Search results for: solar radiation pressure
2582 Adopting Circular Economy Principles in Municipal Waste Management: A Pathway to Sustainability
Authors: Bushra, Filza Akhtar
Abstract:
As countries face increased pressure to address environmental issues and resource constraints, the need to implement sustainable waste management strategies grows. This research study investigates the concept of circular economy principles in the context of municipal waste management as a tool for achieving sustainability goals. Municipalities can reduce environmental impacts, conserve resources, and promote economic development by switching from traditional linear waste disposal prototypes to circular approaches prioritizing waste minimization, reuse, recycling, and resource recovery. Drawing on case studies and best practices worldwide, this study investigates the potential benefits, obstacles, and opportunities of incorporating circular economy principles into waste management methods. It also talks about the role of regulatory frameworks, technology advances, and stakeholder participation in driving the transformation.Keywords: sustainable, waste, management, circular economy
Procedia PDF Downloads 362581 3D-printing for Ablation Planning in Patients Undergoing Atrial Fibrillation Ablation: 3D-GALA Trial
Authors: Terentes Printzios Dimitrios, Loanna Gourgouli, Vlachopoulos Charalambos
Abstract:
Aims: Atrial fibrillation (AF) remains one of the major causes of stroke, heart failure, sudden death and cardiovascular morbidity. Ablation techniques are becoming more appealing after the latest results of randomized trials showing the overall clinical benefit. On the other hand, imaging techniques and the frontier application of 3D printing are emerging as a valuable ally for cardiac procedures. However, no randomized trial has directly assessed the impact of preprocedural imaging and especially 3D printing guidance for AF ablation. The present study is designed to investigate for the first time the effect of 3D printing of the heart on the safety and effectiveness of the ablation procedure. Methods and design: The 3D-GALA trial is a randomized, open-label, controlled, multicentre clinical trial of 2 parallel groups designed to enroll a total of 100 patients undergoing ablation using cryo-balloon for paroxysmal and persistent AF. Patients will be randomized with a patient allocation ratio of 1: 1 to preprocedural MRI scan of the heart and 3D printing of left atrium and pulmonary veins and cryoablation versus standard cryoablation without imaging. Patients will be followed up to 6 months after the index procedure. The primary outcome measure is the reduction of radiation dose and contrast amount during pulmonary veins isolation. Secondary endpoints will include the percentage of atrial fibrillation relapse at 24h-Holter electrocardiogram monitoring at 6 months after initial treatment. Discussion: To our knowledge, the 3D-GALA trial will be the first study to provide evidence about the clinical impact of preprocedural imaging and 3D printing before cryoablation.Keywords: atrial fibrillation, cardiac MRI, cryoablation, 3-d printing
Procedia PDF Downloads 1782580 Modelling of Lunar Lander’s Thruster’s Exhaust Plume Impingement in Vacuum
Authors: Mrigank Sahai, R. Sri Raghu
Abstract:
This paper presents the modelling of rocket exhaust plume flow field and exhaust plume impingement in vacuum for the liquid apogee engine and attitude control thrusters of the lunar lander. Analytic formulations for rarefied gas kinetics has been taken as reference for modelling the plume flow field. The plume has been modelled as high speed, collision-less, axi-symmetric gas jet, expanding into vacuum and impinging at a normally set diffusive circular plate. Specular reflections have not been considered for the present study. Different parameters such as number density, temperature, pressure, flow velocity, heat flux etc., have been calculated and have been plotted against and compared to Direct Simulation Monte Carlo results. These analyses have provided important information for the placement of critical optical instruments and design of optimal thermal insulation for the hardware that may come in contact with the thruster exhaust.Keywords: collision-less gas, lunar lander, plume impingement, rarefied exhaust plume
Procedia PDF Downloads 2692579 Evaluation of Knowledge and Acceptance of Food Irradiated by Individual from Food Bank of Brazil
Authors: Juliana Altavista Sagretti Gallo, Susy Frey Sabato
Abstract:
Despite the poverty in the world, a third of all food produced in the world is wasted. FAO, the United Nations Organization of Agriculture and Food, points out the need to combine actions and new technologies to combat hunger and waste in contrast to the high production of food in the world. The energy of ionizing radiation in food brought many positive results, such as increased validity and insect infestation control. The food banks are organizations that act at various points of the food chain to collect and distribute food to the needy. So, the aim of this study was to initiate a partnership between irradiation and the food bank through the development of a questionnaire to evaluate and disseminate the knowledge and acceptance of individuals in the food bank in Brazil. Also, this study aimed to standardize a basis questionnaire for future research assessment of irradiated foods. For the construction of the questionnaire as a measuring instrument, a comprehensive and rigorous literature review was made. It's covered qualitative research, questionnaires, sensory evaluation, and food irradiated. Three stages of pre - tests were necessary, and related fields of experts were consulted. As a result, the questionnaire has three parts, personal issues, assertive issues and questions of multiple choices and finally an informative question. The questionnaire was applied in Ceagesp food bank in the biggest center of food in Brazil. Conclusions. 