Search results for: command line input
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4876

Search results for: command line input

886 Housing Price Dynamics: Comparative Study of 1980-1999 and the New Millenium

Authors: Janne Engblom, Elias Oikarinen

Abstract:

The understanding of housing price dynamics is of importance to a great number of agents: to portfolio investors, banks, real estate brokers and construction companies as well as to policy makers and households. A panel dataset is one that follows a given sample of individuals over time, and thus provides multiple observations on each individual in the sample. Panel data models include a variety of fixed and random effects models which form a wide range of linear models. A special case of panel data models is dynamic in nature. A complication regarding a dynamic panel data model that includes the lagged dependent variable is endogeneity bias of estimates. Several approaches have been developed to account for this problem. In this paper, the panel models were estimated using the Common Correlated Effects estimator (CCE) of dynamic panel data which also accounts for cross-sectional dependence which is caused by common structures of the economy. In presence of cross-sectional dependence standard OLS gives biased estimates. In this study, U.S housing price dynamics were examined empirically using the dynamic CCE estimator with first-difference of housing price as the dependent and first-differences of per capita income, interest rate, housing stock and lagged price together with deviation of housing prices from their long-run equilibrium level as independents. These deviations were also estimated from the data. The aim of the analysis was to provide estimates with comparisons of estimates between 1980-1999 and 2000-2012. Based on data of 50 U.S cities over 1980-2012 differences of short-run housing price dynamics estimates were mostly significant when two time periods were compared. Significance tests of differences were provided by the model containing interaction terms of independents and time dummy variable. Residual analysis showed very low cross-sectional correlation of the model residuals compared with the standard OLS approach. This means a good fit of CCE estimator model. Estimates of the dynamic panel data model were in line with the theory of housing price dynamics. Results also suggest that dynamics of a housing market is evolving over time.

Keywords: dynamic model, panel data, cross-sectional dependence, interaction model

Procedia PDF Downloads 251
885 Experimental Evaluation of Foundation Settlement Mitigations in Liquefiable Soils using Press-in Sheet Piling Technique: 1-g Shake Table Tests

Authors: Md. Kausar Alam, Ramin Motamed

Abstract:

The damaging effects of liquefaction-induced ground movements have been frequently observed in past earthquakes, such as the 2010-2011 Canterbury Earthquake Sequence (CES) in New Zealand and the 2011 Tohoku earthquake in Japan. To reduce the consequences of soil liquefaction at shallow depths, various ground improvement techniques have been utilized in engineering practice, among which this research is focused on experimentally evaluating the press-in sheet piling technique. The press-in sheet pile technique eliminates the vibration, hammering, and noise pollution associated with dynamic sheet pile installation methods. Unfortunately, there are limited experimental studies on the press-in sheet piling technique for liquefaction mitigation using 1g shake table tests in which all the controlling mechanisms of liquefaction-induced foundation settlement, including sand ejecta, can be realistically reproduced. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada, Reno, to evaluate the performance of this technique in liquefiable soil layers. First, a 1/5 size model was developed based on a recent UC San Diego shaking table experiment. The scaled model has a density of 50% for the top crust, 40% for the intermediate liquefiable layer, and 85% for the bottom dense layer. Second, a shallow foundation is seated atop an unsaturated sandy soil crust. Third, in a series of tests, a sheet pile with variable embedment depth is inserted into the liquefiable soil using the press-in technique surrounding the shallow foundations. The scaled models are subjected to harmonic input motions with amplitude and dominant frequency properly scaled based on the large-scale shake table test. This study assesses the performance of the press-in sheet piling technique in terms of reductions in the foundation movements (settlement and tilt) and generated excess pore water pressures. In addition, this paper discusses the cost-effectiveness and carbon footprint features of the studied mitigation measures.

Keywords: excess pore water pressure, foundation settlement, press-in sheet pile, soil liquefaction

Procedia PDF Downloads 95
884 Cooperation of Unmanned Vehicles for Accomplishing Missions

Authors: Ahmet Ozcan, Onder Alparslan, Anil Sezgin, Omer Cetin

Abstract:

The use of unmanned systems for different purposes has become very popular over the past decade. Expectations from these systems have also shown an incredible increase in this parallel. But meeting the demands of the tasks are often not possible with the usage of a single unmanned vehicle in a mission, so it is necessary to use multiple autonomous vehicles with different abilities together in coordination. Therefore the usage of the same type of vehicles together as a swarm is helped especially to satisfy the time constraints of the missions effectively. In other words, it allows sharing the workload by the various numbers of homogenous platforms together. Besides, it is possible to say there are many kinds of problems that require the usage of the different capabilities of the heterogeneous platforms together cooperatively to achieve successful results. In this case, cooperative working brings additional problems beyond the homogeneous clusters. In the scenario presented as an example problem, it is expected that an autonomous ground vehicle, which is lack of its position information, manage to perform point-to-point navigation without losing its way in a previously unknown labyrinth. Furthermore, the ground vehicle is equipped with very limited sensors such as ultrasonic sensors that can detect obstacles. It is very hard to plan or complete the mission for the ground vehicle by self without lost its way in the unknown labyrinth. Thus, in order to assist the ground vehicle, the autonomous air drone is also used to solve the problem cooperatively. The autonomous drone also has limited sensors like downward looking camera and IMU, and it also lacks computing its global position. In this context, it is aimed to solve the problem effectively without taking additional support or input from the outside, just benefiting capabilities of two autonomous vehicles. To manage the point-to-point navigation in a previously unknown labyrinth, the platforms have to work together coordinated. In this paper, cooperative work of heterogeneous unmanned systems is handled in an applied sample scenario, and it is mentioned that how to work together with an autonomous ground vehicle and the autonomous flying platform together in a harmony to take advantage of different platform-specific capabilities. The difficulties of using heterogeneous multiple autonomous platforms in a mission are put forward, and the successful solutions are defined and implemented against the problems like spatially distributed tasks planning, simultaneous coordinated motion, effective communication, and sensor fusion.

Keywords: unmanned systems, heterogeneous autonomous vehicles, coordination, task planning

Procedia PDF Downloads 126
883 Linguistic Competencies of Students with Hearing Impairment

Authors: Munawar Malik, Muntaha Ahmad, Khalil Ullah Khan

Abstract:

Linguistic abilities in students with hearing impairment yet remain a concern for educationists. The emerging technological support and provisions in recent era vows to have addressed the situation and claims significant contribution in terms of linguistic repertoire. Being a descriptive and quantitative paradigm of study, the purpose of this research set forth was to assess linguistic competencies of students with hearing impairment in English language. The goals were further broken down to identify level of reading abilities in the subject population. The population involved students with HI studying at higher secondary level in Lahore. Simple random sampling technique was used to choose a sample of fifty students. A purposive curriculum-based assessment was designed in line with accelerated learning program by Punjab Government, to assess Linguistic competence among the sample. Further to it, an Informal Reading Inventory (IRI) corresponding to reading levels was also developed by researchers duly validated and piloted before the final use. Descriptive and inferential statistics were utilized to reach to the findings. Spearman’s correlation was used to find out relationship between degree of hearing loss, grade level, gender and type of amplification device. Independent sample t-test was used to compare means among groups. Major findings of the study revealed that students with hearing impairment exhibit significant deviation from the mean scores when compared in terms of grades, severity and amplification device. The study divulged that respective students with HI have yet failed to qualify an independent level of reading according to their grades as majority falls at frustration level of word recognition and passage comprehension. The poorer performance can be attributed to lower linguistic competence as it shows in the frustration levels of reading, writing and comprehension. The correlation analysis did reflect an improved performance grade wise, however scores could only correspond to frustration level and independent levels was never achieved. Reported achievements at instructional level of subject population may further to linguistic skills if practiced purposively.

