Search results for: food composition data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29676

Search results for: food composition data

25746 Bienzymatic Nanocomposites Biosensors Complexed with Gold Nanoparticles, Polyaniline, Recombinant MN Peroxidase from Corn, and Glucose Oxidase to Measure Glucose

Authors: Anahita Izadyar

Abstract:

Using a recombinant enzyme derived from corn and a simple modification, we are fabricating a facile, fast, and cost-beneficial novel biosensor to measure glucose. We are applying Plant Produced Mn Peroxidase (PPMP), glucose oxidase (GOx), polyaniline (PANI) as conductive polymer and gold nanoparticles (AuNPs) on Au electrode using electrochemical response to detect glucose. We applied the entrapment method of enzyme composition, which is generally used to immobilize conductive polymer and facilitate electron transfer from the enzyme oxidation-reduction center to the sample solution. In this work, the oxidation of glucose on the modified gold electrode was quantified with Linear Sweep Voltammetry(LSV). We expect that the modified biosensor has the potential for monitoring various biofluids.

Keywords: plant-produced manganese peroxidase, enzyme-based biosensors, glucose, modified gold nanoparticles electrode, polyaniline

Procedia PDF Downloads 200
25745 Investigation of Delivery of Triple Play Service in GE-PON Fiber to the Home Network

Authors: Anurag Sharma, Dinesh Kumar, Rahul Malhotra, Manoj Kumar

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 734
25744 Deep-Learning Based Approach to Facial Emotion Recognition through Convolutional Neural Network

Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah

Abstract:

Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. Accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER, benefiting from deep learning, especially CNN and VGG16. First, the data is pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.

Keywords: CNN, deep-learning, facial emotion recognition, machine learning

Procedia PDF Downloads 95
25743 Data and Biological Sharing Platforms in Community Health Programs: Partnership with Rural Clinical School, University of New South Wales and Public Health Foundation of India

Authors: Vivian Isaac, A. T. Joteeshwaran, Craig McLachlan

Abstract:

The University of New South Wales (UNSW) Rural Clinical School has a strategic collaborative focus on chronic disease and public health. Our objectives are to understand rural environmental and biological interactions in vulnerable community populations. The UNSW Rural Clinical School translational model is a spoke and hub network. This spoke and hub model connects rural data and biological specimens with city based collaborative public health research networks. Similar spoke and hub models are prevalent across research centers in India. The Australia-India Council grant was awarded so we could establish sustainable public health and community research collaborations. As part of the collaborative network we are developing strategies around data and biological sharing platforms between Indian Institute of Public Health, Public Health Foundation of India (PHFI), Hyderabad and Rural Clinical School UNSW. The key objective is to understand how research collaborations are conducted in India and also how data can shared and tracked with external collaborators such as ourselves. A framework to improve data sharing for research collaborations, including DNA was proposed as a project outcome. The complexities of sharing biological data has been investigated via a visit to India. A flagship sustainable project between Rural Clinical School UNSW and PHFI would illustrate a model of data sharing platforms.

Keywords: data sharing, collaboration, public health research, chronic disease

Procedia PDF Downloads 450
25742 Composition and in Vitro Antimicrobial Activity of Three Eryngium L. Species

Authors: R. Mickiene, A. Friese, U. Rosler, A. Maruska, O. Ragazinskiene

Abstract:

This research focuses on phytochemistry and antimicrobial activities of compounds isolated and identified from three species of Eryngium. The antimicrobial activity of extracts from Eryngiumplanum L., Eryngium maritimum L., Eryngium campestre L. grown in Lithuania, were tested by the method of series dilutions, against different bacteria species: Escherichia coli, Proteus vulgaris and Staphylococcus aureus with and without antibiotic resistances, originating from livestock. The antimicrobial activity of extracts was described by determination of the minimal inhibitory concentration. Preliminary results show that the minimal inhibitory concentration range between 8.0 % and 17.0 % for the different Eryngium extracts and bacterial species.The total amounts ofphenolic compounds and total amounts of flavonoids were tested in the methanolic extracts of the plants. Identification and evaluation of the phenolic compounds were performed by liquid chromatography. The essential oils were analyzed by gas chromatography mass spectrometry.

