Search results for: cross-validation support vector machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10021

Search results for: cross-validation support vector machine

6031 Young Children’s Use of Representations in Problem Solving

Authors: Kamariah Abu Bakar, Jennifer Way

Abstract:

This study investigated how young children (six years old) constructed and used representations in mathematics classroom; particularly in problem solving. The purpose of this study is to explore the ways children used representations in solving addition problems and to determine whether their representations can play a supportive role in understanding the problem situation and solving them correctly. Data collection includes observations, children’s artifact, photographs and conversation with children during task completion. The results revealed that children were able to construct and use various representations in solving problems. However, they have certain preferences in generating representations to support their problem solving.

Keywords: young children, representations, addition, problem solving

Procedia PDF Downloads 460
6030 Multimedia Design in Tactical Play Learning and Acquisition for Elite Gaelic Football Practitioners

Authors: Michael McMahon

Abstract:

The use of media (video/animation/graphics) has long been used by athletes, coaches, and sports scientists to analyse and improve performance in technical skills and team tactics. Sports educators are increasingly open to the use of technology to support coach and learner development. However, an overreliance is a concern., This paper is part of a larger Ph.D. study looking into these new challenges for Sports Educators. Most notably, how to exploit the deep-learning potential of Digital Media among expert learners, how to instruct sports educators to create effective media content that fosters deep learning, and finally, how to make the process manageable and cost-effective. Central to the study is Richard Mayers Cognitive Theory of Multimedia Learning. Mayers Multimedia Learning Theory proposes twelve principles that shape the design and organization of multimedia presentations to improve learning and reduce cognitive load. For example, the Prior Knowledge principle suggests and highlights different learning outcomes for Novice and Non-Novice learners, respectively. Little research, however, is available to support this principle in modified domains (e.g., sports tactics and strategy). As a foundation for further research, this paper compares and contrasts a range of contemporary multimedia sports coaching content and assesses how they perform as learning tools for Strategic and Tactical Play Acquisition among elite sports practitioners. The stress tests applied are guided by Mayers's twelve Multimedia Learning Principles. The focus is on the elite athletes and whether current coaching digital media content does foster improved sports learning among this cohort. The sport of Gaelic Football was selected as it has high strategic and tactical play content, a wide range of Practitioner skill levels (Novice to Elite), and also a significant volume of Multimedia Coaching Content available for analysis. It is hoped the resulting data will help identify and inform the future instructional content design and delivery for Sports Practitioners and help promote best design practices optimal for different levels of expertise.

Keywords: multimedia learning, e-learning, design for learning, ICT

Procedia PDF Downloads 102
6029 Exploring Coordination between Monetary and Macroprudential Policies Using a Monetary Policy Procyclicality Ratio

Authors: Lukasz Kurowski, Paweł Smaga

Abstract:

We explore the procyclicality of monetary policy decisions towards the financial cycle in the 1995−2015 period on a sample of six central banks. Using interest rate paths and the credit-to-GDP gap to construct a monetary policy procyclicality ratio, we provide evidence that monetary policy procyclicality was high in BoE and CNB and low in Riksbank and ECB. The results support the need for coordination between macroprudential and monetary policies, for example, by including financial stability considerations to the inflation targeting strategy.

Keywords: central bank, financial stability, macroprudential policy, monetary policy

Procedia PDF Downloads 370
6028 Epidemiological Study on Prevalence of Bovine Trypanosomosis and Tsetse Fly Density in Some Selected of Pastoral Areas of South Omo Zone

Authors: Tekle Olbamo, Tegegn Tesfaye, Dikaso Unbushe, Belete Jorga

Abstract:

Bovine trypanosomosis is a haemoprotozoan parasitic disease, mostly transmitted by the tsetse fly (Glossina species) and poses significant losses to the livestock industry in pastoral and agro-pastoral areas. Therefore, the current study was aimed to determine the prevalence of bovine trypanosomosis and its vectorial density in some selected tsetse suppression and non-tsetse suppression areas of South Omo Zonefrom December 2018- November 2019. Dark phase contrast buffy coat, hematocrit techniques, and thin blood smear method were used for determination of prevalence and packed cell volume of trypanosomosis infection, respectively. For entomological investigation, 96 NGU traps were deployed (64 traps in tsetse suppression areas, 32 traps in tsetse non-suppression areas) in vector breeding areas. The overall prevalence of bovine trypanosomosis was 11.05% (142/1284), and overall seasonal prevalence of disease was 14.33% (92/642) and 7.78% (50/642) for dry and wet seasons, respectively. There was a statistically significant difference (P <0.05) in disease prevalence between the two seasons. Trypanosomacongolensewas the dominant parasite species; 80% and 71.64%, followed by Trypanosomavivax. Overall mean packed cell volume indicated parasitaemic animals (23.57±3.13) had significantly lower PCV than aparasitaemic animals (27.80±4.95), and animals examined during dry season (26.22±4.37) had lower mean PCV than animals examined during wet season with the significant association. Entomological study result revealed a total of 2.64 F/T/D and 2.03 F/T/D respectively from tsetse suppression areas and tsetse non-suppression areas during dry season and 0.42 F/T/D and 0.56 F/T/D during the wet season. Glossinapallidipes was the only cyclical vectors collected and identified from current study areas along with numerous mechanical vectors of genus Tabanus, Stomoxys, and Haematopota. Therefore integrated and safe control and prevention effort should be engaged to uphold cattle production and productivity in the area.