Keywords: linguistic competence, hearing impairment, reading levels, educationist

Procedia PDF Downloads 63
882 Evidence of the Effect of the Structure of Social Representations on Group Identification

Authors: Eric Bonetto, Anthony Piermatteo, Fabien Girandola, Gregory Lo Monaco

Abstract:

The present contribution focuses on the effect of the structure of social representations on group identification. A social representation (SR) is defined as an organized and structured set of cognitions, produced and shared by members of a same group about a same social object. Within this framework, the central core theory establishes a structural distinction between central cognitions – or 'core' – and peripheral ones: the former are theoretically considered as more connected than the later to group members’ social identity and may play a greater role in SRs’ ability to allow group identification by means of a common vision of the object of representation. Indeed, the central core provides a reference point for the in-group as it constitutes a consensual vision that gives meaning to a social object particularly important to individuals and to the group. However, while numerous contributions clearly refer to the underlying role of SRs in group identification, there are only few empirical evidences of this aspect. Thus, we hypothesize an effect of the structure of SRs on group identification. More precisely, central cognitions (vs. peripheral ones) will lead to a stronger group identification. In addition, we hypothesize that the refutation of a cognition will lead to a stronger group identification than its activation. The SR mobilized here is that of 'studying' among a population of first-year undergraduate psychology students. Thus, a pretest (N = 82), using an Attribute-Challenge Technique, was designed in order to identify the central and the peripheral cognitions to use in the primings of our main study. The results of this pretest are in line with previous studies. Then, the main study (online; N = 184), using a social priming methodology, was based on a 2 (Structural status of the cognitions belonging to the prime: central vs. peripheral) x 2 (Type of prime: activation vs. refutation) experimental design in order to test our hypotheses. Results revealed, as expected, the main effect of the structure of the SR on group identification. Indeed, central cognitions trigger a higher level of identification than the peripheral ones. However, we observe neither effect of the type of prime, nor interaction effect. These results experimentally demonstrate for the first time the effect of the structure of SRs on group identification and indicate that central cognitions are more connected than peripheral ones to group members’ social identity. These results will be discussed considering the importance of understanding identity as a function of SRs and on their ability to potentially solve the lack of consideration of the definition of the group in Social Representations Theory.

Keywords: group identification, social identity, social representations, structural approach

Procedia PDF Downloads 191
881 Thermodynamic Analyses of Information Dissipation along the Passive Dendritic Trees and Active Action Potential

Authors: Bahar Hazal Yalçınkaya, Bayram Yılmaz, Mustafa Özilgen

Abstract:

Brain information transmission in the neuronal network occurs in the form of electrical signals. Neural work transmits information between the neurons or neurons and target cells by moving charged particles in a voltage field; a fraction of the energy utilized in this process is dissipated via entropy generation. Exergy loss and entropy generation models demonstrate the inefficiencies of the communication along the dendritic trees. In this study, neurons of 4 different animals were analyzed with one dimensional cable model with N=6 identical dendritic trees and M=3 order of symmetrical branching. Each branch symmetrically bifurcates in accordance with the 3/2 power law in an infinitely long cylinder with the usual core conductor assumptions, where membrane potential is conserved in the core conductor at all branching points. In the model, exergy loss and entropy generation rates are calculated for each branch of equivalent cylinders of electrotonic length (L) ranging from 0.1 to 1.5 for four different dendritic branches, input branch (BI), and sister branch (BS) and two cousin branches (BC-1 & BC-2). Thermodynamic analysis with the data coming from two different cat motoneuron studies show that in both experiments nearly the same amount of exergy is lost while generating nearly the same amount of entropy. Guinea pig vagal motoneuron loses twofold more exergy compared to the cat models and the squid exergy loss and entropy generation were nearly tenfold compared to the guinea pig vagal motoneuron model. Thermodynamic analysis show that the dissipated energy in the dendritic tress is directly proportional with the electrotonic length, exergy loss and entropy generation. Entropy generation and exergy loss show variability not only between the vertebrate and invertebrates but also within the same class. Concurrently, single action potential Na+ ion load, metabolic energy utilization and its thermodynamic aspect contributed for squid giant axon and mammalian motoneuron model. Energy demand is supplied to the neurons in the form of Adenosine triphosphate (ATP). Exergy destruction and entropy generation upon ATP hydrolysis are calculated. ATP utilization, exergy destruction and entropy generation showed differences in each model depending on the variations in the ion transport along the channels.

Keywords: ATP utilization, entropy generation, exergy loss, neuronal information transmittance

Procedia PDF Downloads 393
880 KPI and Tool for the Evaluation of Competency in Warehouse Management for Furniture Business

Authors: Kritchakhris Na-Wattanaprasert

Abstract:

The objective of this research is to design and develop a prototype of a key performance indicator system this is suitable for warehouse management in a case study and use requirement. In this study, we design a prototype of key performance indicator system (KPI) for warehouse case study of furniture business by methodology in step of identify scope of the research and study related papers, gather necessary data and users requirement, develop key performance indicator base on balance scorecard, design pro and database for key performance indicator, coding the program and set relationship of database and finally testing and debugging each module. This study use Balance Scorecard (BSC) for selecting and grouping key performance indicator. The system developed by using Microsoft SQL Server 2010 is used to create the system database. In regard to visual-programming language, Microsoft Visual C# 2010 is chosen as the graphic user interface development tool. This system consists of six main menus: menu login, menu main data, menu financial perspective, menu customer perspective, menu internal, and menu learning and growth perspective. Each menu consists of key performance indicator form. Each form contains a data import section, a data input section, a data searches – edit section, and a report section. The system generates outputs in 5 main reports, the KPI detail reports, KPI summary report, KPI graph report, benchmarking summary report and benchmarking graph report. The user will select the condition of the report and period time. As the system has been developed and tested, discovers that it is one of the ways to judging the extent to warehouse objectives had been achieved. Moreover, it encourages the warehouse functional proceed with more efficiency. In order to be useful propose for other industries, can adjust this system appropriately. To increase the usefulness of the key performance indicator system, the recommendations for further development are as follows: -The warehouse should review the target value and set the better suitable target periodically under the situation fluctuated in the future. -The warehouse should review the key performance indicators and set the better suitable key performance indicators periodically under the situation fluctuated in the future for increasing competitiveness and take advantage of new opportunities.

