Search results for: learning goal orientation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10835

Search results for: learning goal orientation

6905 Environmental Performance Measurement for Network-Level Pavement Management

Authors: Jessica Achebe, Susan Tighe

Abstract:

The recent Canadian infrastructure report card reveals the unhealthy state of municipal infrastructure intensified challenged faced by municipalities to maintain adequate infrastructure performance thresholds and meet user’s required service levels. For a road agency, huge funding gap issue is inflated by growing concerns of the environmental repercussion of road construction, operation and maintenance activities. As the reduction of material consumption and greenhouse gas emission when maintain and rehabilitating road networks can achieve added benefits including improved life cycle performance of pavements, reduced climate change impacts and human health effect due to less air pollution, improved productivity due to optimal allocation of resources and reduced road user cost. Incorporating environmental sustainability measure into pavement management is solution widely cited and studied. However measuring the environmental performance of road network is still a far-fetched practice in road network management, more so an ostensive agency-wide environmental sustainability or sustainable maintenance specifications is missing. To address this challenge, this present research focuses on the environmental sustainability performance of network-level pavement management. The ultimate goal is to develop a framework to incorporate environmental sustainability in pavement management systems for network-level maintenance programming. In order to achieve this goal, this study reviewed previous studies that employed environmental performance measures, as well as the suitability of environmental performance indicators for the evaluation of the sustainability of network-level pavement maintenance strategies. Through an industry practice survey, this paper provides a brief forward regarding the pavement manager motivations and barriers to making more sustainable decisions, and data needed to support the network-level environmental sustainability. The trends in network-level sustainable pavement management are also presented, existing gaps are highlighted, and ideas are proposed for sustainable network-level pavement management.

Keywords: pavement management, sustainability, network-level evaluation, environment measures

Procedia PDF Downloads 215
6904 A Sustainable Training and Feedback Model for Developing the Teaching Capabilities of Sessional Academic Staff

Authors: Nirmani Wijenayake, Louise Lutze-Mann, Lucy Jo, John Wilson, Vivian Yeung, Dean Lovett, Kim Snepvangers

Abstract:

Sessional academic staff at universities have the most influence and impact on student learning, engagement, and experience as they have the most direct contact with undergraduate students. A blended technology-enhanced program was created for the development and support of sessional staff to ensure adequate training is provided to deliver quality educational outcomes for the students. This program combines innovative mixed media educational modules, a peer-driven support forum, and face-to-face workshops to provide a comprehensive training and support package for staff. Additionally, the program encourages the development of learning communities and peer mentoring among the sessional staff to enhance their support system. In 2018, the program was piloted on 100 sessional staff in the School of Biotechnology and Biomolecular Sciences to evaluate the effectiveness of this model. As part of the program, rotoscope animations were developed to showcase ‘typical’ interactions between staff and students. These were designed around communication, confidence building, consistency in grading, feedback, diversity awareness, and mental health and wellbeing. When surveyed, 86% of sessional staff found these animations to be helpful in their teaching. An online platform (Moodle) was set up to disseminate educational resources and teaching tips, to host a discussion forum for peer-to-peer communication and to increase critical thinking and problem-solving skills through scenario-based lessons. The learning analytics from these lessons were essential in identifying difficulties faced by sessional staff to further develop supporting workshops to improve outcomes related to teaching. The face-to-face professional development workshops were run by expert guest speakers on topics such as cultural diversity, stress and anxiety, LGBTIQ and student engagement. All the attendees of the workshops found them to be useful and 88% said they felt these workshops increase interaction with their peers and built a sense of community. The final component of the program was to use an adaptive e-learning platform to gather feedback from the students on sessional staff teaching twice during the semester. The initial feedback provides sessional staff with enough time to reflect on their teaching and adjust their performance if necessary, to improve the student experience. The feedback from students and the sessional staff on this model has been extremely positive. The training equips the sessional staff with knowledge and insights which can provide students with an exceptional learning environment. This program is designed in a flexible and scalable manner so that other faculties or institutions could adapt components for their own training. It is anticipated that the training and support would help to build the next generation of educators who will directly impact the educational experience of students.