Keywords: antimicrobial activities, Eryngium L. species, essential oils, gas chromatography mass spectrometry

Procedia PDF Downloads 447
25741 Discrimination of Artificial Intelligence

Authors: Iman Abu-Rub

Abstract:

This research paper examines if Artificial Intelligence is, in fact, racist or not. Different studies from all around the world, and covering different communities were analyzed to further understand AI’s true implications over different communities. The black community, Asian community, and Muslim community were all analyzed and discussed in the paper to figure out if AI is biased or unbiased towards these specific communities. It was found that the biggest problem AI faces is the biased distribution of data collection. Most of the data inserted and coded into AI are of a white male, which significantly affects the other communities in terms of reliable cultural, political, or medical research. Nonetheless, there are various research was done that help increase awareness of this issue, but also solve it completely if done correctly. Governments and big corporations are able to implement different strategies into their AI inventions to avoid any racist results, which could cause hatred culturally but also unreliable data, medically, for example. Overall, Artificial Intelligence is not racist per se, but the data implementation and current racist culture online manipulate AI to become racist.

Keywords: social media, artificial intelligence, racism, discrimination

Procedia PDF Downloads 116
25740 A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data

Authors: Chico Horacio Jose Sambo

Abstract:

Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models.

Keywords: neural network, permeability, multilayer perceptron, well log

Procedia PDF Downloads 403
25739 Population Diversity of Dalmatian Pyrethrum Based on Pyrethrin Content and Composition

Authors: Filip Varga, Nina Jeran, Martina Biosic, Zlatko Satovic, Martina Grdisa

Abstract:

Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir./ Sch. Bip.), a species endemic to the eastern Adriatic coastline, is the source of natural insecticide pyrethrin. Pyrethrin is a mixture of six compounds (pyrethrin I and II, cinerin I and II, jasmolin I and II) that exhibits high insecticidal activity with no detrimental effects to the environment. A recently optimized matrix-solid phase dispersion method (MSPD), using florisil as the sorbent, acetone-ethyl acetate (1:1, v/v) as the elution solvent, and sodium sulfate anhydrous as the drying agent was utilized to extract the pyrethrins from 10 wild populations (20 individuals per population) distributed along the Croatian coast. All six components in the extracts were qualitatively and quantitatively determined by high-performance liquid chromatography with a diode array detector (HPLC-DAD). Pearson’s correlation index was calculated between pyrethrin compounds, and differences between the populations using the analysis of variance were tested. Additionally, the correlation of each pyrethrin component with spatio-ecological variables (bioclimate, soil properties, elevation, solar radiation, and distance from the coastline) was calculated. Total pyrethrin content ranged from 0.10% to 1.35% of dry flower weight, averaging 0.58% across all individuals. Analysis of variance revealed significant differences between populations based on all six pyrethrin compounds and total pyrethrin content. On average, the lowest total pyrethrin content was found in the population from Pelješac peninsula (0.22% of dry flower weight) in which total pyrethrin content lower than 0.18% was detected in 55% of the individuals. The highest average total pyrethrin content was observed in the population from island Zlarin (0.87% of dry flower weight), in which total pyrethrin content higher than 1.00% was recorded in only 30% of the individuals. Pyrethrin I/pyrethrin II ratio as a measure of extract quality ranged from 0.21 (population from the island Čiovo) to 5.88 (population from island Mali Lošinj) with an average of 1.77 across all individuals. By far, the lowest quality of extracts was found in the population from Mt. Biokovo (pyrethrin I/II ratio lower than 0.72 in 40% of individuals) due to the high pyrethrin II content typical for this population. Pearson’s correlation index revealed a highly significant positive correlation between pyrethrin I content and total pyrethrin content and a strong negative correlation between pyrethrin I and pyrethrin II. The results of this research clearly indicate high intra- and interpopulation diversity of Dalmatian pyrethrum with regards to pyrethrin content and composition. The information obtained has potential use in plant genetic resources conservation and biodiversity monitoring. Possibly the largest potential lies in designing breeding programs aimed at increasing pyrethrin content in commercial breeding lines and reintroduction in agriculture in Croatia. Acknowledgment: This work has been fully supported by the Croatian Science Foundation under the project ‘Genetic background of Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir/ Sch. Bip.) insecticidal potential’ - (PyrDiv) (IP-06-2016-9034).

Keywords: Dalmatian pyrethrum, HPLC, MSPD, pyrethrin

Procedia PDF Downloads 142
25738 Frequent Itemset Mining Using Rough-Sets

Authors: Usman Qamar, Younus Javed

Abstract:

Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and rough-sets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.