Keywords: key performance indicator, warehouse management, warehouse operation, logistics management

Procedia PDF Downloads 430
879 Modelling Distress Sale in Agriculture: Evidence from Maharashtra, India

Authors: Disha Bhanot, Vinish Kathuria

Abstract:

This study focusses on the issue of distress sale in horticulture sector in India, which faces unique challenges, given the perishable nature of horticulture crops, seasonal production and paucity of post-harvest produce management links. Distress sale, from a farmer’s perspective may be defined as urgent sale of normal or distressed goods, at deeply discounted prices (way below the cost of production) and it is usually characterized by unfavorable conditions for the seller (farmer). The small and marginal farmers, often involved in subsistence farming, stand to lose substantially if they receive lower prices than expected prices (typically framed in relation to cost of production). Distress sale maximizes price uncertainty of produce leading to substantial income loss; and with increase in input costs of farming, the high variability in harvest price severely affects profit margin of farmers, thereby affecting their survival. The objective of this study is to model the occurrence of distress sale by tomato cultivators in the Indian state of Maharashtra, against the background of differential access to set of factors such as - capital, irrigation facilities, warehousing, storage and processing facilities, and institutional arrangements for procurement etc. Data is being collected using primary survey of over 200 farmers in key tomato growing areas of Maharashtra, asking information on the above factors in addition to seeking information on cost of cultivation, selling price, time gap between harvesting and selling, role of middleman in selling, besides other socio-economic variables. Farmers selling their produce far below the cost of production would indicate an occurrence of distress sale. Occurrence of distress sale would then be modelled as a function of farm, household and institutional characteristics. Heckman-two-stage model would be applied to find the probability/likelihood of a famer falling into distress sale as well as to ascertain how the extent of distress sale varies in presence/absence of various factors. Findings of the study would recommend suitable interventions and promotion of strategies that would help farmers better manage price uncertainties, avoid distress sale and increase profit margins, having direct implications on poverty.

Keywords: distress sale, horticulture, income loss, India, price uncertainity

Procedia PDF Downloads 241
878 Habitat Preference of Lepidoptera (Butterflies), Using Geospatial Analysis in Diyasaru Wetland Park, Western Province, Sri Lanka

Authors: Hiripurage Mallika Sandamali Dissanayaka

Abstract:

Butterflies are found everywhere on Earth, helping flowering plants reproduce through pollination. Wetlands perform many valuable functions such as providing wildlife habitat. Diyasaru Wetland Park was chosen as the study site. It is located in a highly urbanized area of Sri Jayawardenepura Kotte, Sri Lanka. A distribution map was prepared to increase butterfly habitat in the urbanized area, and research was conducted to determine the most suitable sections for using it. As this wetland has footpaths for walking, line transect surveys were used to mark species within the sampling area, and directly observed species were recorded. All data collection was done from 0900 to 1200 hours and 1300 to 1600 hours and fieldwork was done from 11 February 2020 to 20 January 2021. ED binoculars (10.5x45), DSLR cameras (Canon EOS/EFS5 mm 3.5-5.6), and Garmin GPS (Etrex 10) were used to observe butterfly species, identify locations, and take photographs as evidence. Analyzing their habitats using GIS (ArcGIS Pro) to identify their distribution within the park premises, the distribution density of the known size of the population was calculated for each point by kernel density, and local similarity values were calculated for each pair of corresponding features through hotspot analysis, and cell values were determined by inverse distance weighting (IDW) using a linearly weighted combination of a set of sample points. According to the maps prepared to predict the distribution of butterflies in this park, the high level of distribution or favorable areas were near flower gardens and meadows, but some individual species prefer habitats that are more suitable for their life activities, so they live in other areas. Sixty-six (66) species belonging to six (6) families have been recorded in the premises. Sixty (60) species of least concern (LC), two (2) near threatened (NT), and four (4) vulnerable (VU) species have been recorded, and several new species, such as Plum Judy (Abisara echerius), were reported. The outcome of the study will form the basis for decision-making by the Sri Lanka Land Development (SLLD) Corporation for the future development and maintenance of the park.

Keywords: wetland, Lepidoptera, habitat, urban, west

Procedia PDF Downloads 48
877 Promoting Public Participation in the Digital Memory Project: Experience from My Peking Memory Project(MPMP)

Authors: Xiaoshuang Jia, Huiling Feng, Li Niu, Wei Hai

Abstract:

Led by Humanistic Beijing Studies Center in Renmin University of China, My Peking Memory Project(MPMP) is a long-time digital memory project under guarantee of public participation to enable the cultural and intellectual memory of Beijing to be collected, organized, preserved and promoted for discovery and research. Taking digital memory as a new way, MPMP is an important part of Peking Memory Project(PMP) which is aimed at using digital technologies to protect and (re)present the cultural heritage in Beijing. The key outcome of MPMP is the co-building of a total digital collection of knowledge assets about Beijing. Institutional memories are central to Beijing’s collection and consist of the official published documentary content of Beijing. These have already fall under the archival collection purview. The advances in information and communication technology and the knowledge form social memory theory have allowed us to collect more comprehensively beyond institutional collections. It is now possible to engage citizens on a large scale to collect private memories through crowdsourcing in digital formats. Private memories go beyond official published content to include personal narratives, some of which are just in people’s minds until they are captured by MPMP. One aim of MPMP is to engage individuals, communities, groups or institutions who have formed memories and content about Beijing, and would like to contribute them. The project hopes to build a culture of remembering and it believes ‘Every Memory Matters’. Digital memory contribution was achieved through the development of the MPMP. In reducing barriers to digital contribution and promoting high public Participation, MPMP has taken explored the harvesting of transcribe service for digital ingestion, mobile platform and some off-line activities like holding social forum. MPMP has also cooperated with the ‘Implementation Plan of Support Plan for Growth of Talents in Renmin University of China’ to get manpower and intellectual support. After six months of operation, now MPMP have more than 2000 memories added and 7 Special Memory Collections now online. The work of MPMP has ultimately helped to highlight the important role in safeguarding the documentary heritage and intellectual memory of Beijing.

Keywords: digital memory, public participation, MPMP, cultural heritage, collection

Procedia PDF Downloads 168
876 Urban Noise and Air Quality: Correlation between Air and Noise Pollution; Sensors, Data Collection, Analysis and Mapping in Urban Planning

Authors: Massimiliano Condotta, Paolo Ruggeri, Chiara Scanagatta, Giovanni Borga

Abstract:

Architects and urban planners, when designing and renewing cities, have to face a complex set of problems, including the issues of noise and air pollution which are considered as hot topics (i.e., the Clean Air Act of London and the Soundscape definition). It is usually taken for granted that these problems go by together because the noise pollution present in cities is often linked to traffic and industries, and these produce air pollutants as well. Traffic congestion can create both noise pollution and air pollution, because NO₂ is mostly created from the oxidation of NO, and these two are notoriously produced by processes of combustion at high temperatures (i.e., car engines or thermal power stations). We can see the same process for industrial plants as well. What have to be investigated – and is the topic of this paper – is whether or not there really is a correlation between noise pollution and air pollution (taking into account NO₂) in urban areas. To evaluate if there is a correlation, some low-cost methodologies will be used. For noise measurements, the OpeNoise App will be installed on an Android phone. The smartphone will be positioned inside a waterproof box, to stay outdoor, with an external battery to allow it to collect data continuously. The box will have a small hole to install an external microphone, connected to the smartphone, which will be calibrated to collect the most accurate data. For air, pollution measurements will be used the AirMonitor device, an Arduino board to which the sensors, and all the other components, are plugged. After assembling the sensors, they will be coupled (one noise and one air sensor) and placed in different critical locations in the area of Mestre (Venice) to map the existing situation. The sensors will collect data for a fixed period of time to have an input for both week and weekend days, in this way it will be possible to see the changes of the situation during the week. The novelty is that data will be compared to check if there is a correlation between the two pollutants using graphs that should show the percentage of pollution instead of the values obtained with the sensors. To do so, the data will be converted to fit on a scale that goes up to 100% and will be shown thru a mapping of the measurement using GIS methods. Another relevant aspect is that this comparison can help to choose which are the right mitigation solutions to be applied in the area of the analysis because it will make it possible to solve both the noise and the air pollution problem making only one intervention. The mitigation solutions must consider not only the health aspect but also how to create a more livable space for citizens. The paper will describe in detail the methodology and the technical solution adopted for the realization of the sensors, the data collection, noise and pollution mapping and analysis.