Keywords: designing effective instruction, enhancing student learning, implementing effective strategies, professional development

Procedia PDF Downloads 131
6903 Organizational Socialization Levels in Nurses

Authors: Manar Aslan, Ayfer Karaaslan, Serap Selçuk

Abstract:

The research was conducted in order to determine the organizational socialization levels of nurses working in hospitals in the form of a descriptive study. The research population was composed of nurses employed in public and private sector hospitals in the province of Konya with 0-3 years of professional experience in the hospitals (N=1200); and the sample was composed of 495 nurses that accepted to take part in the study voluntarily. Organizational Socialization Scale which was developed by Haueter, Macan and Winter (2003) and whose validity-reliability in Turkish was analyzed by Ataman (2012) was used. Statistical evaluation of data was conducted in SPSS.16 software. The results of the study revealed that the total score taken by nurses at the organizational socialization scale was 262.95; and this was close to the maximum score. Particularly the departmental socialization sub-dimension proved to be higher in comparison to the other two dimensions (organization socialization and task socialization). Statistically meaningful differences were found in the levels of organization socialization in relation to the status of organizational orientation training, level of education and age group.

Keywords: nurses, newcomers, organizational socialization, total score

Procedia PDF Downloads 354
6902 Research of Intrinsic Emittance of Thermal Cathode with Emission Nonuniformity

Authors: Yufei Peng, Zhen Qin, Jianbe Li, Jidong Long

Abstract:

The thermal cathode is widely used in accelerators, FELs and kinds of vacuum electronics. However, emission nonuniformity exists due to surface profile, material distribution, temperature variation, crystal orientation, etc., which will cause intrinsic emittance growth, brightness decline, envelope size augment, device performance deterioration or even failure. To understand how emittance is manipulated by emission nonuniformity, an intrinsic emittance model consisting of contributions from macro and micro surface nonuniformity is developed analytically based on general thermal emission model at temperature limited regime according to a real 3mm cathode. The model shows relative emittance increased about 50% due to temperature variation, and less than 5% from several kinds of micro surface nonuniformity which is much smaller than other research. Otherwise, we also calculated emittance growth combining with Monte Carlo method and PIC simulation, experiments of emission uniformity and emittance measurement are going to be carried out separately.

Keywords: thermal cathode, electron emission fluctuation, intrinsic emittance, surface nonuniformity, cathode lifetime

Procedia PDF Downloads 301
6901 Voting Representation in Social Networks Using Rough Set Techniques

Authors: Yasser F. Hassan

Abstract:

Social networking involves use of an online platform or website that enables people to communicate, usually for a social purpose, through a variety of services, most of which are web-based and offer opportunities for people to interact over the internet, e.g. via e-mail and ‘instant messaging’, by analyzing the voting behavior and ratings of judges in a popular comments in social networks. While most of the party literature omits the electorate, this paper presents a model where elites and parties are emergent consequences of the behavior and preferences of voters. The research in artificial intelligence and psychology has provided powerful illustrations of the way in which the emergence of intelligent behavior depends on the development of representational structure. As opposed to the classical voting system (one person – one decision – one vote) a new voting system is designed where agents with opposed preferences are endowed with a given number of votes to freely distribute them among some issues. The paper uses ideas from machine learning, artificial intelligence and soft computing to provide a model of the development of voting system response in a simulated agent. The modeled development process involves (simulated) processes of evolution, learning and representation development. The main value of the model is that it provides an illustration of how simple learning processes may lead to the formation of structure. We employ agent-based computer simulation to demonstrate the formation and interaction of coalitions that arise from individual voter preferences. We are interested in coordinating the local behavior of individual agents to provide an appropriate system-level behavior.

Keywords: voting system, rough sets, multi-agent, social networks, emergence, power indices

Procedia PDF Downloads 398
6900 Web 2.0 in Higher Education: The Instructors’ Acceptance in Higher Educational Institutes in Kingdom of Bahrain

Authors: Amal M. Alrayes, Hayat M. Ali

Abstract:

Since the beginning of distance education with the rapid evolution of technology, the social network plays a vital role in the educational process to enforce the interaction been the learners and teachers. There are many Web 2.0 technologies, services and tools designed for educational purposes. This research aims to investigate instructors’ acceptance towards web-based learning systems in higher educational institutes in Kingdom of Bahrain. Questionnaire is used to investigate the instructors’ usage of Web 2.0 and the factors affecting their acceptance. The results confirm that instructors had high accessibility to such technologies. However, patterns of use were complex. Whilst most expressed interest in using online technologies to support learning activities, learners seemed cautious about other values associated with web-based system, such as the shared construction of knowledge in a public format. The research concludes that there are main factors that affect instructors’ adoption which are security, performance expectation, perceived benefits, subjective norm, and perceived usefulness.