Keywords: rough-sets, classification, feature selection, entropy, outliers, frequent itemset mining

Procedia PDF Downloads 437
25737 Application of Regularized Spatio-Temporal Models to the Analysis of Remote Sensing Data

Authors: Salihah Alghamdi, Surajit Ray

Abstract:

Space-time data can be observed over irregularly shaped manifolds, which might have complex boundaries or interior gaps. Most of the existing methods do not consider the shape of the data, and as a result, it is difficult to model irregularly shaped data accommodating the complex domain. We used a method that can deal with space-time data that are distributed over non-planner shaped regions. The method is based on partial differential equations and finite element analysis. The model can be estimated using a penalized least squares approach with a regularization term that controls the over-fitting. The model is regularized using two roughness penalties, which consider the spatial and temporal regularities separately. The integrated square of the second derivative of the basis function is used as temporal penalty. While the spatial penalty consists of the integrated square of Laplace operator, which is integrated exclusively over the domain of interest that is determined using finite element technique. In this paper, we applied a spatio-temporal regression model with partial differential equations regularization (ST-PDE) approach to analyze a remote sensing data measuring the greenness of vegetation, measure by an index called enhanced vegetation index (EVI). The EVI data consist of measurements that take values between -1 and 1 reflecting the level of greenness of some region over a period of time. We applied (ST-PDE) approach to irregular shaped region of the EVI data. The approach efficiently accommodates the irregular shaped regions taking into account the complex boundaries rather than smoothing across the boundaries. Furthermore, the approach succeeds in capturing the temporal variation in the data.

Keywords: irregularly shaped domain, partial differential equations, finite element analysis, complex boundray

Procedia PDF Downloads 140
25736 Utilising an Online Data Collection Platform for the Development of a Community Engagement Database: A Case Study on Building Inter-Institutional Partnerships at UWC

Authors: P. Daniels, T. Adonis, P. September-Brown, R. Comalie

Abstract:

The community engagement unit at the University of the Western Cape was tasked with establishing a community engagement database. The database would store information of all community engagement projects related to the university. The wealth of knowledge obtained from the various disciplines would be used to facilitate interdisciplinary collaboration within the university, as well as facilitating community university partnership opportunities. The purpose of this qualitative study was to explore electronic data collection through the development of a database. Two types of electronic data collection platforms were used, namely online questionnaire and email. The semi structured questionnaire was used to collect data related to community engagement projects from different faculties and departments at the university. There are many benefits for using an electronic data collection platform, such as reduction of costs and time, ease in reaching large numbers of potential respondents, and the possibility of providing anonymity to participants. Despite all the advantages of using the electronic platform, there were as many challenges, as depicted in our findings. The findings suggest that certain barriers existed by using an electronic platform for data collection, even though it was in an academic environment, where knowledge and resources were in abundance. One of the challenges experienced in this process was the lack of dissemination of information via email to staff within faculties. The actual online software used for the questionnaire had its own limitations, such as only being able to access the questionnaire from the same electronic device. In a few cases, academics only completed the questionnaire after a telephonic prompt or face to face meeting about "Is higher education in South Africa ready to embrace electronic platform in data collection?"

Keywords: community engagement, database, data collection, electronic platform, electronic tools, knowledge sharing, university

Procedia PDF Downloads 264
25735 Women Entrepreneurial Resiliency Amidst COVID-19

Authors: Divya Juneja, Sukhjeet Kaur Matharu

Abstract:

Purpose: The paper is aimed at identifying the challenging factors experienced by the women entrepreneurs in India in operating their enterprises amidst the challenges posed by the COVID-19 pandemic. Methodology: The sample for the study comprised 396 women entrepreneurs from different regions of India. A purposive sampling technique was adopted for data collection. Data was collected through a self-administered questionnaire. Analysis was performed using the SPSS package for quantitative data analysis. Findings: The results of the study state that entrepreneurial characteristics, resourcefulness, networking, adaptability, and continuity have a positive influence on the resiliency of women entrepreneurs when faced with a crisis situation. Practical Implications: The findings of the study have some important implications for women entrepreneurs, organizations, government, and other institutions extending support to entrepreneurs.