Keywords: air quality, data analysis, data collection, NO₂, noise mapping, noise pollution, particulate matter

Procedia PDF Downloads 211
875 Optimal Placement of the Unified Power Controller to Improve the Power System Restoration

Authors: Mohammad Reza Esmaili

Abstract:

One of the most important parts of the restoration process of a power network is the synchronizing of its subsystems. In this situation, the biggest concern of the system operators will be the reduction of the standing phase angle (SPA) between the endpoints of the two islands. In this regard, the system operators perform various actions and maneuvers so that the synchronization operation of the subsystems is successfully carried out and the system finally reaches acceptable stability. The most common of these actions include load control, generation control and, in some cases, changing the network topology. Although these maneuvers are simple and common, due to the weak network and extreme load changes, the restoration will be associated with low speed. One of the best ways to control the SPA is to use FACTS devices. By applying a soft control signal, these tools can reduce the SPA between two subsystems with more speed and accuracy, and the synchronization process can be done in less time. Meanwhile, the unified power controller (UPFC), a series-parallel compensator device with the change of transmission line power and proper adjustment of the phase angle, will be the proposed option in order to realize the subject of this research. Therefore, with the optimal placement of UPFC in a power system, in addition to improving the normal conditions of the system, it is expected to be effective in reducing the SPA during power system restoration. Therefore, the presented paper provides an optimal structure to coordinate the three problems of improving the division of subsystems, reducing the SPA and optimal power flow with the aim of determining the optimal location of UPFC and optimal subsystems. The proposed objective functions in this paper include maximizing the quality of the subsystems, reducing the SPA at the endpoints of the subsystems, and reducing the losses of the power system. Since there will be a possibility of creating contradictions in the simultaneous optimization of the proposed objective functions, the structure of the proposed optimization problem is introduced as a non-linear multi-objective problem, and the Pareto optimization method is used to solve it. The innovative technique proposed to implement the optimization process of the mentioned problem is an optimization algorithm called the water cycle (WCA). To evaluate the proposed method, the IEEE 39 bus power system will be used.

Keywords: UPFC, SPA, water cycle algorithm, multi-objective problem, pareto

Procedia PDF Downloads 65
874 Charcoal Production from Invasive Species: Suggested Shift for Increased Household Income and Forest Plant Diversity in Nepal

Authors: Kishor Prasad Bhatta, Suman Ghimire, Durga Prasad Joshi

Abstract:

Invasive Alien Species (IAS) are considered waste forest resources in Nepal. The rapid expansion of IAS is one of the nine main drivers of forest degradation, though the extent and distribution of this species are not well known. Further, the knowledge of the impact of IAS removal on forest plant diversity is hardly known, and the possibilities of income generation from them at the grass-root communities are rarely documented. Systematic sampling of 1% with nested circular plots of 500 square meters was performed in IAS removed and non-removed area, each of 30 hectares in Udayapur Community Forest User Group (CFUG), Chitwan, central Nepal to observe whether the removal of IAS contributed to an increase in plant diversity. In addition, ten entrepreneurs of Udaypur CFUG, involved in the charcoal production, briquette making and marketing were interviewed and interacted as well as their record keeping booklets were reviewed to understand if the charcoal production contributed to their income and employment. The average annual precipitation and temperature of the study area is 2100 mm and 34 degree Celsius respectively with Shorea robusta as main tree species and Eupatorium odoratum as dominant IAS. All the interviewed households were from the ̔below-poverty-line’ category as per Community Forestry Guidelines. A higher Shannon-Weiner plant diversity index at regeneration level was observed in IAS removed areas (2.43) than in control site (1.95). Furthermore, the number of tree seedlings and saplings in the IAS harvested blocks were significantly higher (p < 0.005) compared to the unharvested one. The sale of charcoal produced through the pyrolysis of IAS in ̔ Bio-energy kilns’ contributed for an average increased income of 30.95 % (Nepalese rupees 31,000) of the involved households. Despite above factors, some operational policy hurdles related to charcoal transport and taxation existed at field level. This study suggests that plant diversity could be increased through the removal of IAS, and considerable economic benefits could be achieved if charcoal is substantially produced and utilized.

Keywords: briquette, economic benefits, pyrolysis, regeneration

Procedia PDF Downloads 277
873 A Comparative Study of Sampling-Based Uncertainty Propagation with First Order Error Analysis and Percentile-Based Optimization

Authors: M. Gulam Kibria, Shourav Ahmed, Kais Zaman

Abstract:

In system analysis, the information on the uncertain input variables cause uncertainty in the system responses. Different probabilistic approaches for uncertainty representation and propagation in such cases exist in the literature. Different uncertainty representation approaches result in different outputs. Some of the approaches might result in a better estimation of system response than the other approaches. The NASA Langley Multidisciplinary Uncertainty Quantification Challenge (MUQC) has posed challenges about uncertainty quantification. Subproblem A, the uncertainty characterization subproblem, of the challenge posed is addressed in this study. In this subproblem, the challenge is to gather knowledge about unknown model inputs which have inherent aleatory and epistemic uncertainties in them with responses (output) of the given computational model. We use two different methodologies to approach the problem. In the first methodology we use sampling-based uncertainty propagation with first order error analysis. In the other approach we place emphasis on the use of Percentile-Based Optimization (PBO). The NASA Langley MUQC’s subproblem A is developed in such a way that both aleatory and epistemic uncertainties need to be managed. The challenge problem classifies each uncertain parameter as belonging to one the following three types: (i) An aleatory uncertainty modeled as a random variable. It has a fixed functional form and known coefficients. This uncertainty cannot be reduced. (ii) An epistemic uncertainty modeled as a fixed but poorly known physical quantity that lies within a given interval. This uncertainty is reducible. (iii) A parameter might be aleatory but sufficient data might not be available to adequately model it as a single random variable. For example, the parameters of a normal variable, e.g., the mean and standard deviation, might not be precisely known but could be assumed to lie within some intervals. It results in a distributional p-box having the physical parameter with an aleatory uncertainty, but the parameters prescribing its mathematical model are subjected to epistemic uncertainties. Each of the parameters of the random variable is an unknown element of a known interval. This uncertainty is reducible. From the study, it is observed that due to practical limitations or computational expense, the sampling is not exhaustive in sampling-based methodology. That is why the sampling-based methodology has high probability of underestimating the output bounds. Therefore, an optimization-based strategy to convert uncertainty described by interval data into a probabilistic framework is necessary. This is achieved in this study by using PBO.