Keywords: Web 2.0, higher education, acceptance, students' perception

Procedia PDF Downloads 343
6899 An Energy Efficient Clustering Approach for Underwater ‎Wireless Sensor Networks

Authors: Mohammad Reza Taherkhani‎

Abstract:

Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make a connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.

Keywords: underwater sensor networks, clustering, learning automata, energy consumption

Procedia PDF Downloads 367
6898 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning

Authors: Madhawa Basnayaka, Jouni Paltakari

Abstract:

Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.

Keywords: artificial intelligence, chipless RFID, deep learning, machine learning

Procedia PDF Downloads 54
6897 FMR1 Gene Carrier Screening for Premature Ovarian Insufficiency in Females: An Indian Scenario

Authors: Sarita Agarwal, Deepika Delsa Dean

Abstract:

Like the task of transferring photo images to artistic images, image-to-image translation aims to translate the data to the imitated data which belongs to the target domain. Neural Style Transfer and CycleGAN are two well-known deep learning architectures used for photo image-to-art image transfer. However, studies involving these two models concentrate on one-to-one domain translation, not one-to-multi domains translation. Our study tries to investigate deep learning architectures, which can be controlled to yield multiple artistic style translation only by adding a conditional vector. We have expanded CycleGAN and constructed Conditional CycleGAN for 5 kinds of categories translation. Our study found that the architecture inserting conditional vector into the middle layer of the Generator could output multiple artistic images.

Keywords: genetic counseling, FMR1 gene, fragile x-associated primary ovarian insufficiency, premutation

Procedia PDF Downloads 134
6896 Process Driven Architecture For The ‘Lessons Learnt’ Knowledge Sharing Framework: The Case Of A ‘Lessons Learnt’ Framework For KOC

Authors: Rima Al-Awadhi, Abdul Jaleel Tharayil

Abstract:

On a regular basis, KOC engages into various types of Projects. However, due to very nature and complexity involved, each project experience generates a lot of ‘learnings’ that need to be factored into while drafting a new contract and thus avoid repeating the same mistakes. But, many a time these learnings are localized and remain as tacit leading to scope re-work, larger cycle time, schedule overrun, adjustment orders and claims. Also, these experiences are not readily available to new employees leading to steep learning curve and longer time to competency. This is to share our experience in designing and implementing a process driven architecture for the ‘lessons learnt’ knowledge sharing framework in KOC. It high-lights the ‘lessons learnt’ sharing process adopted, integration with the organizational processes, governance framework, the challenges faced and learning from our experience in implementing a ‘lessons learnt’ framework.

Keywords: lessons learnt, knowledge transfer, knowledge sharing, successful practices, Lessons Learnt Workshop, governance framework

Procedia PDF Downloads 579
6895 Language Teachers Exercising Agency Amid Educational Constraints: An Overview of the Literature

Authors: Anna Sanczyk

Abstract:

Teacher agency plays a crucial role in effective teaching, supporting diverse students, and providing an enriching learning environment; therefore, it is significant to gain a deeper understanding of language teachers’ sense of agency in teaching linguistically and culturally diverse students. This paper presents an overview of qualitative research on how language teachers exercise their agency in diverse classrooms. The analysis of the literature reveals that language teachers strive for addressing students’ needs and challenging educational inequalities, but experience educational constraints in enacting their agency. The examination of the research on language teacher agency identifies four major areas where language teachers experience challenges in enacting their agency: (1) implementing curriculum; (2) adopting school reforms and policies; (3) engaging in professional learning; (4) and negotiating various identities as professionals. The practical contribution of this literature review is that it provides a much-needed compilation of the studies on how language teachers exercise agency amid educational constraints. The discussion of the overview points to the importance of teacher identity, learner advocacy, and continuous professional learning and the critical need of promoting empowerment, activism, and transformation in language teacher education. The findings of the overview indicate that language teacher education programs should prepare teachers to be active advocates for English language learners and guide teachers to become more conscious of complexities of teaching in constrained educational settings so that they can become agentic professionals. This literature overview illustrates agency work in English language teaching contexts and contributes to understanding of the important link between experiencing educational constraints and development of teacher agency.