Keywords: bovine trypanosomiasis, South Omo, tsetse fly density, epidemiological study

Procedia PDF Downloads 161
6027 Artificial Intelligence and Development: The Missing Link

Authors: Driss Kettani

Abstract:

ICT4D actors are naturally attempted to include AI in the range of enabling technologies and tools that could support and boost the Development process, and to refer to these as AI4D. But, doing so, assumes that AI complies with the very specific features of ICT4D context, including, among others, affordability, relevance, openness, and ownership. Clearly, none of these is fulfilled, and the enthusiastic posture that AI4D is a natural part of ICT4D is not grounded and, to certain extent, does not serve the purpose of Technology for Development at all. In the context of Development, it is important to emphasize and prioritize ICT4D, in the national digital transformation strategies, instead of borrowing "trendy" waves of the IT Industry that are motivated by business considerations, with no specific care/consideration to Development.

Keywords: AI, ICT4D, technology for development, position paper

Procedia PDF Downloads 84
6026 A Rational Intelligent Agent to Promote Metacognition a Situation of Text Comprehension

Authors: Anass Hsissi, Hakim Allali, Abdelmajid Hajami

Abstract:

This article presents the results of a doctoral research which aims to integrate metacognitive dimension in the design of human learning computing environments (ILE). We conducted a detailed study on the relationship between metacognitive processes and learning, specifically their positive impact on the performance of learners in the area of reading comprehension. Our contribution is to implement methods, using an intelligent agent based on BDI paradigm to ensure intelligent and reliable support for low readers, in order to encourage regulation and a conscious and rational use of their metacognitive abilities.

Keywords: metacognition, text comprehension EIAH, autoregulation, BDI agent

Procedia PDF Downloads 320
6025 Differential Signaling Spread-Spectrum Modulation of the In-Door LED Visible Light Wireless Communications using Mobile-Phone Camera

Authors: Shih-Hao Chen, Chi-Wai Chow

Abstract:

Visible light communication combined with spread spectrum modulation is demonstrated in this study. Differential signaling method also ensures the proposed system that can support high immunity to ambient light interference. Experiment result shows the proposed system has 6 dB gain comparing with the original On-Off Keying modulation scheme.

Keywords: Visible Light Communication (VLC), Spread Spectrum Modulation (SSM), On-Off Keying, visible light communication

Procedia PDF Downloads 520
6024 "Project" Approach in Urban: A Response to Uncertainty

Authors: Mouhoubi Nedjima, Sassi Boudemagh Souad

Abstract:

In this paper, we will try to demonstrate the importance of the project approach in the urban to deal with uncertainty, the importance of the involvement of all stakeholders in the urban project process and that the absence of an actor can lead to project failure but also the importance of the urban project management. These points are handled through the following questions: Does the urban adhere to the theory of complexity? Does the project approach bring hope and solution to make urban planning "sustainable"? How converging visions of actors for the same project? Is the management of urban project the solution to support the urban project approach?

Keywords: strategic planning, project, urban project stakeholders, management

Procedia PDF Downloads 510
6023 Machine Learning for Feature Selection and Classification of Systemic Lupus Erythematosus

Authors: H. Zidoum, A. AlShareedah, S. Al Sawafi, A. Al-Ansari, B. Al Lawati

Abstract:

Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic and environmental components. SLE is characterized by a wide variability of clinical manifestations and a course frequently subject to unpredictable flares. Despite recent progress in classification tools, the early diagnosis of SLE is still an unmet need for many patients. This study proposes an interpretable disease classification model that combines the high and efficient predictive performance of CatBoost and the model-agnostic interpretation tools of Shapley Additive exPlanations (SHAP). The CatBoost model was trained on a local cohort of 219 Omani patients with SLE as well as other control diseases. Furthermore, the SHAP library was used to generate individual explanations of the model's decisions as well as rank clinical features by contribution. Overall, we achieved an AUC score of 0.945, F1-score of 0.92 and identified four clinical features (alopecia, renal disorders, cutaneous lupus, and hemolytic anemia) along with the patient's age that was shown to have the greatest contribution on the prediction.