Keywords: aleatory uncertainty, epistemic uncertainty, first order error analysis, uncertainty quantification, percentile-based optimization

Procedia PDF Downloads 238
872 Delineation of Green Infrastructure Buffer Areas with a Simulated Annealing: Consideration of Ecosystem Services Trade-Offs in the Objective Function

Authors: Andres Manuel Garcia Lamparte, Rocio Losada Iglesias, Marcos BoullóN Magan, David Miranda Barros

Abstract:

The biodiversity strategy of the European Union for 2030, mentions climate change as one of the key factors for biodiversity loss and considers green infrastructure as one of the solutions to this problem. In this line, the European Commission has developed a green infrastructure strategy which commits members states to consider green infrastructure in their territorial planning. This green infrastructure is aimed at granting the provision of a wide number of ecosystem services to support biodiversity and human well-being by countering the effects of climate change. Yet, there are not too many tools available to delimit green infrastructure. The available ones consider the potential of the territory to provide ecosystem services. However, these methods usually aggregate several maps of ecosystem services potential without considering possible trade-offs. This can lead to excluding areas with a high potential for providing ecosystem services which have many trade-offs with other ecosystem services. In order to tackle this problem, a methodology is proposed to consider ecosystem services trade-offs in the objective function of a simulated annealing algorithm aimed at delimiting green infrastructure multifunctional buffer areas. To this end, the provision potential maps of the regulating ecosystem services considered to delimit the multifunctional buffer areas are clustered in groups, so that ecosystem services that create trade-offs are excluded in each group. The normalized provision potential maps of the ecosystem services in each group are added to obtain a potential map per group which is normalized again. Then the potential maps for each group are combined in a raster map that shows the highest provision potential value in each cell. The combined map is then used in the objective function of the simulated annealing algorithm. The algorithm is run both using the proposed methodology and considering the ecosystem services individually. The results are analyzed with spatial statistics and landscape metrics to check the number of ecosystem services that the delimited areas produce, as well as their regularity and compactness. It has been observed that the proposed methodology increases the number of ecosystem services produced by delimited areas, improving their multifunctionality and increasing their effectiveness in preventing climate change impacts.

Keywords: ecosystem services trade-offs, green infrastructure delineation, multifunctional buffer areas, climate change

Procedia PDF Downloads 172
871 Economics of Precision Mechanization in Wine and Table Grape Production

Authors: Dean A. McCorkle, Ed W. Hellman, Rebekka M. Dudensing, Dan D. Hanselka

Abstract:

The motivation for this study centers on the labor- and cost-intensive nature of wine and table grape production in the U.S., and the potential opportunities for precision mechanization using robotics to augment those production tasks that are labor-intensive. The objectives of this study are to evaluate the economic viability of grape production in five U.S. states under current operating conditions, identify common production challenges and tasks that could be augmented with new technology, and quantify a maximum price for new technology that growers would be able to pay. Wine and table grape production is primed for precision mechanization technology as it faces a variety of production and labor issues. Methodology: Using a grower panel process, this project includes the development of a representative wine grape vineyard in five states and a representative table grape vineyard in California. The panels provided production, budget, and financial-related information that are typical for vineyards in their area. Labor costs for various production tasks are of particular interest. Using the data from the representative budget, 10-year projected financial statements have been developed for the representative vineyard and evaluated using a stochastic simulation model approach. Labor costs for selected vineyard production tasks were evaluated for the potential of new precision mechanization technology being developed. These tasks were selected based on a variety of factors, including input from the panel members, and the extent to which the development of new technology was deemed to be feasible. The net present value (NPV) of the labor cost over seven years for each production task was derived. This allowed for the calculation of a maximum price for new technology whereby the NPV of labor costs would equal the NPV of purchasing, owning, and operating new technology. Expected Results: The results from the stochastic model will show the projected financial health of each representative vineyard over the 2015-2024 timeframe. Investigators have developed a preliminary list of production tasks that have the potential for precision mechanization. For each task, the labor requirements, labor costs, and the maximum price for new technology will be presented and discussed. Together, these results will allow technology developers to focus and prioritize their research and development efforts for wine and table grape vineyards, and suggest opportunities to strengthen vineyard profitability and long-term viability using precision mechanization.

Keywords: net present value, robotic technology, stochastic simulation, wine and table grapes

Procedia PDF Downloads 258
870 Monolithic Integrated GaN Resonant Tunneling Diode Pair with Picosecond Switching Time for High-speed Multiple-valued Logic System

Authors: Fang Liu, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun, JunShuai Xue

Abstract:

The explosive increasing needs of data processing and information storage strongly drive the advancement of the binary logic system to multiple-valued logic system. Inherent negative differential resistance characteristic, ultra-high-speed switching time, and robust anti-irradiation capability make III-nitride resonant tunneling diode one of the most promising candidates for multi-valued logic devices. Here we report the monolithic integration of GaN resonant tunneling diodes in series to realize multiple negative differential resistance regions, obtaining at least three stable operating states. A multiply-by-three circuit is achieved by this combination, increasing the frequency of the input triangular wave from f0 to 3f0. The resonant tunneling diodes are grown by plasma-assistedmolecular beam epitaxy on free-standing c-plane GaN substrates, comprising double barriers and a single quantum well both at the atomic level. Device with a peak current density of 183kA/cm² in conjunction with a peak-to-valley current ratio (PVCR) of 2.07 is observed, which is the best result reported in nitride-based resonant tunneling diodes. Microwave oscillation event at room temperature was discovered with a fundamental frequency of 0.31GHz and an output power of 5.37μW, verifying the high repeatability and robustness of our device. The switching behavior measurement was successfully carried out, featuring rise and fall times in the order of picoseconds, which can be used in high-speed digital circuits. Limited by the measuring equipment and the layer structure, the switching time can be further improved. In general, this article presents a novel nitride device with multiple negative differential regions driven by the resonant tunneling mechanism, which can be used in high-speed multiple value logic field with reduced circuit complexity, demonstrating a new solution of nitride devices to break through the limitations of binary logic.

Keywords: GaN resonant tunneling diode, negative differential resistance, multiple-valued logic system, switching time, peak-to-valley current ratio

Procedia PDF Downloads 99
869 Evaluating the Effect of Climate Change and Land Use/Cover Change on Catchment Hydrology of Gumara Watershed, Upper Blue Nile Basin, Ethiopia

Authors: Gashaw Gismu Chakilu

Abstract:

Climate and land cover change are very important issues in terms of global context and their responses to environmental and socio-economic drivers. The dynamic of these two factors is currently affecting the environment in unbalanced way including watershed hydrology. In this paper individual and combined impacts of climate change and land use land cover change on hydrological processes were evaluated through applying the model Soil and Water Assessment Tool (SWAT) in Gumara watershed, Upper Blue Nile basin Ethiopia. The regional climate; temperature and rainfall data of the past 40 years in the study area were prepared and changes were detected by using trend analysis applying Mann-Kendall trend test. The land use land cover data were obtained from land sat image and processed by ERDAS IMAGIN 2010 software. Three land use land cover data; 1973, 1986, and 2013 were prepared and these data were used for base line, model calibration and change study respectively. The effects of these changes on high flow and low flow of the catchment have also been evaluated separately. The high flow of the catchment for these two decades was analyzed by using Annual Maximum (AM) model and the low flow was evaluated by seven day sustained low flow model. Both temperature and rainfall showed increasing trend; and then the extent of changes were evaluated in terms of monthly bases by using two decadal time periods; 1973-1982 was taken as baseline and 2004-2013 was used as change study. The efficiency of the model was determined by Nash-Sutcliffe (NS) and Relative Volume error (RVe) and their values were 0.65 and 0.032 for calibration and 0.62 and 0.0051 for validation respectively. The impact of climate change was higher than that of land use land cover change on stream flow of the catchment; the flow has been increasing by 16.86% and 7.25% due to climate and LULC change respectively, and the combined change effect accounted 22.13% flow increment. The overall results of the study indicated that Climate change is more responsible for high flow than low flow; and reversely the land use land cover change showed more significant effect on low flow than high flow of the catchment. From the result we conclude that the hydrology of the catchment has been altered because of changes of climate and land cover of the study area.