Keywords: advocacy, educational constraints, language teacher agency, language teacher education

Procedia PDF Downloads 181
6894 Heart Ailment Prediction Using Machine Learning Methods

Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula

Abstract:

The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.

Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting

Procedia PDF Downloads 57
6893 Turkish Graduate Students' Perceptions of Drop Out Issues in Massive Open Online Courses

Authors: Harun Bozna

Abstract:

MOOC (massive open online course) is a groundbreaking education platform and a current buzzword in higher education. Although MOOCs offer many appreciated learning experiences to learners from various universities and institutions, they have considerably higher dropout rates than traditional education. Only about 10% of the learners who enroll in MOOCs actually complete the course. In this case, perceptions of participants and a comprehensive analysis of MOOCs have become an essential part of the research in this area. This study aims to explore the MOOCs in detail for better understanding its content, purpose and primarily drop out issues. The researcher conducted an online questionnaire to get perceptions of graduate students on their learning experiences in MOOCs and arranged a semi- structured oral interview with some participants. The participants are Turkish graduate level students doing their MA and Ph.D. in various programs. The findings show that participants are more likely to drop out courses due to lack of time and lack of pressure.

Keywords: distance education, MOOCs, drop out, perception of graduate students

Procedia PDF Downloads 245
6892 StockTwits Sentiment Analysis on Stock Price Prediction

Authors: Min Chen, Rubi Gupta

Abstract:

Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.

Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing

Procedia PDF Downloads 160
6891 Hands on Tools to Improve Knowlege, Confidence and Skill of Clinical Disaster Providers

Authors: Lancer Scott

Abstract:

Purpose: High quality clinical disaster medicine requires providers working collaboratively to care for multiple patients in chaotic environments; however, many providers lack adequate training. To address this deficit, we created a competency-based, 5-hour Emergency Preparedness Training (EPT) curriculum using didactics, small-group discussion, and kinetic learning. The goal was to evaluate the effect of a short course on improving provider knowledge, confidence and skills in disaster scenarios. Methods: Diverse groups of medical university students, health care professionals, and community members were enrolled between 2011 and 2014. The course consisted of didactic lectures, small group exercises, and two live, multi-patient mass casualty incident (MCI) scenarios. The outcome measures were based on core competencies and performance objectives developed by a curriculum task force and assessed via trained facilitator observation, pre- and post-testing, and a course evaluation. Results: 708 participants completed were trained between November 2011 and August 2014, including 49.9% physicians, 31.9% medical students, 7.2% nurses, and 11% various other healthcare professions. 100% of participants completed the pre-test and 71.9% completed the post-test, with average correct answers increasing from 39% to 60%. Following didactics, trainees met 73% and 96% of performance objectives for the two small group exercises and 68.5% and 61.1% of performance objectives for the two MCI scenarios. Average trainee self-assessment of both overall knowledge and skill with clinical disasters improved from 33/100 to 74/100 (overall knowledge) and 33/100 to 77/100 (overall skill). The course assessment was completed by 34.3% participants, of whom 91.5% highly recommended the course. Conclusion: A relatively short, intensive EPT course can improve the ability of a diverse group of disaster care providers to respond effectively to mass casualty scenarios.

Keywords: clinical disaster medicine, training, hospital preparedness, surge capacity, education, curriculum, research, performance, training, student, physicians, nurses, health care providers, health care

Procedia PDF Downloads 195
6890 Electrospinning Parameters: Effect on the Morphology of Polylactic Acid/Polybutylene Succinate Fibers

Authors: Hamad Al-Turaif, Usman Saeed

Abstract:

The development of nanofibers with the help of electrospinning is being prioritized as a method of choice because of the simplicity and efficiency of the process. The parameters of the electrospinning process effectively convert the polymer solution into an electrospun final product made of the desired diameter of nanofiber. The aim of the study presented is to recognize and analyze the effect of proposed parameters on biodegradable and biocompatible polylactic acid (PLA)/polybutylene succinate (PBS) nanofiber developed by the electrospinning process. The morphology of the fiber is characterized by implementing Scanning Electron Microscope. Studies were conducted to characterize the result of using different electrospinning parameters on the final diameter and orientation of fiber. It was determined that varying polymer solution concentration, feed rate, and applied voltage show different outcomes. The best results were obtained at 6% polymer solution concentration, 20 kV, and 0.5 ml/h, which can be applicable for biomedical applications. Finally, protein adsorption and mechanical testing were conducted on the PLA/PBS fiber.

