of fuzzy inference and artificial neural network. These methods were demonstrated with a case study where the Global Warming Potential (GWP) and the Levelized Cost of Energy (LCOE) of solar photovoltaic (PV) were estimated using Solar Irradiation, Module Efficiency, and Performance Ratio as inputs. The effects of using different fuzzy inference types, either Sugeno- or Mamdani-type, and of changing the number of input membership functions to the error between the calibration data and the model-generated outputs were also illustrated. The solution spaces of the three methods were consequently examined with a sensitivity analysis. ANFIS exhibited the lowest error while DAFIS gave slightly lower errors compared to FIS. Increasing the number of input membership functions helped with error reduction in some cases but, at times, resulted in the opposite. Sugeno-type models gave errors that are slightly lower than those of the Mamdani-type. While ANFIS is superior in terms of error minimization, it could generate solutions that are questionable, i.e. the negative GWP values of the Solar PV system when the inputs were all at the upper end of their range. This shows that the applicability of the ANFIS models highly depends on the range of cases at which it was calibrated. FIS and DAFIS generated more intuitive trends in the sensitivity runs. DAFIS demonstrated an optimal design point wherein increasing the input values does not improve the GWP and LCOE anymore. In the absence of data that could be used for calibration, conventional FIS presents a knowledge-based model that could be used for prediction. In the PV case study, conventional FIS generated errors that are just slightly higher than those of DAFIS. The inherent complexity of a Life Cycle study often hinders its widespread use in the industry and policy-making sectors. While the methodology does not guarantee a more accurate result compared to those generated by the Life Cycle Methodology, it does provide a relatively simpler way of generating knowledge- and data-based estimates that could be used during the initial design of a system.

Keywords: solar photovoltaic, fuzzy logic, inference system, artificial neural networks

Procedia PDF Downloads 164