30 % of participants of Ceagesp bank had already heard of the Food irradiation but did not know about the mechanism, so they rejected the idea to associate with radioactivity and danger. The video showed in the last question and application of the questionnaire disseminated the idea of security. All individuals declare understand the goal of treatment and accept buy and consume irradiated food after them.Keywords: bank of food, questionary, irradiated food, acceptance of irradiated food
Procedia PDF Downloads 3232578 A Statistical Model for the Dynamics of Single Cathode Spot in Vacuum Cylindrical Cathode
Authors: Po-Wen Chen, Jin-Yu Wu, Md. Manirul Ali, Yang Peng, Chen-Te Chang, Der-Jun Jan
Abstract:
Dynamics of cathode spot has become a major part of vacuum arc discharge with its high academic interest and wide application potential. In this article, using a three-dimensional statistical model, we simulate the distribution of the ignition probability of a new cathode spot occurring in different magnetic pressure on old cathode spot surface and at different arcing time. This model for the ignition probability of a new cathode spot was proposed in two typical situations, one by the pure isotropic random walk in the absence of an external magnetic field, other by the retrograde motion in external magnetic field, in parallel with the cathode surface. We mainly focus on developed relationship between the ignition probability density distribution of a new cathode spot and the external magnetic field.Keywords: cathode spot, vacuum arc discharge, transverse magnetic field, random walk
Procedia PDF Downloads 4342577 The Cadmium Adsorption Study by Using Seyitomer Fly Ash, Diatomite and Molasses in Wastewater
Authors: N. Tugrul, E. Moroydor Derun, E. Cinar, A. S. Kipcak, N. Baran Acarali, S. Piskin
Abstract:
Fly ash is an important waste, produced in thermal power plants which causes very important environmental pollutions. For this reason the usage and evaluation the fly ash in various areas are very important. Nearly, 15 million tons/year of fly ash is produced in Turkey. In this study, usage of fly ash with diatomite and molasses for heavy metal (Cd) adsorption from wastewater is investigated. The samples of Seyitomer region fly ash were analyzed by X-ray fluorescence (XRF) and Scanning Electron Microscope (SEM) then diatomite (0 and 1% in terms of fly ash, w/w) and molasses (0-0.75 mL) were pelletized under 30 MPa of pressure for the usage of cadmium (Cd) adsorption in wastewater. After the adsorption process, samples of Seyitomer were analyzed using Optical Emission Spectroscopy (ICP-OES). As a result, it is seen that the usage of Seyitomer fly ash is proper for cadmium (Cd) adsorption and an optimum adsorption yield with 52% is found at a compound with Seyitomer fly ash (10 g), diatomite (0.5 g) and molasses (0.75 mL) at 2.5 h of reaction time, pH:4, 20ºC of reaction temperature and 300 rpm of stirring rate.Keywords: heavy metal, fly ash, molasses, diatomite, adsorption, wastewater
Procedia PDF Downloads 3052576 The Clinical and Survival Differences between Primary B-Cell and T/NK-Cell Non-Hodgkin Lymphomas in the Nasopharynx, Nasal Cavity, and Nasal Sinus: A Population-Based Study of 3839 Cases in the Seer Database
Authors: Jiajia Peng, Danni Cheng, Jianqing Qiu, Yufang Rao, Minzi Mao, Ke Qiu, Junhong Li, Fei Chen, Feng Liu, Jun Liu, Xiaosong Mu, Wenxin Yu, Wei Zhang, Wei Xu, Yu Zhao, Jianjun Ren
Abstract:
Background: Currently, primary B-cell non-Hodgkin lymphoma (B-NHL) and T/NK-cell non-Hodgkin lymphoma (NKT-NHL) originated from the nasal cavity (NC), nasopharynx (NP) and nasal sinus (NS) distinguished unclearly in the clinic. Objective: We sought to compare the clinical and survival differences of B-NHL and NKT-NHL that occurred in NC, NP, and NS, respectively. Methods: Retrospective data of patients diagnosed with nasal cavity lymphoma (NCL), nasopharyngeal lymphoma (NPL), and nasal sinus lymphoma (NSL) between 1975 and 2017 from the Surveillance, Epidemiology, and End Results (SEER) database were collected. We identified the B/NKT-NHL patients based on the histological type and performed univariate, multivariate, and Kaplan-Meier analyses to investigate the survival rates. Results: Of the identified 3,101 B-NHL and 738 NKT-NHL patients, those with B-NHL in NP were the majority (43%) and had better cancer-specific survival than those in NC and NS from 2010 to 2017 (5-year-CSS, NC vs. NP vs. NS: 81% vs. 83% vs. 82%). In contrast, most of the NKT-NHL originated from NC (68%) and had the highest CSS rate in the recent seven years (2010-2017, 5-year-CSS: 63%). Additionally, the survival outcomes of patients with NKT-NHL-NP (HR: 1.34, 95% CI: 0.62-2.89, P=0.460) who had received surgery were much worse than those of patients with NKT-NHL-NC (HR: 1.07, 95% CI: 0.75-1.52, P=0.710) and NKT-NHL-NS (HR: 1.11, 95% CI: 0.59-2.07, P=0.740). NKT-NHL-NS patients who had radiation performed (HR: 0.38, 95% CI: 0.19-0.73, P=0.004) showed the highest survival rates, while chemotherapy performed (HR: 1.01, 95% CI: 0.43-2.37, P=0.980) presented opposite results. Conclusions: Although B-NHL and NKT-NHL originating from NC, NP and NS had similar anatomical locations, their clinical characteristics, treatment therapies, and prognoses were different in this study. Our findings may suggest that B-NHL and NKT-NHL in NC, NP, and NS should be treated as different diseases in the clinic.Keywords: nasopharyngeal lymphoma, nasal cavity lymphoma, nasal sinus lymphoma, B-cell non-Hodgkin lymphoma, T/NK-cell non-Hodgkin lymphoma