Keywords: electrospinning, polylactic acid, polybutylene succinate, morphology

Procedia PDF Downloads 135
6889 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management

Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.

Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities

Procedia PDF Downloads 77
6888 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing

Authors: Tolulope Aremu

Abstract:

The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.

Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods

Procedia PDF Downloads 24
6887 Initial Observations of the Utilization of Zoom Software for Synchronous English as a Foreign Language Oral Communication Classes at a Japanese University

Authors: Paul Nadasdy

Abstract:

In 2020, oral communication classes at many universities in Japan switched to online and hybrid lessons because of the coronavirus pandemic. Teachers had to adapt their practices immediately and deal with the challenges of the online environment. Even for experienced teachers, this still presented a problem as many had not conducted online classes before. Simultaneously, for many students, this type of learning was completely alien to them, and they had to adapt to the challenges faced by communicating in English online. This study collected data from 418 first grade students in the first semester of English communication classes at a technical university in Tokyo, Japan. Zoom software was used throughout the learning period. Though there were many challenges in the setting up and implementation of Zoom classes at the university, the results indicated that the students enjoyed the format and made the most of the circumstances. This proved the robustness of the course that was taught in regular lessons and the adaptability of teachers and students to challenges in a very short timeframe.

Keywords: zoom, hybrid lessons, communicative english, online teaching

Procedia PDF Downloads 87
6886 Maternal Mind-Mindedness and Its Association with Attachment: The Case of Arab Infants and Mothers in Israel

Authors: Gubair Tarabeh, Ghadir Zriek, David Oppenheim, Avi Sagi-Schwartz, Nina Koren-Karie

Abstract:

Introduction: Mind-Mindedness (MM) focuses on mothers' attunement to their infant's mental states as reflected in their speech to the infant. Appropriate MM comments are associated with attachment security in individualistic Western societies where parents value their children’s autonomy and independence, and may therefore be more likely to engage in mind-related discourse with their children that highlights individual thoughts, preferences, emotions, and motivations. Such discourse may begin in early infancy, even before infants are likely to understand the semantic meaning of parental speech. Parents in collectivistic societies, by contrast, are thought to emphasize conforming to social norms more than individual goals, and this may lead to parent-child discourse that emphasizes appropriate behavior and compliance with social norms rather than internal mental states of the self and the other. Therefore, the examination of maternal MM and its relationship with attachment in Arab collectivistic culture in Israel was of particular interest. Aims of the study: The goal of the study was to examine whether the associations between MM and attachment in the Arab culture in Israel are the same as in Western samples. An additional goal was to examine whether appropriate and non-attuned MM comments could, together, distinguish among mothers of children in the different attachment classifications. Material and Methods: 76 Arab mothers and their infants between the ages of 12 and 18 months were observed in the Strange Situation Procedure (49 secure (B), 11 ambivalent (C), 14 disorganized (D), and 2 avoidant (A) infants). MM was coded from an 8-minute free-play sequence. Results: Mothers of B infants used more appropriate and less non-attuned MM comments than mothers of D infants, with no significant differences with mothers of C infants. Also, mothers of B infants used less non-attuned MM comments than both mothers of D infants and mothers of C infants. In addition, Mothers of B infants were most likely to show the combination of high appropriate and low non-attuned MM comments; Mothers of D infants were most likely to show the combination of high non-attuned and low appropriate MM comments; and a non-significant trend indicated that mothers of C infants were most likely to show a combination of high appropriate and high non-attuned MM comments. Conclusion: Maternal MM was associated with attachment in the Arab culture in Israel with combinations of appropriate and non-attuned MM comments distinguishing between different attachment classifications.

Keywords: attachment, maternal mind-mindedness, Arab culture, collectivistic culture

Procedia PDF Downloads 158
6885 An Investigation of the Influence of Education Backgrounds on Mathematics Achievements: An Example of Chinese High School

Authors: Wang Jiankun

Abstract:

This paper analyses how different educational backgrounds affect the mathematics performance of middle and high school students in terms of three dimensions: parental involvement, school teaching ability, and demographic variables and personal attributes of the student. Based on the analysis of Beijing High School Mathematics Competition in 2022, it was found that students from high level schools won significantly more awards than those from low level schools. In addition, a significant positive correlation (p<0.05) was identified between school level and students' mathematics performance. This study also confirms that parents' education level and family environment show a significant impact on the next generation’s mathematics learning performance. The findings suggest that interest and student’s habits, the family environment and the quality of teaching and learning at school are the main factors affecting the mathematics performance of middle and high school students.