Keywords: feature selection, classification, systemic lupus erythematosus, model interpretation, SHAP, Catboost

Procedia PDF Downloads 82
6022 Resident-Aware Green Home

Authors: Ahlam Elkilani, Bayan Elsheikh Ali, Rasha Abu Romman, Amjed Al-mousa, Belal Sababha

Abstract:

The amount of energy the world uses doubles every 20 years. Green homes play an important role in reducing the residential energy demand. This paper presents a platform that is intended to learn the behavior of home residents and build a profile about their habits and actions. The proposed resident aware home controller intervenes in the operation of home appliances in order to save energy without compromising the convenience of the residents. The presented platform can be used to simulate the actions and movements happening inside a home. The paper includes several optimization techniques that are meant to save energy in the home. In addition, several test scenarios are presented that show how the controller works. Moreover, this paper shows the computed actual savings when each of the presented techniques is implemented in a typical home. The test scenarios have validated that the techniques developed are capable of effectively saving energy at homes.

Keywords: green home, resident aware, resident profile, activity learning, machine learning

Procedia PDF Downloads 388
6021 Modeling Food Popularity Dependencies Using Social Media Data

Authors: DEVASHISH KHULBE, MANU PATHAK

Abstract:

The rise in popularity of major social media platforms have enabled people to share photos and textual information about their daily life. One of the popular topics about which information is shared is food. Since a lot of media about food are attributed to particular locations and restaurants, information like spatio-temporal popularity of various cuisines can be analyzed. Tracking the popularity of food types and retail locations across space and time can also be useful for business owners and restaurant investors. In this work, we present an approach using off-the shelf machine learning techniques to identify trends and popularity of cuisine types in an area using geo-tagged data from social media, Google images and Yelp. After adjusting for time, we use the Kernel Density Estimation to get hot spots across the location and model the dependencies among food cuisines popularity using Bayesian Networks. We consider the Manhattan borough of New York City as the location for our analyses but the approach can be used for any area with social media data and information about retail businesses.

Keywords: Web Mining, Geographic Information Systems, Business popularity, Spatial Data Analyses

Procedia PDF Downloads 115
6020 Water Repellent Finishing of Cotton: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

Fabrics can be treated to equip them with certain functional properties in which water repellency is one of the important functional effects. In this study, commercial water repellent agent was used under different application conditions to cotton fabric. Finally, the water repellent effect was evaluated by standard testing method. Thus, the aim of this study is to illustrate the proper application of water repellent finishing to cotton fabric and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, water repellent, textiles, cotton

Procedia PDF Downloads 239
6019 Interaction Between Task Complexity and Collaborative Learning on Virtual Patient Design: The Effects on Students’ Performance, Cognitive Load, and Task Time

Authors: Fatemeh Jannesarvatan, Ghazaal Parastooei, Jimmy frerejan, Saedeh Mokhtari, Peter Van Rosmalen

Abstract:

Medical and dental education increasingly emphasizes the acquisition, integration, and coordination of complex knowledge, skills, and attitudes that can be applied in practical situations. Instructional design approaches have focused on using real-life tasks in order to facilitate complex learning in both real and simulated environments. The Four component instructional design (4C/ID) model has become a useful guideline for designing instructional materials that improve learning transfer, especially in health profession education. The objective of this study was to apply the 4C/ID model in the creation of virtual patients (VPs) that dental students can use to practice their clinical management and clinical reasoning skills. The study first explored the context and concept of complication factors and common errors for novices and how they can affect the design of a virtual patient program. The study then selected key dental information and considered the content needs of dental students. The design of virtual patients was based on the 4C/ID model's fundamental principles, which included: Designing learning tasks that reflect real patient scenarios and applying different levels of task complexity to challenge students to apply their knowledge and skills in different contexts. Creating varied learning materials that support students during the VP program and are closely integrated with the learning tasks and students' curricula. Cognitive feedback was provided at different levels of the program. Providing procedural information where students followed a step-by-step process from history taking to writing a comprehensive treatment plan. Four virtual patients were designed using the 4C/ID model's principles, and an experimental design was used to test the effectiveness of the principles in achieving the intended educational outcomes. The 4C/ID model provides an effective framework for designing engaging and successful virtual patients that support the transfer of knowledge and skills for dental students. However, there are some challenges and pitfalls that instructional designers should take into account when developing these educational tools.