Procedia PDF Downloads 1842575 Development of Under Water Autonomous Vertical Profiler: Unique Solution to Oceanographic Studies
Authors: I. K. Sharma
Abstract:
Over the years world over system are being developed by research labs continuously monitor under water parameters in the coastal waters of sea such as conductivity, salinity, pressure, temperature, chlorophyll and biological blooms at different levels of water column. The research institutions have developed profilers which are launched by ship connected through cable, glider type profilers following underwater trajectory, buoy any driven profilers, wire guided profilers etc. In all these years, the effect was to design autonomous profilers with no cable quality connection, simple operation and on line date transfer in terms accuracy, repeatability, reliability and consistency. Hence for the Ministry of Communication and Information Technology, India sponsored research project to National Institute of Oceanography, GOA, India to design and develop autonomous vertical profilers, it has taken system and AVP has been successfully developed and tested.Keywords: oceanography, water column, autonomous profiler, buoyancy
Procedia PDF Downloads 3982574 Investigation of Ground Disturbance Caused by Pile Driving: Case Study
Authors: Thayalan Nall, Harry Poulos
Abstract:
Piling is the most widely used foundation method for heavy structures in poor soil conditions. The geotechnical engineer can choose among a variety of piling methods, but in most cases, driving piles by impact hammer is the most cost-effective alternative. Under unfavourable conditions, driving piles can cause environmental problems, such as noise, ground movements and vibrations, with the risk of ground disturbance leading to potential damage to proposed structures. In one of the project sites in which the authors were involved, three offshore container terminals, namely CT1, CT2 and CT3, were constructed over thick compressible marine mud. The seabed was around 6m deep and the soft clay thickness within the project site varied between 9m and 20m. CT2 and CT3 were connected together and rectangular in shape and were 2600mx800m in size. CT1 was 400m x 800m in size and was located on south opposite of CT2 towards its eastern end. CT1 was constructed first and due to time and environmental limitations, it was supported on a “forest” of large diameter driven piles. CT2 and CT3 are now under construction and are being carried out using a traditional dredging and reclamation approach with ground improvement by surcharging with vertical drains. A few months after the installation of the CT1 piles, a 2600m long sand bund to 2m above mean sea level was constructed along the southern perimeter of CT2 and CT3 to contain the dredged mud that was expected to be pumped. The sand bund was constructed by sand spraying and pumping using a dredging vessel. About 2000m length of the sand bund in the west section was constructed without any major stability issues or any noticeable distress. However, as the sand bund approached the section parallel to CT1, it underwent a series of deep seated failures leading the displaced soft clay materials to heave above the standing water level. The crest of the sand bund was about 100m away from the last row of piles. There were no plausible geological reasons to conclude that the marine mud only across the CT1 region was weaker than over the rest of the site. Hence it was suspected that the pile driving by impact hammer may have caused ground movements and vibrations, leading to generation of excess pore pressures and cyclic softening of the marine mud. This paper investigates the probable cause of failure by reviewing: (1) All ground investigation data within the region; (2) Soil displacement caused by pile driving, using theories similar to spherical cavity expansion; (3) Transfer of stresses and vibrations through the entire system, including vibrations transmitted from the hammer to the pile, and the dynamic properties of the soil; and (4) Generation of excess pore pressure due to ground vibration and resulting cyclic softening. The evidence suggests that the problems encountered at the site were primarily caused by the “side effects” of the pile driving operations.Keywords: pile driving, ground vibration, excess pore pressure, cyclic softening
Procedia PDF Downloads 2352573 Digital Transformation in Production Planning and Control: Evaluation of the Organizational Readiness
Authors: Tobias Wissing, Peter Burggräf, Johannes Wagner
Abstract:
Cost pressure, competitiveness and the increasing turbulence of globalized saturated markets has been the driver for a variety of research activities in the field of production planning and control (PPC) during the past decades. For some time past an increasing awareness for innovative technologies in terms of Industry 4.0 can be noticed. Although there are many promising approaches a solely installation of those smart solutions will not maximize the PPC performance. To accelerate the successful digital transformation the cooperation between employee and technology also has to be adapted. The existing processes and organizational structures might be not sufficient to maximize the utilization of technological innovations. This paper presents the key results of an extensive study which was conducted by the Laboratory for Machine Tools and Production Engineering (WZL) of the RWTH Aachen University to evaluate the current situation and examine the organizational readiness for this digital transformation.Keywords: cyber-physical production system, digital transformation, industry 4.0, production planning and control
Procedia PDF Downloads 3532572 Permeodynamic Particulate Matter Filtration for Improved Air Quality
Authors: Hamad M. Alnagran, Mohammed S. Imbabi
Abstract:
Particulate matter (PM) in the air we breathe is detrimental to health. Overcoming this problem has attracted interest and prompted research on the use of PM filtration in commercial buildings and homes to be carried out. The consensus is that tangible health benefits can result from the use of PM filters in most urban environments, to clean up the building’s fresh air supply and thereby reduce exposure of residents to airborne PM. The authors have investigated and are developing a new large-scale Permeodynamic Filtration Technology (PFT) capable of permanently filtering and removing airborne PMs from outdoor spaces, thus also benefiting internal spaces such as the interiors of buildings. Theoretical models were developed, and laboratory trials carried out to determine, and validate through measurement permeodynamic filtration efficiency and pressure drop as functions of PM particle size distributions. The conclusion is that PFT offers a potentially viable, cost effective end of pipe solution to the problem of airborne PM.Keywords: air filtration, particulate matter, particle size distribution, permeodynamic
Procedia PDF Downloads 2042571 Performance of the Hybrid Loop Heat Pipe
Authors: Nandy Putra, Imansyah Ibnu Hakim, Iwan Setyawan, Muhammad Zayd A.I
Abstract:
A two-phase cooling technology of passive system sometimes can no longer meet the cooling needs of an increasingly challenging due to the inherent limitations of the capillary pumping for example in terms of the heat flux that can lead to dry out. In this study, intended to overcome the dry out with the addition of a diaphragm, they pump to accelerate the fluid transportation from the condenser to the evaporator. Diaphragm pump installed on the bypass line. When it did not happen dry out then the hybrid loop heat pipe will be work passively using a capillary pressure of wick. Meanwhile, when necessary, hybrid loop heat pipe will be work actively, using diaphragm pump with temperature control installed on the evaporator. From the results, it can be said that the pump has been successfully overcome dry out and can distribute working fluid from the condenser to the evaporator and reduce the temperature of the evaporator from 143°C to 100°C as a temperature controlled where the pump start actively at set point 100°C.Keywords: hybrid, heat pipe, dry out, assisted, pump
Procedia PDF Downloads 3522570 Second-Order Slip Flow and Heat Transfer in a Long Isothermal Microchannel
Authors: Huei Chu Weng, Chien-Hung Liu
Abstract:
This paper presents a study on the effect of second-order slip and jump on forced convection through a long isothermally heated or cooled planar microchannel. The fully developed solutions of thermal flow fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and Smoluchowski jump boundary conditions. Results reveal that the second-order term in the Karniadakis slip boundary condition is found to contribute a negative velocity slip and then to lead to a higher pressure drop as well as a higher fluid temperature for the heated-wall case or to a lower fluid temperature for the cooled-wall case. These findings are contrary to predictions made by the Deissler model. In addition, the role of second-order slip becomes more significant when the Knudsen number increases.Keywords: microfluidics, forced convection, gas rarefaction, second-order boundary conditions
Procedia PDF Downloads 4502569 Studying Projection Distance and Flow Properties by Shape Variations of Foam Monitor
Authors: Hyun-Kyu Cho, Jun-Su Kim, Choon-Geun Huh, Geon Lee Young-Chul Park
Abstract:
In this study, the relationship between flow properties and fluid projection distance look into connection for shape variations of foam monitor. A numerical analysis technique for fluid analysis of a foam monitor was developed for the prediction. Shape of foam monitor the flow path of fluid flow according to the shape, The fluid losses were calculated from flow analysis result.. The modified model used the length increase model of the flow path, and straight line of the model. Inlet pressure was 7 [bar] and external was atmosphere codition. am. The results showed that the length increase model of the flow path and straight line of the model was improved in the nozzle projection distance.Keywords: injection performance, finite element method, foam monitor, Projection distance
Procedia PDF Downloads 3472568 Nonlinear Flow Behavior and Validity of the Cubic Law in a Rough Fracture
Authors: Kunwar Mrityunjai Sharma, Trilok Nath Singh
Abstract:
The Navier-Stokes equation is used to study nonlinear fluid flow in rough 2D fractures. The major goal is to investigate the influence of inertial flow owing to fracture wall roughness on nonlinear flow behavior. Roughness profiles are developed using Barton's Joint Roughness Coefficient (JRC) and used as fracture walls to assess wall roughness. Four JRC profiles (5, 11, 15, and 19) are employed in the study, where a higher number indicates higher roughness. A parametric study has been performed using varying pressure gradients, and the corresponding Forchheimer number is calculated to observe the nonlinear behavior. The results indicate that the fracture roughness has a significant effect on the onset of nonlinearity. Additionally, the validity of the cubic law is evaluated and observed that it overestimates the flow in rough fractures and should be used with utmost care.Keywords: fracture flow, nonlinear flow, cubic law, Navier-stokes equation
Procedia PDF Downloads 1082567 Relationship between ISO 14001 and Market Performance of Firms in China: An Institutional and Market Learning Perspective
Authors: Hammad Riaz, Abubakr Saeed
Abstract:
Environmental Management System (EMS), i.e., ISO 14001 helps to build corporate reputation, legitimacy and can also be considered as firms’ strategic response to institutional pressure to reduce the impact of business activity on natural environment. The financial outcomes of certifying with ISO 14001 are still unclear and equivocal. Drawing on institutional and market learning theories, the impact of ISO 14001 on firms’ market performance is examined for Chinese firms. By employing rigorous event study approach, this paper compared ISO 14001 certified firms with non-certified counterpart firms based on different matching criteria that include size, return on assets and industry. The results indicate that the ISO 14001 has been negatively signed by the investors both in the short and long-run. This paper suggested implications for policy makers, managers, and other nonprofit organizations.Keywords: ISO 14001, legitimacy, institutional forces, event study approach, emerging markets
Procedia PDF Downloads 1612566 Infrared Lightbox and iPhone App for Improving Detection Limit of Phosphate Detecting Dip Strips
Authors: H. Heidari-Bafroui, B. Ribeiro, A. Charbaji, C. Anagnostopoulos, M. Faghri
Abstract:
In this paper, we report the development of a portable and inexpensive infrared lightbox for improving the detection limits of paper-based phosphate devices. Commercial paper-based devices utilize the molybdenum blue protocol to detect phosphate in the environment. Although these devices are easy to use and have a long shelf life, their main deficiency is their low sensitivity based on the qualitative results obtained via a color chart. To improve the results, we constructed a compact infrared lightbox that communicates wirelessly with a smartphone. The system measures the absorbance of radiation for the molybdenum blue reaction in the infrared region of the spectrum. It consists of a lightbox illuminated by four infrared light-emitting diodes, an infrared digital camera, a Raspberry Pi microcontroller, a mini-router, and an iPhone to control the microcontroller. An iPhone application was also developed to analyze images captured by the infrared camera in order to quantify phosphate concentrations. Additionally, the app connects to an online data center to present a highly scalable worldwide system for tracking and analyzing field measurements. In this study, the detection limits for two popular commercial devices were improved by a factor of 4 for the Quantofix devices (from 1.3 ppm using visible light to 300 ppb using infrared illumination) and a factor of 6 for the Indigo units (from 9.2 ppm to 1.4 ppm) with repeatability of less than or equal to 1.2% relative standard deviation (RSD). The system also provides more granular concentration information compared to the discrete color chart used by commercial devices and it can be easily adapted for use in other applications.Keywords: infrared lightbox, paper-based device, phosphate detection, smartphone colorimetric analyzer
Procedia PDF Downloads 1232565 Development of an Artificial Ear for Bone-Conducted Objective Occlusion Measurement
Authors: Yu Luan
Abstract:
The bone-conducted objective occlusion effect (OE) is characterized by a discomforting sensation of fullness experienced in an occluded ear. This phenomenon arises from various external stimuli, such as human speech, chewing, and walking, which generate vibrations transmitted through the body to the ear canal walls. The bone-conducted OE occurs due to the pressure build-up inside the occluded ear caused by sound radiating into the ear canal cavity from its walls. In the hearing aid industry, artificial ears are utilized as a tool for developing hearing aids. However, the currently available commercial artificial ears primarily focus on pure acoustics measurements, neglecting the bone-conducted vibration aspect. This research endeavors to develop an artificial ear specifically designed for bone-conducted occlusion measurements. Finite element analysis (FEA) modeling has been employed to gain insights into the behavior of the artificial ear.Keywords: artificial ear, bone conducted vibration, occlusion measurement, finite element modeling
Procedia PDF Downloads 882564 A Counter-flow Vortex Tube With Energy Separation: An Experimental Study and CFD Analysis
Authors: Li̇zan Mahmood Khorsheed Zangana
Abstract:
Experimental and numerical investigations have been carried out to study the mechanism of separation energy and flow phenomena in the counter-flow vortex tube. This manuscript presents a complete comparison between the experimental investigation and CFD analysis. The experimental model tested under different inlet pressures. Three-dimensional numerical modelling using the k-ε model. The results show any increase in both cold mass fraction and inlet pressure caused to increase ΔTc, and the maximum ΔTc value occurs at P = 6 bar. The coefficient of performance (COP) of two important factors in the vortex tube have been evaluated, which ranged from 0.25 to 0.74. The maximum axial velocity is 93, where it occurs at the tube axis close the inlet exit (Z/L=0.2). The results showed a good agreement for experimental and numerical analysis.Keywords: counter flow, vortex tube, computational fluid dynamics analysis, energy separation, experimental study
Procedia PDF Downloads 792563 Molecular Dynamics Simulations of the Structural, Elastic and Thermodynamic Properties of Cubic GaBi
Authors: M. Zemouli, K. Amara, M. Elkeurti, Y. Benallou
Abstract:
We present the molecular dynamic simulations results of the structural and dynamical properties of the zinc-blende GaBi over a wide range of temperature (300-1000) K. Our simulation where performed in the framework of the three-body Tersoff potential, which accurately reproduces the lattice constants and elastic constants of the GaBi. A good agreement was found between our calculated results and the available theoretical data of the lattice constant, the bulk modulus and the cohesive energy. Our study allows us to predict the thermodynamic properties such as the specific heat and the lattice thermal expansion. In addition, this method allows us to check its ability to predict the phase transition of this compound. In particular, the transition pressure to the rock-salt phase is calculated and the results are compared with other available works.Keywords: Gallium compounds, molecular dynamics simulations, interatomic potential thermodynamic properties, structural phase transition
Procedia PDF Downloads 4452562 Design and Burnback Analysis of Three Dimensional Modified Star Grain
Authors: Almostafa Abdelaziz, Liang Guozhu, Anwer Elsayed
Abstract:
The determination of grain geometry is an important and critical step in the design of solid propellant rocket motor. In this study, the design process involved parametric geometry modeling in CAD, MATLAB coding of performance prediction and 2D star grain ignition experiment. The 2D star grain burnback achieved by creating new surface via each web increment and calculating geometrical properties at each step. The 2D star grain is further modified to burn as a tapered 3D star grain. Zero dimensional method used to calculate the internal ballistic performance. Experimental and theoretical results were compared in order to validate the performance prediction of the solid rocket motor. The results show that the usage of 3D grain geometry will decrease the pressure inside the combustion chamber and enhance the volumetric loading ratio.Keywords: burnback analysis, rocket motor, star grain, three dimensional grains
Procedia PDF Downloads 2452561 Power Angle Control Strategy of Virtual Synchronous Machine: A Novel Approach to Control Virtual Synchronous Machine
Authors: Shishir Lamichhane, Saurav Dulal, Bibek Gautam, Madan Thapa Magar, Indraman Tamrakar
Abstract:
Renewable energies such as wind turbines and solar photovoltaic have gained significance as a result of global environmental pollution and energy crises. These sources of energy are converted into electrical energy and delivered to end-users through the utility system. As a result of the widespread use of power electronics-based grid-interfacing technologies to accommodate renewable sources of energy, the prevalence of converters has expanded as well. As a result, the power system's rotating inertia is decreasing, endangering the utility grid's stability. The use of Virtual Synchronous Machine (VSM) technology has been proposed to overcome the grid stability problem due to low rotating inertia. The grid-connected inverter used in VSM can be controlled to emulate inertia, which replicates the external features of a synchronous generator. As a result, the rotating inertia is increased to support the power system's stability. A power angle control strategy is proposed in this paper and its model is simulated in MATLAB/Simulink to study the effects of parameter disturbances on the active power and frequency for a VSM. The system consists of a synchronous generator, which is modeled in such a way that the frequency drops to an unacceptable region during transient conditions due to a lack of inertia when VSM is not used. Then, the suggested model incorporating VSM emulates rotating inertia, injecting a controllable amount of energy into the grid during frequency transients to enhance transient stability.Keywords: damping constant, inertia–constant, ROCOF, transient stability, distributed sources
Procedia PDF Downloads 2072560 Scale Prototype to Estimate the Resistance to Lateral Displacement Buried Pipes and submerged in non-Cohesive Soils
Authors: Enrique Castañeda, Tomas Hernadez, Mario Ulloa
Abstract:
Recent studies related to submarine pipelines under high pressure, temperature and buried, forces us to make bibliographical and documentary research to make us of references applicable to our problem. This paper presents an experimental methodology to the implementation of results obtained in a scale model, bibliography soil mechanics and finite element simulation. The model consists of a tank of 0.60 x 0.90 x 0.60 basis equipped high side windows, tires and digital hardware devices for measuring different variables to be applied to the model, where the mechanical properties of the soil are determined, simulation of drag a pipeline buried in a non-cohesive seafloor of the Gulf of Mexico, estimate the failure surface and application of each of the variables for the determination of mechanical elements.Keywords: static friction coefficient, maximum passive force resistant soil, normal, tangential stress
Procedia PDF Downloads 3622559 Granule Morphology of Zirconia Powder with Solid Content on Two-Fluid Spray Drying
Authors: Hyeongdo Jeong, Jong Kook Lee
Abstract:
Granule morphology and microstructure were affected by slurry viscosity, chemical composition, particle size and spray drying process. In this study, we investigated granule morphology of zirconia powder with solid content on two-fluid spray drying. Zirconia granules after spray drying show sphere-like shapes with a diameter of 40-70 μm at low solid contents (30 or 40 wt%) and specific surface area of 5.1-5.6 m²/g. But a donut-like shape with a few cracks were observed on zirconia granules prepared from the slurry of high solid content (50 wt %), green compacts after cold isostatic pressing under the pressure of 200 MPa have the density of 2.1-2.2 g/cm³ and homogeneous fracture surface by complete destruction of granules. After the sintering at 1500 °C for 2 h, all specimens have relative density of 96.2-98.3 %. With increasing a solid content from 30 to 50 wt%, grain size increased from 0.3 to 0.6 μm, but relative density was inversely decreased from 98.3 to 96.2 %.Keywords: zirconia, solid content, granulation, spray drying
Procedia PDF Downloads 2162558 Performance of Bimetallic Catalyst in the Oxidation of Volatile Organic Compounds
Authors: Faezeh Aghazadeh
Abstract:
The catalytic activity of Pt/γ-Al₂O₃ and Pt-Fe/γ-Al₂O₃ catalysts was investigated to bring about the complete oxidation of 2-Propanol. Among them, Pt-Fe/γ-Al₂O₃ was found to be the most promising catalyst based on activity. The catalysts were characterized by (XRD), (SEM), (TEM) and ICP-AES techniques. Iron loadings on Pt/γ-Al₂O₃ had a great effect on catalytic activity, and Pt-Fe/γ-Al₂O₃ (1.75 wt% Fe) catalyst at calcination temperature 300°C was observed to be the most active, which might be contributed to the favorable synergetic effects between Pt and Fe, high activity and the well-dispersed bimetallic phase. The combustion of 2-Propanol in the vapor phase was carried out in a conventional flow U-shape glass reactor used in the differential mode at atmospheric pressure. 2-Propanol was analyzed by a gas chromatograph VARIAN 3800 CX equipped with an FID. As observed, better performance and activity were observed for Pt-Fe/Al₂O₃ bimetallic catalyst. These results indicate that the high dispersion on support gives a positive effect on catalytic activity.Keywords: volatile organic compounds, bimetallic catalyst, catalytic activity, low temperature
Procedia PDF Downloads 1452557 Evaluation of Reliability, Availability and Maintainability for Automotive Manufacturing Process
Authors: Hamzeh Soltanali, Abbas Rohani, A. H. S. Garmabaki, Mohammad Hossein Abbaspour-Fard, Adithya Thaduri
Abstract:
Toward continuous innovation and high complexity of technological systems, the automotive manufacturing industry is also under pressure to implement adequate management strategies regarding availability and productivity. In this context, evaluation of system’s performance by considering reliability, availability and maintainability (RAM) methodologies can constitute for resilient operation, identifying the bottlenecks of manufacturing process and optimization of maintenance actions. In this paper, RAM parameters are evaluated for improving the operational performance of the fluid filling process. To evaluate the RAM factors through the behavior of states defined for such process, a systematic decision framework was developed. The results of RAM analysis revealed that that the improving reliability and maintainability of main bottlenecks for each filling workstation need to be considered as a priority. The results could be useful to improve operational performance and sustainability of production process.Keywords: automotive, performance, reliability, RAM, fluid filling process
Procedia PDF Downloads 3532556 Investigation of the Effect of Grid Size on External Store Separation Trajectory Using CFD
Authors: Alaa A. Osman, Amgad M. Bayoumy Aly, Ismail El baialy, Osama E. Abdellatif, Essam E. Khallil
Abstract:
In this paper, a numerical simulation of a finned store separating from a wing-pylon configuration has been studied and validated. A dynamic unstructured tetrahedral mesh approach is accomplished by using three grid sizes to numerically solving the discretized three dimensional, inviscid and compressible Navier-stokes equations. The method used for computations of separation of an external store assuming quasi-steady flow condition. Computations of quasi-steady flow have been directly coupled to a six degree-of-freedom (6DOF) rigid-body motion code to generate store trajectories. The pressure coefficients at four different angular cuts and time histories of various trajectory parameters during the store separation are compared for every grid size with published experimental data.Keywords: CFD modelling, transonic store separation, quasi-steady flow, moving-body trajectories