Keywords: educational background, academic performance, middle and high school education, teenager

Procedia PDF Downloads 88
6884 Adaption Model for Building Agile Pronunciation Dictionaries Using Phonemic Distance Measurements

Authors: Akella Amarendra Babu, Rama Devi Yellasiri, Natukula Sainath

Abstract:

Where human beings can easily learn and adopt pronunciation variations, machines need training before put into use. Also humans keep minimum vocabulary and their pronunciation variations are stored in front-end of their memory for ready reference, while machines keep the entire pronunciation dictionary for ready reference. Supervised methods are used for preparation of pronunciation dictionaries which take large amounts of manual effort, cost, time and are not suitable for real time use. This paper presents an unsupervised adaptation model for building agile and dynamic pronunciation dictionaries online. These methods mimic human approach in learning the new pronunciations in real time. A new algorithm for measuring sound distances called Dynamic Phone Warping is presented and tested. Performance of the system is measured using an adaptation model and the precision metrics is found to be better than 86 percent.

Keywords: pronunciation variations, dynamic programming, machine learning, natural language processing

Procedia PDF Downloads 181
6883 A Review of Fused Deposition Modeling Process: Parameter Optimization, Materials and Design

Authors: Elisaveta Doncheva, Jelena Djokikj, Ognen Tuteski, Bojana Hadjieva

Abstract:

In the past decade, additive manufacturing technology or 3D printing has been promoted as an efficient method for fabricating hybrid composite materials and structures with superior mechanical properties and complex shape and geometry. Fused deposition modeling (FDM) process is commonly used additive manufacturing technique for production of polymer products. Therefore, many studies and experiments are focused on investigating the possibilities for improving the obtained results on product properties as a key factor for expanding the spectrum of their application. This article provides an extensive review on recent research advances in FDM and reports on studies that cover the effects of process parameters, material, and design of the product properties. The paper conclusions provide a clear up-to date information for optimum efficiency and enhancement of the mechanical properties of 3D printed samples and recommends further research work and investigations.

Keywords: additive manufacturing, critical parameters, filament, print orientation, 3D printing

Procedia PDF Downloads 198
6882 An Automatic Large Classroom Attendance Conceptual Model Using Face Counting

Authors: Sirajdin Olagoke Adeshina, Haidi Ibrahim, Akeem Salawu

Abstract:

large lecture theatres cannot be covered by a single camera but rather by a multicamera setup because of their size, shape, and seating arrangements. Although, classroom capture is achievable through a single camera. Therefore, a design and implementation of a multicamera setup for a large lecture hall were considered. Researchers have shown emphasis on the impact of class attendance taken on the academic performance of students. However, the traditional method of carrying out this exercise is below standard, especially for large lecture theatres, because of the student population, the time required, sophistication, exhaustiveness, and manipulative influence. An automated large classroom attendance system is, therefore, imperative. The common approach in this system is face detection and recognition, where known student faces are captured and stored for recognition purposes. This approach will require constant face database updates due to constant changes in the facial features. Alternatively, face counting can be performed by cropping the localized faces on the video or image into a folder and then count them. This research aims to develop a face localization-based approach to detect student faces in classroom images captured using a multicamera setup. A selected Haar-like feature cascade face detector trained with an asymmetric goal to minimize the False Rejection Rate (FRR) relative to the False Acceptance Rate (FAR) was applied on Raspberry Pi 4B. A relationship between the two factors (FRR and FAR) was established using a constant (λ) as a trade-off between the two factors for automatic adjustment during training. An evaluation of the proposed approach and the conventional AdaBoost on classroom datasets shows an improvement of 8% TPR (output result of low FRR) and 7% minimization of the FRR. The average learning speed of the proposed approach was improved with 1.19s execution time per image compared to 2.38s of the improved AdaBoost. Consequently, the proposed approach achieved 97% TPR with an overhead constraint time of 22.9s compared to 46.7s of the improved Adaboost when evaluated on images obtained from a large lecture hall (DK5) USM.