Keywords: women entrepreneurs, analysis, data analysis, positive influence, resiliency

Procedia PDF Downloads 114
25734 Partial Least Square Regression for High-Dimentional and High-Correlated Data

Authors: Mohammed Abdullah Alshahrani

Abstract:

The research focuses on investigating the use of partial least squares (PLS) methodology for addressing challenges associated with high-dimensional correlated data. Recent technological advancements have led to experiments producing data characterized by a large number of variables compared to observations, with substantial inter-variable correlations. Such data patterns are common in chemometrics, where near-infrared (NIR) spectrometer calibrations record chemical absorbance levels across hundreds of wavelengths, and in genomics, where thousands of genomic regions' copy number alterations (CNA) are recorded from cancer patients. PLS serves as a widely used method for analyzing high-dimensional data, functioning as a regression tool in chemometrics and a classification method in genomics. It handles data complexity by creating latent variables (components) from original variables. However, applying PLS can present challenges. The study investigates key areas to address these challenges, including unifying interpretations across three main PLS algorithms and exploring unusual negative shrinkage factors encountered during model fitting. The research presents an alternative approach to addressing the interpretation challenge of predictor weights associated with PLS. Sparse estimation of predictor weights is employed using a penalty function combining a lasso penalty for sparsity and a Cauchy distribution-based penalty to account for variable dependencies. The results demonstrate sparse and grouped weight estimates, aiding interpretation and prediction tasks in genomic data analysis. High-dimensional data scenarios, where predictors outnumber observations, are common in regression analysis applications. Ordinary least squares regression (OLS), the standard method, performs inadequately with high-dimensional and highly correlated data. Copy number alterations (CNA) in key genes have been linked to disease phenotypes, highlighting the importance of accurate classification of gene expression data in bioinformatics and biology using regularized methods like PLS for regression and classification.

Keywords: partial least square regression, genetics data, negative filter factors, high dimensional data, high correlated data

Procedia PDF Downloads 49
25733 The Use of Voice in Online Public Access Catalog as Faster Searching Device

Authors: Maisyatus Suadaa Irfana, Nove Eka Variant Anna, Dyah Puspitasari Sri Rahayu

Abstract:

Technological developments provide convenience to all the people. Nowadays, the communication of human with the computer is done via text. With the development of technology, human and computer communications have been conducted with a voice like communication between human beings. It provides an easy facility for many people, especially those who have special needs. Voice search technology is applied in the search of book collections in the OPAC (Online Public Access Catalog), so library visitors will find it faster and easier to find books that they need. Integration with Google is needed to convert the voice into text. To optimize the time and the results of searching, Server will download all the book data that is available in the server database. Then, the data will be converted into JSON format. In addition, the incorporation of some algorithms is conducted including Decomposition (parse) in the form of array of JSON format, the index making, analyzer to the result. It aims to make the process of searching much faster than the usual searching in OPAC because the data are directly taken to the database for every search warrant. Data Update Menu is provided with the purpose to enable users perform their own data updates and get the latest data information.

Keywords: OPAC, voice, searching, faster

Procedia PDF Downloads 344
25732 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models

Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu

Abstract:

Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.

Keywords: DTM, Unmanned Aerial Vehicle (UAV), uniform, random, kriging

Procedia PDF Downloads 155
25731 Exploring Influence Range of Tainan City Using Electronic Toll Collection Big Data

Authors: Chen Chou, Feng-Tyan Lin

Abstract:

Big Data has been attracted a lot of attentions in many fields for analyzing research issues based on a large number of maternal data. Electronic Toll Collection (ETC) is one of Intelligent Transportation System (ITS) applications in Taiwan, used to record starting point, end point, distance and travel time of vehicle on the national freeway. This study, taking advantage of ETC big data, combined with urban planning theory, attempts to explore various phenomena of inter-city transportation activities. ETC, one of government's open data, is numerous, complete and quick-update. One may recall that living area has been delimited with location, population, area and subjective consciousness. However, these factors cannot appropriately reflect what people’s movement path is in daily life. In this study, the concept of "Living Area" is replaced by "Influence Range" to show dynamic and variation with time and purposes of activities. This study uses data mining with Python and Excel, and visualizes the number of trips with GIS to explore influence range of Tainan city and the purpose of trips, and discuss living area delimited in current. It dialogues between the concepts of "Central Place Theory" and "Living Area", presents the new point of view, integrates the application of big data, urban planning and transportation. The finding will be valuable for resource allocation and land apportionment of spatial planning.