Keywords: climate, LULC, SWAT, Ethiopia

Procedia PDF Downloads 373
868 Development of Vertically Integrated 2D Lake Victoria Flow Models in COMSOL Multiphysics

Authors: Seema Paul, Jesper Oppelstrup, Roger Thunvik, Vladimir Cvetkovic

Abstract:

Lake Victoria is the second largest fresh water body in the world, located in East Africa with a catchment area of 250,000 km², of which 68,800 km² is the actual lake surface. The hydrodynamic processes of the shallow (40–80 m deep) water system are unique due to its location at the equator, which makes Coriolis effects weak. The paper describes a St.Venant shallow water model of Lake Victoria developed in COMSOL Multiphysics software, a general purpose finite element tool for solving partial differential equations. Depth soundings taken in smaller parts of the lake were combined with recent more extensive data to resolve the discrepancies of the lake shore coordinates. The topography model must have continuous gradients, and Delaunay triangulation with Gaussian smoothing was used to produce the lake depth model. The model shows large-scale flow patterns, passive tracer concentration and water level variations in response to river and tracer inflow, rain and evaporation, and wind stress. Actual data of precipitation, evaporation, in- and outflows were applied in a fifty-year simulation model. It should be noted that the water balance is dominated by rain and evaporation and model simulations are validated by Matlab and COMSOL. The model conserves water volume, the celerity gradients are very small, and the volume flow is very slow and irrotational except at river mouths. Numerical experiments show that the single outflow can be modelled by a simple linear control law responding only to mean water level, except for a few instances. Experiments with tracer input in rivers show very slow dispersion of the tracer, a result of the slow mean velocities, in turn, caused by the near-balance of rain with evaporation. The numerical and hydrodynamical model can evaluate the effects of wind stress which is exerted by the wind on the lake surface that will impact on lake water level. Also, model can evaluate the effects of the expected climate change, as manifest in changes to rainfall over the catchment area of Lake Victoria in the future.

Keywords: bathymetry, lake flow and steady state analysis, water level validation and concentration, wind stress

Procedia PDF Downloads 225
867 Making a Resilient Livable City: Explorations of Smart Management Mechanism for Aging Society’s Disaster Prevention

Authors: Wei-Kuang Liu, Ya-Hsu Chiang

Abstract:

In the coming of an aging society, the issues of living quality, health care, and social security for the elderly have been gradually taken seriously. In order to maintain favorable living condition, urban societies are also facing the challenge of disasters caused by extreme climate change. However, in the practice of disaster prevention, elderly people are always weak due to their physiological conditions. That is to say, in the planning of resilient urbanism, the aging society is relatively in need of more care. Thus, this research aims to map areas where have high-density elderly population and fragile environmental condition in Taiwan, and to understand the actual situation of disaster prevention management in these areas, so as to provide suggestions for the development of intellectual resilient urban management. The research takes the cities of Taoyuan and Taichung as examples for explorations. According to GIS mapping of areas with high aging index, high-density population and high flooding potential, the communities of Sihai and Fuyuan in Taoyuan and the communities of Taichang and Nanshih in Taichung are highlighted. In these communities, it can be found that there are more elderly population and less labor population with high-density living condition. In addition, they are located in the areas where they have experienced severe flooding in the recent past. Based on a series of interviews with community organizations, there is only one community out of the four using flood information mobile app and Line messages for the management of disaster prevention, and the others still rely on the traditional approaches that manage the works of disaster prevention by their community security patrol teams and community volunteers. The interview outcome shows that most elderly people are not interested in learning the use of intellectual devices. Therefore, this research suggests to keep doing the GIS mapping of areas with high aging index, high-density population and high flooding potential for grasping the high-risk communities and to help develop smart monitor and forecast systems for disaster prevention practice in these areas. Based on case-study explorations, the research also advises that it is important to develop easy-to-use bottom-up and two-way immediate communication mechanism for the management of aging society’s disaster prevention.

Keywords: aging society, disaster prevention, GIS, resilient, Taiwan

Procedia PDF Downloads 116
866 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation

Authors: Jonathan Gong

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning

Procedia PDF Downloads 129
865 Strategy and Mechanism for Intercepting Unpredictable Moving Targets in the Blue-Tailed Damselfly (Ischnura elegans)

Authors: Ziv Kassner, Gal Ribak

Abstract:

Members of the Odonata order (dragonflies and damselflies) stand out for their maneuverability and superb flight control, which allow them to catch flying prey in the air. These outstanding aerial abilities were fine-tuned during millions of years of an evolutionary arms race between Odonata and their prey, providing an attractive research model for studying the relationship between sensory input – and aerodynamic output in a flying insect. The ability to catch a maneuvering target in air is interesting not just for insect behavioral ecology and neuroethology but also for designing small and efficient robotic air vehicles. While the aerial prey interception of dragonflies (suborder: Anisoptera) have been studied before, little is known about how damselflies (suborder: Zygoptera) intercept prey. Here, high-speed cameras (filming at 1000 frames per second) were used to explore how damselflies catch unpredictable targets that move through air. Blue-tailed damselflies - Ischnura elegans (family: Coenagrionidae) were introduced to a flight arena and filmed while landing on moving targets that were oscillated harmonically. The insects succeeded in capturing targets that were moved with an amplitude of 6 cm and frequencies of 0-2.5 Hz (fastest mean target speed of 0.3 m s⁻¹) and targets that were moved in 1 Hz (an average speed of 0.3 m s⁻¹) but with an amplitude of 15 cm. To land on stationary or slow targets, damselflies either flew directly to the target, or flew sideways, up to a point in which the target was fixed in the center of the field of view, followed by direct flight path towards the target. As the target moved in increased frequency, damselflies demonstrated an ability to track the targets while flying sideways and minimizing the changes of their body direction on the yaw axis. This was likely an attempt to keep the targets at the center of the visual field while minimizing rotational optic flow of the surrounding visual panorama. Stabilizing rotational optic flow helps in estimation of the velocity and distance of the target. These results illustrate how dynamic visual information is used by damselflies to guide them towards a maneuvering target, enabling the superb aerial hunting abilities of these insects. They also exemplifies the plasticity of the damselfly flight apparatus which enables flight in any direction, irrespective of the direction of the body.

Keywords: bio-mechanics, insect flight, target fixation, tracking and interception

Procedia PDF Downloads 150
864 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever

Authors: Sudha T., Naveen C.

Abstract:

Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.