Keywords: automatic attendance, face detection, haar-like cascade, manual attendance

Procedia PDF Downloads 74
6881 A Teaching Learning Based Optimization for Optimal Design of a Hybrid Energy System

Authors: Ahmad Rouhani, Masood Jabbari, Sima Honarmand

Abstract:

This paper introduces a method to optimal design of a hybrid Wind/Photovoltaic/Fuel cell generation system for a typical domestic load that is not located near the electricity grid. In this configuration the combination of a battery, an electrolyser, and a hydrogen storage tank are used as the energy storage system. The aim of this design is minimization of overall cost of generation scheme over 20 years of operation. The Matlab/Simulink is applied for choosing the appropriate structure and the optimization of system sizing. A teaching learning based optimization is used to optimize the cost function. An overall power management strategy is designed for the proposed system to manage power flows among the different energy sources and the storage unit in the system. The results have been analyzed in terms of technics and economics. The simulation results indicate that the proposed hybrid system would be a feasible solution for stand-alone applications at remote locations.

Keywords: hybrid energy system, optimum sizing, power management, TLBO

Procedia PDF Downloads 581
6880 An Interlock Model of Friction and Superlubricity

Authors: Azadeh Malekan, Shahin Rouhani

Abstract:

Superlubricity is a phenomenon where two surfaces in contact show negligible friction;this may be because the asperities of the two surfaces do not interlock. Two rough surfaces, when pressed against each other, can get into a formation where the summits of asperities of one surface lock into the valleys of the other surface. The amount of interlock depends on the geometry of the two surfaces. We suggest the friction force may then be proportional to the amount of interlock; this explains Superlubricity as the situation where there is little interlock. Then the friction force will be directly proportional to the normal force as it is related to the work necessary to lift the upper surface in order to clear the interlock. To investigate this model, we simulate the contact of two surfaces. In order to validate our model, we first investigate Amontons‘ law. Assuming that asperities retain deformations in the time scale while the top asperity moves across the lattice spacing Amonton’s law is observed. Structural superlubricity is examined by the hypothesis that surfaces are very rigid and there is no deformation in asperities. This may happen at small normal forces. When two identical surfaces come into contact, rotating the top surface we observe a peak in friction force near the angle of orientation where the two surfaces can interlock.

Keywords: friction, amonton`s law, superlubricity, contact model

Procedia PDF Downloads 151
6879 Design and Implementation of an AI-Enabled Task Assistance and Management System

Authors: Arun Prasad Jaganathan

Abstract:

In today's dynamic industrial world, traditional task allocation methods often fall short in adapting to evolving operational conditions. This paper introduces an AI-enabled task assistance and management system designed to overcome the limitations of conventional approaches. By using artificial intelligence (AI) and machine learning (ML), the system intelligently interprets user instructions, analyzes tasks, and allocates resources based on real-time data and environmental factors. Additionally, geolocation tracking enables proactive identification of potential delays, ensuring timely interventions. With its transparent reporting mechanisms, the system provides stakeholders with clear insights into task progress, fostering accountability and informed decision-making. The paper presents a comprehensive overview of the system architecture, algorithm, and implementation, highlighting its potential to revolutionize task management across diverse industries.

Keywords: artificial intelligence, machine learning, task allocation, operational efficiency, resource optimization

Procedia PDF Downloads 64
6878 Preparation and Study Corrosion and Electrical Resistivity of Al-Ni-Cr Alloy

Authors: Khalid H. Abass

Abstract:

Al-Ni-Cr alloy contains different ratios of Ni and Cr was prepared by mixing Al, Ni and Cr at 800oC under an argon atmosphere. The prepared alloys were heated for 1300 hr to 560oC, and then cooled rapidly by water at the ambient temperature. Surface morphology for alloys is studied by scanning electron microscope (SEM). The resultant homogeneous surface is a result of heat treatment. The X-ray diffraction patterns showed (111), (200), and (220) diffraction lines from cubic Al crystal structure, and suggested that the intensity of peak (111) orientation is predominant. Three binary phases were observed and grown in alloys: Al3Ni (Orthorhombic, a = 6.598Ǻ, b = 7.352 Ǻ, c = 4.802 Ǻ), Cr9Al17 (Rhombohedra, a = 12.910 Ǻ, c = 15.677), and Ni2Cr3 (Tetragonal, a = 8.82 Ǻ, c = 4.58 Ǻ). The average crystallite sizes of the prepared samples were found to be from 3000 to 3094 nm by SEM, which is much smaller than that estimated from XRD data. Corrosion resistance increases with increasing Ni-Cr content in Al alloys. The electrical volume resistivity decreased with increasing Ni-Cr content at low frequency. This behavior can be seen generally at 50Hz, where the electrical volume resistivity reached the value of 3.98×10-8Ω.cm for the ratio Al-1.8 at.%Ni-0.18at.%Cr.