Keywords: 4C/ID model, virtual patients, education, dental, instructional design

Procedia PDF Downloads 78
6018 Reduced Model Investigations Supported by Fuzzy Cognitive Map to Foster Circular Economy

Authors: A. Buruzs, M. F. Hatwágner, L. T. Kóczy

Abstract:

The aim of the present paper is to develop an integrated method that may provide assistance to decision makers during system planning, design, operation and evaluation. In order to support the realization of Circular Economy (CE), it is essential to evaluate local needs and conditions which help to select the most appropriate system components and resource needs. Each of these activities requires careful planning, however, the model of CE offers a comprehensive interdisciplinary framework. The aim of this research was to develop and to introduce a practical methodology for evaluation of local and regional opportunities to promote CE.

Keywords: circular economy, factors, fuzzy cognitive map, model reduction, sustainability

Procedia PDF Downloads 242
6017 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects

Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes

Abstract:

Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.

Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction

Procedia PDF Downloads 148
6016 Current Status of Inclusive Education for Students with Disabilities in Punjab, Pakistan

Authors: Muhammad Shahid Shah, Akram Maqbool, Samina Ashraf

Abstract:

Since start of this century, world has adopted inclusion as a trend in special education. To meet the challenges of inclusion response, the Punjab government has developed a progressive policy to implement inclusive education. The objectives of this research were to analyze the administration and implementation process by consideration on the management, student’s admission process, screening and assessment, adaptations in curriculum and instruction along with an evaluation, government and nonprofit organizations support. The sample consisted of 50 schools both public and private with a total of 3000 students, 9 percent of which (270) were students with disabilities. Among all the students with disabilities, 63 percent (170) were male and 37 percent (100) were female. The concluded remarks regarding management revealed that a large number of inclusive schools was lacking in terms of developing a certain model for inclusion, including the managerial breakup of staff, the involvement of stakeholders, and conducted frequent meetings. Many of schools are not able to restructure their school organizations due to lack of financial resources, consultations, and backup. As for as student’s admission/identification/assessment was concerned, only 12 percent schools applied a selection process regarding student admission, half of which used different procedures for disable candidates. Approximately 5 percent of inclusive schools had modified their curriculum, including a variety of standards. In terms of instruction, 25 percent of inclusive schools reported that they modified their instructional process. Only a few schools, however, provided special equipment for students with visual impairment, physical impairment, speech and hearing problems, students with mild intellectual disabilities, and autism. In a student evaluation, more than 45 percent reported that test items, administration, time allocations, and students’ reports were modified. For the primary board examination conducted by the Education Department of Government of Punjab, this number decreased dramatically. Finally, government and nonprofit organizations support in the forms of funding, coaching, and facilities were mostly provided by provincial governments and by Ghazali Education Trust.

Keywords: inclusion, identification, assessment, funding, facilities, evaluation

Procedia PDF Downloads 136
6015 Data Analysis to Uncover Terrorist Attacks Using Data Mining Techniques

Authors: Saima Nazir, Mustansar Ali Ghazanfar, Sanay Muhammad Umar Saeed, Muhammad Awais Azam, Saad Ali Alahmari

Abstract:

Terrorism is an important and challenging concern. The entire world is threatened by only few sophisticated terrorist groups and especially in Gulf Region and Pakistan, it has become extremely destructive phenomena in recent years. Predicting the pattern of attack type, attack group and target type is an intricate task. This study offers new insight on terrorist group’s attack type and its chosen target. This research paper proposes a framework for prediction of terrorist attacks using the historical data and making an association between terrorist group, their attack type and target. Analysis shows that the number of attacks per year will keep on increasing, and Al-Harmayan in Saudi Arabia, Al-Qai’da in Gulf Region and Tehreek-e-Taliban in Pakistan will remain responsible for many future terrorist attacks. Top main targets of each group will be private citizen & property, police, government and military sector under constant circumstances.

Keywords: data mining, counter terrorism, machine learning, SVM

Procedia PDF Downloads 405
6014 The Impact of Corruption on Exports and Innovation in Small and Medium-Sized Enterprises: The Case of Tunisia

Authors: Moujib Bahri, Rahim Kallel, Ouafa Sakka

Abstract:

Corruption is a phenomenon that increases uncertainty and risk of SMEs as it undermines the quality of the business environment and the easy access to public services. Our research builds on existing research on corruption's effects on economic growth at the firm level. Several papers have analyzed the effect of firms’ payments of bribes on their performance; however, only limited research has investigated the link between corruption, innovation, and exports. Drawing on principal-agent theory, we explore how corruption weakens the institutional context and makes the business environment unsound and not conducive to innovation and exports. This study employs data from The Enterprise Surveys conducted in Tunisia between March 2013 and July 2014 by the World Bank, the European Bank for Reconstruction and Development (EBRD) and the European Investment Bank (EIB). The main objective of this survey was to gain a better understanding of Tunisian firms’ perception of the environment in which they operate. Since 2011, the country's political situation has become fragile and unstable, and public services are perceived as inefficient and corrupt. We test our hypotheses on a sample of 537 Tunisian manufacturing SMEs using structural equation modeling and path analysis. We find that political instability leads to higher level of corruption, and that excessive business licensing regulations create a fertile ground for bribery. Our findings do not support the greasing hypothesis suggesting that corruption can reduce the negative effect of bureaucratic delays and the hard access of companies to public services related to innovation and exports. Instead, our results support the sanding hypothesis according to which corruption hinders innovation activities and exports. Furthermore, corruption is found to, negatively and significantly, impact firms’ ownership of quality certificates. Our results suggest that, in an environment with a high level of corruption, governments and policymakers interested in assisting SMEs with their innovation and export activities should have a better control on corruption to allow them developing those activities without being forced to bribe government officers.

Keywords: corruption, innovation, exports, SMEs

Procedia PDF Downloads 180
6013 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection

Authors: Yulan Wu

Abstract:

With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.

Keywords: fake news, deep learning, natural language processing, multiple domains

Procedia PDF Downloads 96
6012 Estimation of Subgrade Resilient Modulus from Soil Index Properties

Authors: Magdi M. E. Zumrawi, Mohamed Awad

Abstract:

Determination of Resilient Modulus (MR) is quite important for characterizing materials in pavement design and evaluation. The main focus of this study is to develop a correlation that predict the resilient modulus of subgrade soils from simple and easy measured soil index properties. To achieve this objective, three subgrade soils representing typical Khartoum soils were selected and tested in the laboratory for measuring resilient modulus. Other basic laboratory tests were conducted on the soils to determine their physical properties. Several soil samples were prepared and compacted at different moisture contents and dry densities and then tested using resilient modulus testing machine. Based on experimental results, linear relationship of MR with the consistency factor ‘Fc’ which is a combination of dry density, void ratio and consistency index had been developed. The results revealed that very good linear relationship found between the MR and the consistency factor with a coefficient of linearity (R2) more than 0.9. The consistency factor could be used for the prediction of the MR of compacted subgrade soils with precise and reliable results.

Keywords: Consistency factor, resilient modulus, subgrade soil, properties

Procedia PDF Downloads 190
6011 A Systematic Review Regarding Caregiving Relationships of Adolescents Orphaned by Aids and Primary Caregivers

Authors: M. Petunia Tsweleng

Abstract:

Statement of the Problem: Research and aid organisations report that children and adolescents orphaned due to HIV and AIDS are particularly vulnerable as they are often exposed to negative effects of both HIV and AIDS and orphanhood. Without much-needed parental love, care, and support, these children and adolescents are at risk of poor developmental outcomes. A cursory look at the available literature on AIDS-orphaned adolescents, and the quality of caregiving relationships with caregivers, shows that this is a relatively under-researched terrain. This article is a review of the literature on caregiving relationships of adolescents orphaned due to AIDS and their current primary caregivers. It aims to inform community programmes and policymakers by providing insight into the qualities of these relationships. Methodology: A comprehensive search of both peer-reviewed and non-peer-reviewed literature was conducted through EBSCOhost, SpringLINK, PsycINFO, SAGE, PubMed, Elsevier ScienceDirect, JSTOR, Wiley Online Library databases, and Google Scholar. The combination of keywords used for the search were: (caregiving relationships); (orphans OR AIDS orphaned children OR AIDS orphaned adolescents); (primary caregivers); and (quality caregiving); (orphans); (HIV and AIDS). The search took place between 24 January and 28 February 2022. Both qualitative and quantitative research studies published between 2010 and 2020 were reviewed. However, only qualitative studies were selected in the end -as they presented more profound findings concerning orphan-caregiver relationships. The following three stages of meta-synthesis analysis were used to analyse data: refutational syntheses, reciprocal syntheses, and line of argument. Results: The search resulted in a total of 2090 titles, of which 750 were duplicates and therefore subtracted. The researcher reviewed all the titles and abstracts of the remaining 1340 articles. 329 articles were identified as relevant, and full texts were reviewed. Following the review of the full texts, 313 studies were excluded for relevance and 4 for methodology. Twelve articles representing 11 studies fulfilled the inclusion criteria and were selected. These studies, representing different countries across the globe, reported similar forms of hardships experienced by caregivers economically, psychosocially, and healthwise. However, the studies also show that the majority of caregivers found contentment in caring for orphans, particularly grandmother carers, and were thus enabled to provide love, care, and support despite hardships. This resulted in positive caregiving relationships -as orphans fared well emotionally and psychosocially. Some relationships, however, were found negative due to unhealed emotional wounds suffered by both caregivers and orphans and others due to the caregiver’s lack of interest in providing care. These findings were based on self-report data from both orphans and caregivers. Conclusion: Findings suggest that intervention efforts need to be intensified to: alleviate poverty in households that are affected by HIV and AIDS pandemic, strengthen the community psychosocial support programmes for orphans and their caregivers; and integrate clinical services with community programmes for the healing of emotional and psychological wounds. Contributions: Findings inform community programmes and policymakers by providing insight into the qualities of the mentioned relationships as well as identifying factors commonly associated with high-quality caregiving and poor-quality caregiving.