Procedia PDF Downloads 3902555 Vocational Education: A Synergy for Skills Acquisition and Global Learning in Colleges of Education in Ogun State, Nigeria
Authors: Raimi, Kehinde Olawuyi, Omoare Ayodeji Motunrayo
Abstract:
In the last two decades, there has been rising youth unemployment, restiveness, and social vices in Nigeria. The relevance of Vocational Education for skills acquisition, global learning, and national development to address these problems cannot be underestimated. Thus, the need to economically empower Nigerian youths to be able to develop the nation and meet up in the ever-changing global learning and economy led to the assessment of Vocational Education as Synergy for the Skills Acquisition and Global Learning in Ogun State, Nigeria. One hundred and twenty out of 1,500 students were randomly selected for this study. Data were obtained through a questionnaire and were analyzed with descriptive statistics and Chi-square. The results of the study showed that 59.2% of the respondents were between 20 – 24 years of age, 60.8% were male, and 65.8% had a keen interest in Vocational Education. Also, 90% of the respondents acquired skills in extension/advisory, 78.3% acquired skills in poultry production, and 69.1% acquired skills in fisheries/aquaculture. The major constraints to Vocational Education are inadequate resource personnel (χ² = 10.25, p = 0.02), inadequate training facilities (x̅ = 2.46) and unstable power supply (x̅ = 2.38). Results of Chi-square showed significance association between constraints and Skills Acquisition (χ² = 12.54, p = 0.00) at p < 0.05 level of significance. It was established that Vocational Education significantly contributed to students’ skills acquisition and global learning. This study, therefore, recommends that inadequate personnel should be looked into by the school authority in order not to over-stretch the available staff of the institution while the provision of alternative stable power supply (solar power) is also essential for effective teaching and learning process.Keywords: vocational education, skills acquisition, national development, global learning
Procedia PDF Downloads 1282554 Low-Surface Roughness and High Optical Quality CdS Thin Film Grown by Modified Chemical Surface Deposition Method
Authors: A. Elsayed, M. H. Dewaidar, M. Ghali
Abstract:
We report on deposition of smooth, pinhole-free, low-surface roughness ( < 4nm) and high optical quality cadmium sulfide (CdS) thin films on glass substrates using our new method based on chemical surface deposition principle. In this method, cadmium acetate and thiourea are used as reactants under special growth conditions for deposition of CdS films. X-ray diffraction (XRD) measurements were used to examine the crystal structure properties of the deposited CdS films. In addition, UV-vis transmittance and low-temperature (4K) photoluminescence (PL) measurements were performed for quantifying optical properties of the deposited films. Interestingly, we found that XRD pattern of the deposited films has dramatically changed when the growth temperature was raised during the reaction. Namely, the XRD measurements reveal a structural change of CdS film from Cubic to Hexagonal phase upon increase in the growth temperature from 75 °C to 200 °C. Furthermore, the deposited films show high optical quality as confirmed from observation of both sharp edge in the transmittance spectra and strong PL intensity at room temperature. Also, we found a strong effect of the growth conditions on the optical band gap of the deposited films; where remarkable red-shift in the absorption edge with temperature is clearly seen in both transmission and PL spectra. Such tuning of both optical band gap and crystal structure of the deposited CdS films; can be utilized for tuning the electronic bands alignments between CdS and other light harvesting materials, like CuInGaSe or CdTe, for potential improvement in the efficiency of all-solution processed solar cells devices based on these heterostructures.Keywords: thin film, CdS, new method, optical properties
Procedia PDF Downloads 2602553 Effect of Depressurization Rate in Batch Foaming of Porous Microcellular Polycarbonate on Microstructure Development
Authors: Indrajeet Singh, Abhishek Gandhi, Smita Mohanty, S. K. Nayak
Abstract:
In this article, a focused study has been performed to comprehend the influence of change in depressurization rate on microcellular polycarbonate foamed morphological attributes. The depressurization rate considered in this study were 0.5, 0.05, 0.01 and 0.005 MPa/sec and the physical blowing agent utilized was carbon dioxide owing to its high solubility in polycarbonate at room temperature. The study was performed on two distinct saturation pressures, i.e., 3 MPa and 6 MPa to understand if saturation pressure has any effects on it. It is reported that with increase in depressurization rate, a higher amount of thermodynamic instability was induced which resulted in generation of larger number of smaller sized cells. This article puts forward an understanding of how depressurization rate control could be well exploited during the batch foaming process to develop high quality microcellular foamed products with exceedingly well controlled cell size.Keywords: depressurization, porous polymer, foaming, microcellular
Procedia PDF Downloads 258