Keywords: Al-Ni-Cr alloy, corrosion current, electrical volume resistivity, binary phase, homogeneous surface

Procedia PDF Downloads 402
6877 Experimental Study of the Efficacy and Emission Properties of a Compression Ignition Engine Running on Fuel Additives with Varying Engine Loads

Authors: Faisal Mahroogi, Mahmoud Bady, Yaser H. Alahmadi, Ahmed Alsisi, Sunny Narayan, Muhammad Usman Kaisan

Abstract:

The Kingdom of Saudi Arabia established Saudi Vision 2030, an initiative of the government with the goal of promoting more socioeconomic as well as cultural diversity. The kingdom, which is dedicated to sustainable development and clean energy, uses cutting-edge approaches to address energy-related issues, including the circular carbon economy (CCE) and a more varied energy mix. In order for Saudi Arabia to achieve its Vision 2030 goal of having a net zero future by 2060, sustainability is essential. By addressing the energy and climate issues of the modern world with responsibility and innovation, Vision 2030 is turning into a global role model for the transition to a sustainable future. As per the Ambitions of the National Environment Strategy of the Saudi Ministry of Environment, Agriculture, and Water (MEWA), raising environmental compliance across all sectors and reducing pollution and adverse environmental impacts are critical focus areas. As a result, the current study presents an experimental analysis of the performance and exhaust emissions of a diesel engine running mostly on waste cooking oil (WCO). A one-cylinder direct-injection diesel engine with constant speed and natural aspiration is the engine type utilized. Research was done on how the engine performed and emission parameters when fueled with a mixture of 10% butanol, 10% diesel, 10% WCO, and 10% diethyl ether (D70B10W10DD10). The study's findings demonstrated that engine emissions of nitrogen oxides (NOX) and carbon monoxide (CO) varied significantly depending on the load being applied. The brake thermal efficiency, cylinder pressure, and the brake power of the engine were all impacted by load change.

Keywords: ICE, waste cooking oil, fuel additives, butanol, combustion, emission characteristics

Procedia PDF Downloads 72
6876 The Impact of a Cognitive Acceleration Program on Prospective Teachers' Reasoning Skills

Authors: Bernardita Tornero

Abstract:

Cognitive Acceleration in Mathematics Education (CAME) programmes have been used successfully for promoting the development of thinking skills in school students for the last 30 years. Given that the approach has had a tremendous impact on the thinking capabilities of participating students, this study explored the experience of using the programme with prospective primary teachers in Chile. Therefore, this study not only looked at the experience of prospective primary teachers during the CAME course as learners, but also examined how they perceived the approach from their perspective as future teachers, as well as how they could transfer the teaching strategies they observed to their future classrooms. Given the complexity of the phenomenon under study, this research used a mixed methods approach. For this reason, the impact that the CAME course had on prospective teachers’ thinking skills was not only approached by using a test that assessed the participants’ improvements in these skills, but their learning and teaching experiences were also recorded through qualitative research tools (learning journals, interviews and field notes). The main findings indicate that, at the end of the CAME course, prospective teachers not only demonstrated higher thinking levels, but also showed positive attitudinal changes towards teaching and learning in general, and towards mathematics in particular. The participants also had increased confidence in their ability to teach mathematics and to promote thinking skills in their students. In terms of the CAME methodology, prospective teachers not only found it novel and motivating, but also commented that dealing with the thinking skills topic during a university course was both unusual and very important for their professional development. This study also showed that, at the end of the CAME course, prospective teachers felt they had developed strategies that could be used in their classrooms in the future. In this context, the relevance of the study is not only that it described the impact and the positive results of the first experience of using a CAME approach with prospective teachers, but also that some of the conclusions have significant implications for the teaching of thinking skills and the training of primary school teachers.

Keywords: cognitive acceleration, formal reasoning, prospective teachers, initial teacher training

Procedia PDF Downloads 405