Keywords: systematic review, caregiving relationships, orphans and primary caregivers, AIDS

Procedia PDF Downloads 179
6010 Enhance the Power of Sentiment Analysis

Authors: Yu Zhang, Pedro Desouza

Abstract:

Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modelling and testing work was done in R and Greenplum in-database analytic tools.

Keywords: sentiment analysis, social media, Twitter, Amazon, data mining, machine learning, text mining

Procedia PDF Downloads 350
6009 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents

Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei

Abstract:

With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.

Keywords: document processing, framework, formal definition, machine learning

Procedia PDF Downloads 213
6008 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.

Keywords: multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations

Procedia PDF Downloads 429
6007 Government and Non-Government Policy Responses to Anti-Trafficking Initiatives: A Discursive Analysis of the Construction of the Problem of Human Trafficking in Australia and Thailand

Authors: Jessica J. Gillies

Abstract:

Human trafficking is a gross violation of human rights and thus invokes a strong response particularly throughout the global academic community. A longstanding tension throughout academic debate remains the question of a relationship between anti-trafficking policy and sex industry policy. In Australia, over the previous decade, many human trafficking investigations have related to the sexual exploitation of female victims, and convictions in Australia to date have often been for trafficking women from Thailand. Sex industry policy in Australia varies between states, providing a rich contextual landscape in which to explore this relationship. The purpose of this study was to deconstruct how meaning is constructed surrounding human trafficking throughout these supposedly related political discourses in Australia. In order to analyse the discursive construction of the problem of human trafficking in relation to sex industry policy, a discursive analysis was conducted. The methodology of the study was informed by a feminist theoretical framework, and included academic sources and grey literature such as organisational reports and policy statements regarding anti-trafficking initiatives. The scope of grey literature was restricted to Australian and Thai government and non-government organisation texts. The chosen methodology facilitated a qualitative exploration of the influence of feminist discourses over political discourse in this arena. The discursive analysis exposed clusters of active feminist debates interacting with sex industry policy within individual states throughout Australia. Additionally, strongly opposed sex industry perspectives were uncovered within these competing feminist frameworks. While the influence these groups may exert over policy differs, the debate constructs a discursive relationship between human trafficking and sex industry policy. This is problematic because anti-trafficking policy is drawn to some extent from this discursive construction, therefore affecting support services for survivors of human trafficking. The discursive analysis further revealed misalignment between government and non-government priorities, Australian government anti-trafficking policy appears to favour criminal justice priorities; whereas non-government settings preference human rights protections. Criminal justice priorities invoke questions of legitimacy, leading to strict eligibility policy for survivors seeking support following exploitation in the Australian sex industry, undermining women’s agency and human rights. In practice, these two main findings demonstrate a construction of policy that has serious outcomes on typical survivors in Australia following a lived experience of human trafficking for the purpose of sexual exploitation. The discourses constructed by conflicting feminist arguments influence political discourses throughout Australia. The application of a feminist theoretical framework to the discursive analysis of the problem of human trafficking is unique to this study. The study has exposed a longstanding and unresolved feminist debate that has filtered throughout anti-trafficking political discourse. This study illuminates the problematic construction of anti-trafficking policy, and the implications in practice on survivor support services. Australia has received international criticism for the focus on criminal justice rather than human rights throughout anti-trafficking policy discourse. The outcome of this study has the potential to inform future language and constructive conversations contributing to knowledge around how policy effects survivors in the post trafficking experience.