Keywords: deep learning model, dengue fever, prediction, optimization

Procedia PDF Downloads 64
863 Using a Phenomenological Approach to Explore the Experiences of Nursing Students in Coping with Their Emotional Responses in Caring for End-Of-Life Patients

Authors: Yun Chan Lee

Abstract:

Background: End-of-life care is a large area of all nursing practice and student nurses are likely to meet dying patients in many placement areas. It is therefore important to understand the emotional responses and coping strategies of student nurses in order for nursing education systems to have some appreciation of how nursing students might be supported in the future. Methodology: This research used a qualitative phenomenological approach. Six student nurses understanding a degree-level adult nursing course were interviewed. Their responses to questions were analyzed using interpretative phenomenological analysis. Finding: The findings identified 3 main themes. First, the common experience of ‘unpreparedness’. A very small number of participants felt that this was unavoidable and that ‘no preparation is possible’, the majority felt that they were unprepared because of ‘insufficient input’ from the university and as a result of wider ‘social taboos’ around death and dying. The second theme showed that emotions were affected by ‘the personal connection to the patient’ and the important sub-themes of ‘the evoking of memories’, ‘involvement in care’ and ‘sense of responsibility’. The third theme, the coping strategies used by students, seemed to fall into two broad areas those ‘internal’ with the student and those ‘external’. In terms of the internal coping strategies, ‘detachment’, ‘faith’, ‘rationalization’ and ‘reflective skills’ are the important components of this part. Regarding the external coping strategies, ‘clinical staff’ and ‘the importance of family and friends’ are the importance of accessing external forms of support. Implication: It is clear that student nurses are affected emotionally by caring for dying patients and many of them have apprehension even before they begin on their placements but very often this is unspoken. Those anxieties before the placement become more pronounced during and continue after the placements. This has implications for when support is offered and possibly its duration. Another significant point of the study is that participants often highlighted their wish to speak to qualified nurses after their experiences of being involved in end-of-life care and especially when they had been present at the time of death. Many of the students spoke that qualified nurses were not available to them. This seemed to be due to a number of reasons. Because the qualified nurses were not available, students had to make use of family members and friends to talk to. Consequently, the implication of this study is not only to educate student nurses but also to educate the qualified mentors on the importance of providing emotional support to students.

Keywords: nursing students, coping strategies, end-of-life care, emotional responses

Procedia PDF Downloads 160
862 Introduction of Para-Sasaki-Like Riemannian Manifolds and Construction of New Einstein Metrics

Authors: Mancho Manev

Abstract:

The concept of almost paracontact Riemannian manifolds (abbr., apcR manifolds) was introduced by I. Sato in 1976 as an analogue of almost contact Riemannian manifolds. The notion of an apcR manifold of type (p,q) was defined by S. Sasaki in 1980, where p and q are respectively the numbers of the multiplicity of the structure eigenvalues 1 and -1. It also has a simple eigenvalue of 0. In our work, we consider (2n+1)-dimensional apcR manifolds of type (n,n), i.e., the paracontact distribution of the studied manifold can be considered as a 2n-dimensional almost paracomplex Riemannian distribution with almost paracomplex structure and structure group O(n) × O(n). The aim of the present study is to introduce a new class of apcR manifolds. Such a manifold is obtained using the construction of a certain Riemannian cone over it, and the resulting manifold is a paraholomorphic paracomplex Riemannian manifold (abbr., phpcR manifold). We call it a para-Sasaki-like Riemannian manifold (abbr., pSlR manifold) and give some explicit examples. We study the structure of pSlR spaces and find that the paracontact form η is closed and each pSlR manifold locally can be considered as a certain product of the real line with a phpcR manifold, which is locally a Riemannian product of two equidimensional Riemannian spaces. We also obtain that the curvature of the pSlR manifolds is completely determined by the curvature of the underlying local phpcR manifold. Moreover, the ξ-directed Ricci curvature is equal to -2n, while in the Sasaki case, it is 2n. Accordingly, the pSlR manifolds can be interpreted as the counterpart of the Sasaki manifolds; the skew-symmetric part of ∇η vanishes, while in the Sasaki case, the symmetric part vanishes. We define a hyperbolic extension of a (complete) phpcR manifold that resembles a certain warped product, and we indicate that it is a (complete) pSlR manifold. In addition, we consider the hyperbolic extension of a phpcR manifold and prove that if the initial manifold is a complete Einstein manifold with negative scalar curvature, then the resulting manifold is a complete Einstein pSlR manifold with negative scalar curvature. In this way, we produce new examples of a complete Einstein Riemannian manifold with negative scalar curvature. Finally, we define and study para contact conformal/homothetic deformations by deriving a subclass that preserves the para-Sasaki-like condition. We then find that if we apply a paracontact homothetic deformation of a pSlR space, we obtain that the Ricci tensor is invariant.

Keywords: almost paracontact Riemannian manifolds, Einstein manifolds, holomorphic product manifold, warped product manifold

Procedia PDF Downloads 205
861 Critical Evaluation of the Transformative Potential of Artificial Intelligence in Law: A Focus on the Judicial System

Authors: Abisha Isaac Mohanlal

Abstract:

Amidst all suspicions and cynicism raised by the legal fraternity, Artificial Intelligence has found its way into the legal system and has revolutionized the conventional forms of legal services delivery. Be it legal argumentation and research or resolution of complex legal disputes; artificial intelligence has crept into all legs of modern day legal services. Its impact has been largely felt by way of big data, legal expert systems, prediction tools, e-lawyering, automated mediation, etc., and lawyers around the world are forced to upgrade themselves and their firms to stay in line with the growth of technology in law. Researchers predict that the future of legal services would belong to artificial intelligence and that the age of human lawyers will soon rust. But as far as the Judiciary is concerned, even in the developed countries, the system has not fully drifted away from the orthodoxy of preferring Natural Intelligence over Artificial Intelligence. Since Judicial decision-making involves a lot of unstructured and rather unprecedented situations which have no single correct answer, and looming questions of legal interpretation arise in most of the cases, discretion and Emotional Intelligence play an unavoidable role. Added to that, there are several ethical, moral and policy issues to be confronted before permitting the intrusion of Artificial Intelligence into the judicial system. As of today, the human judge is the unrivalled master of most of the judicial systems around the globe. Yet, scientists of Artificial Intelligence claim that robot judges can replace human judges irrespective of how daunting the complexity of issues is and how sophisticated the cognitive competence required is. They go on to contend that even if the system is too rigid to allow robot judges to substitute human judges in the recent future, Artificial Intelligence may still aid in other judicial tasks such as drafting judicial documents, intelligent document assembly, case retrieval, etc., and also promote overall flexibility, efficiency, and accuracy in the disposal of cases. By deconstructing the major challenges that Artificial Intelligence has to overcome in order to successfully invade the human- dominated judicial sphere, and critically evaluating the potential differences it would make in the system of justice delivery, the author tries to argue that penetration of Artificial Intelligence into the Judiciary could surely be enhancive and reparative, if not fully transformative.

Keywords: artificial intelligence, judicial decision making, judicial systems, legal services delivery

Procedia PDF Downloads 223
860 Administrative Traits and Capabilities of Mindanao State University Heads of Office as Perceived by Their Subordinates

Authors: Johanida L. Etado

Abstract:

The study determined the Administrative traits and capabilities of Mindanao State University Heads of office as perceived by their respondents. Specifically, this study attempted to find out: To get the primary data, a self- constructed survey questionnaire which was validated by a panel of experts, including the adviser. Most of the MSU head of office were aware of their duties and responsibilities as a manager. Considering their vast knowledge and expertise on the technical or task aspects of the job, it is not surprising that respondents perceived them to a high degree as work or task oriented. MSU head of office were knowledgeable and capable in performing field-specific, specialized tasks and enabling them to coordinate work, solve problems, communicate effectively, and also understand the big picture in light of the front-line work that must be performed. The significance of coaching or mentoring in this instance may be explained by the less number of Master’s or Doctorate degree holder among employees resulting to close supervision and mentorship of head of office towards the latter; Without comparison, interpersonal or human relation capabilities is a very effective way in dealing with people as it gives them the opportunity to influence their employees. In the case of MSU head of office, the best way of dealing with problematic employees is by establishing trust and allowing them to partake in the decision making even on setting organizational goals as it would make them feel part of the organization; Thus, it is recommended that the success of an organization depends largely with the effectiveness of the head of unit. In this case, being development oriented would mean encouraging both head officers & employees to know not only the technical know hoe of the organisation but also the visions, missions, goals & the latter’s aspirations to establish cooperation & harmonious working environment; hence, orientation & reorientation time to time would enable them to be more development oriented; With respect to human relations, effective interpersonal relationship between head of unit & employee is of paramount importance. In order to strengthen the relationship between the two, the management should establish an upward & downward communication where two parties will have to establish an open & transparent communication, either through verbal & non-verbal one.

Keywords: administrator, administrative traits, leadership traits, work orientation

Procedia PDF Downloads 68
859 Diversity of Large Mammals in Awash National Park and its Ecosystem Role and Biodiversity Conservation, Ethiopia

Authors: Sintayehu W. Dejene

Abstract:

An ecological and biodiversity conservation study on species composition, population status and habitat association of large mammals and the impact of human interference on their distribution was carried out in Awash National Park, Ethiopia during October, 2012 to July, 2013. A total of 25 species of large mammals were recorded from the study area. Representative sample sites were taken from each habitat type and surveyed using random line transect method. For medium and large mammal survey, indirect methods (foot print and dung) and direct observations were used. Twenty three species of medium to large-sized mammals were identified and recorded from ANP. A total of 25 species of median and large size mammals were recorded from the study area. Out of this, 20 species were rodents of three families and five species were insectivores of two families. Beisa Oryx (Oryx beisa beisa),Soemmerings gazelle (Gazella soemmeringi),Defassa waterbuck (Kobus defassa), Lesser Kudu (Strepsiceros imberbis), Greater Kudu (Strepsiceros strepsiceros), Warthog (Phacochoerus aethiopicus), Baboon (Papio anubis baboon) and Salt's dikdik (Madoqua saltiana) were the most common seen median and large mammals in the study area. Beisa Oryx (Oryx beisa beisa) and Sommering Gazelles (Gazella soemmeringi) are commonly found in the open areas, where as Greater Kudus (Strepsiceros strepsiceros) and Lesser Kudus (Strepsiceros imberbis) was seen in the bushed areas. Defarsa waterbuck (Kobus defassa) was observed in the bushy river area in Northern part of the Park. Anubis baboon (Papio anubis baboon) was seen near to the river side. Hamadryas baboon founded in semi-desert areas of Awash National Park, particularly in Filwoha area. The area is one of a key biodiversity conservation and provide pure water, air, food, grazing land and storage of carbon.

Keywords: awash national park, biodiversity, ecosystem value, habitat association, large mammals, population status, species composition

Procedia PDF Downloads 380
858 Hybrid Knowledge and Data-Driven Neural Networks for Diffuse Optical Tomography Reconstruction in Medical Imaging

Authors: Paola Causin, Andrea Aspri, Alessandro Benfenati

Abstract:

Diffuse Optical Tomography (DOT) is an emergent medical imaging technique which employs NIR light to estimate the spatial distribution of optical coefficients in biological tissues for diagnostic purposes, in a noninvasive and non-ionizing manner. DOT reconstruction is a severely ill-conditioned problem due to prevalent scattering of light in the tissue. In this contribution, we present our research in adopting hybrid knowledgedriven/data-driven approaches which exploit the existence of well assessed physical models and build upon them neural networks integrating the availability of data. Namely, since in this context regularization procedures are mandatory to obtain a reasonable reconstruction [1], we explore the use of neural networks as tools to include prior information on the solution. 2. Materials and Methods The idea underlying our approach is to leverage neural networks to solve PDE-constrained inverse problems of the form 𝒒 ∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃), (1) where D is a loss function which typically contains a discrepancy measure (or data fidelity) term plus other possible ad-hoc designed terms enforcing specific constraints. In the context of inverse problems like (1), one seeks the optimal set of physical parameters q, given the set of observations y. Moreover, 𝑦̃ is the computable approximation of y, which may be as well obtained from a neural network but also in a classic way via the resolution of a PDE with given input coefficients (forward problem, Fig.1 box ). Due to the severe ill conditioning of the reconstruction problem, we adopt a two-fold approach: i) we restrict the solutions (optical coefficients) to lie in a lower-dimensional subspace generated by auto-decoder type networks. This procedure forms priors of the solution (Fig.1 box ); ii) we use regularization procedures of type 𝒒̂ ∗ = 𝒂𝒓𝒈𝒎𝒊𝒏𝒒 𝐃(𝒚, 𝒚̃)+ 𝑹(𝒒), where 𝑹(𝒒) is a regularization functional depending on regularization parameters which can be fixed a-priori or learned via a neural network in a data-driven modality. To further improve the generalizability of the proposed framework, we also infuse physics knowledge via soft penalty constraints (Fig.1 box ) in the overall optimization procedure (Fig.1 box ). 3. Discussion and Conclusion DOT reconstruction is severely hindered by ill-conditioning. The combined use of data-driven and knowledgedriven elements is beneficial and allows to obtain improved results, especially with a restricted dataset and in presence of variable sources of noise.

Keywords: inverse problem in tomography, deep learning, diffuse optical tomography, regularization

Procedia PDF Downloads 74
857 Italian Sign Language and Deafness in a North-Italian Border Region: Results of Research on the Linguistic Needs of Teachers and Students

Authors: Maria Tagarelli De Monte

Abstract:

In 2021, the passage of the law recognizing Italian Sign Language (LIS) as the language of the Italian deaf minority was the input for including this visual-gestural language in the curricula of interpreters and translators choosing the academic setting for their training. Yet, a gap remains concerning LIS education of teachers and communication assistants as referring figures for people who are deaf or hard of hearing in mainstream education. As well documented in the related scientific literature, deaf children often experience severe difficulties with the languages spoken in the country where they grow up, manifesting in all levels of literacy competence. In the research introduced here, the experience of deaf students (and their teachers) attending schools is explored in areas that are characterized by strong native bilingualism, such as Friuli-Venezia Giulia (FVG), facing Italian Northeast borders. This region is peculiar as the native population may be bilingual Italian and Friulian (50% of the local population), German, and/or Slovenian. The research involved all schools of all levels in Friuli to understand the relationship between the language skills expressed by teachers and those shown by deaf learners with a background in sign language. In addition to collecting specific information on the degree of preparation of teachers in deaf-related matters and LIS, the research has allowed to highlight the role, often poorly considered, covered by the communication assistants who work alongside deaf students. On several occasions, teachers and assistants were unanimous in affirming the importance of mutual collaboration and adequate consideration of the educational-rehabilitative history of the deaf child and her family. The research was based on a mixed method of structured questionnaires and semi-structured interviews with the referring teachers. As a result, a varied and complex framework emerged, showing an asymmetry in preparing personnel dedicated to the deaf learner. Considering how Italian education has long invested in creating an inclusive and accessible school system (i.e. with the "Ten Theses for Democratic Language Education"), a constructive analysis will complete the discussion in an attempt to understand how linguistic (and modal) differences can become levers of inclusion.

Keywords: FVG, LIS, linguistic needs, deafness, teacher education, bilingual bimodal children, communication assistants, inclusion model

Procedia PDF Downloads 43