Keywords: Australia, discursive analysis, government, human trafficking, non-government, Thailand

Procedia PDF Downloads 118
6006 Modelling Pest Immigration into Rape Seed Crops under Past and Future Climate Conditions

Authors: M. Eickermann, F. Ronellenfitsch, J. Junk

Abstract:

Oilseed rape (Brassica napus L.) is one of the most important crops throughout Europe, but pressure due to pest insects and pathogens can reduce yield amount substantially. Therefore, the usage of pesticide applications is outstanding in this crop. In addition, climate change effects can interact with phenology of the host plant and their pests and can apply additional pressure on the yield. Next to the pollen beetle, Meligethes aeneus L., the seed-damaging pest insects, cabbage seed weevil (Ceutorhynchus obstrictus Marsham) and the brassica pod midge (Dasineura brassicae Winn.) are of main economic impact to the yield. While females of C. obstrictus are infesting oilseed rape by depositing single eggs into young pods, the females of D. brassicae are using this local damage in the pod for their own oviposition, while depositing batches of 20-30 eggs. Without a former infestation by the cabbage seed weevil, a significant yield reduction by the brassica pod midge can be denied. Based on long-term, multisided field experiments, a comprehensive data-set on pest migration to crops of B. napus has been built up in the last ten years. Five observational test sides, situated in different climatic regions in Luxembourg were controlled between February until the end of May twice a week. Pest migration was recorded by using yellow water pan-traps. Caught insects were identified in the laboratory according to species specific identification keys. By a combination of pest observations and corresponding meteorological observations, the set-up of models to predict the migration periods of the seed-damaging pests was possible. This approach is the basis for a computer-based decision support tool, to assist the farmer in identifying the appropriate time point of pesticide application. In addition, the derived algorithms of that decision support tool can be combined with climate change projections in order to assess the future potential threat caused by the seed-damaging pest species. Regional climate change effects for Luxembourg have been intensively studied in recent years. Significant changes to wetter winters and drier summers, as well as a prolongation of the vegetation period mainly caused by higher spring temperature, have also been reported. We used the COSMO-CLM model to perform a time slice experiment for Luxembourg with a spatial resolution of 1.3 km. Three ten year time slices were calculated: The reference time span (1991-2000), the near (2041-2050) and the far future (2091-2100). Our results projected a significant shift of pest migration to an earlier onset of the year. In addition, a prolongation of the possible migration period could be observed. Because D. brassiace is depending on the former oviposition activity by C. obstrictus to infest its host plant successfully, the future dependencies of both pest species will be assessed. Based on this approach the future risk potential of both seed-damaging pests is calculated and the status as pest species is characterized.

Keywords: CORDEX projections, decision support tool, Brassica napus, pests

Procedia PDF Downloads 381
6005 Promoting Public Participation in the Digital Memory Project: Experience from My Peking Memory Project(MPMP)

Authors: Xiaoshuang Jia, Huiling Feng, Li Niu, Wei Hai

Abstract:

Led by Humanistic Beijing Studies Center in Renmin University of China, My Peking Memory Project(MPMP) is a long-time digital memory project under guarantee of public participation to enable the cultural and intellectual memory of Beijing to be collected, organized, preserved and promoted for discovery and research. Taking digital memory as a new way, MPMP is an important part of Peking Memory Project(PMP) which is aimed at using digital technologies to protect and (re)present the cultural heritage in Beijing. The key outcome of MPMP is the co-building of a total digital collection of knowledge assets about Beijing. Institutional memories are central to Beijing’s collection and consist of the official published documentary content of Beijing. These have already fall under the archival collection purview. The advances in information and communication technology and the knowledge form social memory theory have allowed us to collect more comprehensively beyond institutional collections. It is now possible to engage citizens on a large scale to collect private memories through crowdsourcing in digital formats. Private memories go beyond official published content to include personal narratives, some of which are just in people’s minds until they are captured by MPMP. One aim of MPMP is to engage individuals, communities, groups or institutions who have formed memories and content about Beijing, and would like to contribute them. The project hopes to build a culture of remembering and it believes ‘Every Memory Matters’. Digital memory contribution was achieved through the development of the MPMP. In reducing barriers to digital contribution and promoting high public Participation, MPMP has taken explored the harvesting of transcribe service for digital ingestion, mobile platform and some off-line activities like holding social forum. MPMP has also cooperated with the ‘Implementation Plan of Support Plan for Growth of Talents in Renmin University of China’ to get manpower and intellectual support. After six months of operation, now MPMP have more than 2000 memories added and 7 Special Memory Collections now online. The work of MPMP has ultimately helped to highlight the important role in safeguarding the documentary heritage and intellectual memory of Beijing.

Keywords: digital memory, public participation, MPMP, cultural heritage, collection

Procedia PDF Downloads 168
6004 Development of Peaceful Wellbeing in Executive Practitioners through Mindfulness-Based Practices

Authors: Narumon Jiwattanasuk, Phrakrupalad Pannavoravat, Pataraporn Sirikanchana

Abstract:

Mindfulness has become a perspective addressing positive wellbeing these days. The aims of this paper are to analyze the problems of executive meditation practitioners at the Buddhamahametta Foundation in Thailand and to provide recommendations on the process to develop peaceful wellbeing in executive meditation practitioners by applying the principles of the four foundations of mindfulness. This study is particularly focused on executives because there is not much research focusing on the well-being development of executives, and the researcher recognizes that executives can be an example within their organizations. This would be a significant influence on their employees and their families to be interested in practicing mindfulness. This improvement will then grow from an individual to the surrounding community such as family, workplace, society, and the nation. This would lead to happiness at the national level, which is the expectation of this research. The paper highlights mindfulness practices that can be performed on a daily basis. This study is qualitative research, and there are 10 key participants who are executives from various sectors such as hospitality, healthcare, retail, power energy, and so on. Three mindfulness-based courses were conducted over a period of 8 months, and in-depth interviews were done before the first course as well as at the end of every course. In total, four in-depth interviews were conducted. The information collected from the interviews was analyzed in order to create the process to develop peaceful well-being. Focus group discussions with the mindfulness specialists were conducted to help develop the mindfulness program as well. As a result of this research, it is found that the executives faced the following problems: stress, negative thinking loops, losing temper, seeking acceptance, worry about uncontrollable external factors, unable to control their words, and weight gain. The cultivation of the four foundations of mindfulness can develop peaceful wellbeing. The results showed that after the key informant executives attended the mindfulness courses and practiced mindfulness regularly, they have developed peaceful well-being in all aspects such as physical, psychological, behavioral, and intellectual by applying 12 mindfulness-based activities. The development of wellbeing, in the conclusion of this study, also includes various tools to support the continuing practice, including the handout of guided mindfulness practice, VDO clips about mindfulness practice, the online dhamma channel, and mobile applications to support regular mindfulness-based practices.

Keywords: executive, mindfulness activities, stress, wellbeing

Procedia PDF Downloads 118
6003 Efficient Motion Estimation by Fast Three Step Search Algorithm

Authors: S. M. Kulkarni, D. S. Bormane, S. L. Nalbalwar

Abstract:

The rapid development in the technology have dramatic impact on the medical health care field. Medical data base obtained with latest machines like CT Machine, MRI scanner requires large amount of memory storage and also it requires large bandwidth for transmission of data in telemedicine applications. Thus, there is need for video compression. As the database of medical images contain number of frames (slices), hence while coding of these images there is need of motion estimation. Motion estimation finds out movement of objects in an image sequence and gets motion vectors which represents estimated motion of object in the frame. In order to reduce temporal redundancy between successive frames of video sequence, motion compensation is preformed. In this paper three step search (TSS) block matching algorithm is implemented on different types of video sequences. It is shown that three step search algorithm produces better quality performance and less computational time compared with exhaustive full search algorithm.

Keywords: block matching, exhaustive search motion estimation, three step search, video compression

Procedia PDF Downloads 489
6002 Solving LWE by Pregressive Pumps and Its Optimization

Authors: Leizhang Wang, Baocang Wang

Abstract:

General Sieve Kernel (G6K) is considered as currently the fastest algorithm for the shortest vector problem (SVP) and record holder of open SVP challenge. We study the lattice basis quality improvement effects of the Workout proposed in G6K, which is composed of a series of pumps to solve SVP. Firstly, we use a low-dimensional pump output basis to propose a predictor to predict the quality of high-dimensional Pumps output basis. Both theoretical analysis and experimental tests are performed to illustrate that it is more computationally expensive to solve the LWE problems by using a G6K default SVP solving strategy (Workout) than these lattice reduction algorithms (e.g. BKZ 2.0, Progressive BKZ, Pump, and Jump BKZ) with sieving as their SVP oracle. Secondly, the default Workout in G6K is optimized to achieve a stronger reduction and lower computational cost. Thirdly, we combine the optimized Workout and the Pump output basis quality predictor to further reduce the computational cost by optimizing LWE instances selection strategy. In fact, we can solve the TU LWE challenge (n = 65, q = 4225, = 0:005) 13.6 times faster than the G6K default Workout. Fourthly, we consider a combined two-stage (Preprocessing by BKZ- and a big Pump) LWE solving strategy. Both stages use dimension for free technology to give new theoretical security estimations of several LWE-based cryptographic schemes. The security estimations show that the securities of these schemes with the conservative Newhope’s core-SVP model are somewhat overestimated. In addition, in the case of LAC scheme, LWE instances selection strategy can be optimized to further improve the LWE-solving efficiency even by 15% and 57%. Finally, some experiments are implemented to examine the effects of our strategies on the Normal Form LWE problems, and the results demonstrate that the combined strategy is four times faster than that of Newhope.

Keywords: LWE, G6K, pump estimator, LWE instances selection strategy, dimension for free

Procedia PDF Downloads 59