Keywords: Big Data, ITS, influence range, living area, central place theory, visualization

Procedia PDF Downloads 279
25730 Evaluation of Azo Dye Toxicity Using Some Haematological and Histopathological Alterations in Fish Catla Catla

Authors: Jagruti Barot

Abstract:

The textile industry plays a major role in the economy of India and on the other side of the coin it is the major source for water pollution. As azo dyes is the largest dye class they are extensively used in many fields such as textile industry, leather tanning industry, paper production, food, colour photography, pharmaceuticals and medicine, cosmetic, hair colourings, wood staining, agricultural, biological and chemical research etc. In addition to these, they can have acute and/or chronic effects on organisms depending on their concentration and length of exposure when they discharged as effluent in the environment. The aim of this study was to assess the genotoxic and histotoxic potentials of environmentally relevant concentrations of RR 120 on Catla catla, important edible freshwater fingerlings. For this, healthy Catla catla fingerlings were procured from the Government Fish Farm and acclimatized in 100 L capacity and continuously aerated glass aquarium in laboratory for 15 days. According to APHA some physic-chemical parameters were measured and maintained such as temperature, pH, dissolve oxygen, alkalinity, total hardness. Water along with excreta had been changed every 24 hrs. All fingerlings were fed artificial food palates once a day @ body weight. After 15 days fingerlings were grouped in 5 (10 in each) and exposed to various concentrations of RR 120 (Control, 10, 20, 30 and 40 mg/L) and samples (peripheral blood and gills, kidney) were collected and analyzed at 96 hrs. of interval. All results were compared with the control. Micronuclei (MN), nuclear buds (NB), fragmented-apoptotic (FA) and bi-nucleated (BN) cells in blood cells and in tissues (gills and kidney cells) were observed. Prominent histopathological alterations were noticed in gills such as aneurism, hyperplasia, degenerated central axis, lifting of gill epithelium, curved secondary gill lamellae etc. Similarly kidney showed some detrimental changes like shrunken glomeruli with increased periglomerular space, degenerated renal tubules etc. Both haematological and histopathological changes clearly reveal the toxic potential of RR 120. This work concludes that water pollution assessment can be done by these two biomarkers which provide baseline to the further chromosomal or molecular work.

Keywords: micronuclei, genotoxicity, RR 120, Catla catla

Procedia PDF Downloads 208
25729 Determinants of Life Satisfaction in Canada: A Causal Modelling Approach

Authors: Rose Branch-Allen, John Jayachandran

Abstract:

Background and purpose: Canada is a pluralistic, multicultural society with an ethno-cultural composition that has been shaped over time by immigrants and their descendants. Although Canada welcomes these immigrants, many will endure hardship and assimilation difficulties. Despite these life hurdles, surveys consistently disclose high life satisfaction for all Canadians. Most research studies on Life Satisfaction/ Subjective Wellbeing (SWB) have focused on one main determinant and a variety of social demographic variables to delineate the determinants of life satisfaction. However, very few research studies examine life satisfaction from a holistic approach. In addition, we need to understand the causal pathways leading to life satisfaction, and develop theories that explain why certain variables differentially influence the different components of SWB. The aim this study was to utilize a holistic approach to construct a causal model and identify major determinants of life satisfaction. Data and measures: This study utilized data from the General Social Survey, with a sample size of 19, 597. The exogenous concepts included age, gender, marital status, household size, socioeconomic status, ethnicity, location, immigration status, religiosity, and neighborhood. The intervening concepts included health, social contact, leisure, enjoyment, work-family balance, quality time, domestic labor, and sense of belonging. The endogenous concept life satisfaction was measured by multiple indicators (Cronbach’s alpha = .83). Analysis: Several multiple regression models were run sequentially to estimate path coefficients for the causal model. Results: Overall, above average satisfaction with life was reported for respondents with specific socio-economic, demographic and lifestyle characteristics. With regard to exogenous factors, respondents who were female, younger, married, from high socioeconomic status background, born in Canada, very religious, and demonstrated high level of neighborhood interaction had greater satisfaction with life. Similarly, intervening concepts suggested respondents had greater life satisfaction if they had better health, more social contact, less time on passive leisure activities and more time on active leisure activities, more time with family and friends, more enjoyment with volunteer activities, less time on domestic labor and a greater sense of belonging to the community. Conclusions and Implications: Our results suggest that a holistic approach is necessary for establishing determinants of life satisfaction, and that life satisfaction is not merely comprised of positive or negative affect rather understanding the causal process of life satisfaction. Even though, most of our findings are consistent with previous studies, a significant number of causal connections contradict some of the findings in literature today. We have provided possible explanation for these anomalies researchers encounter in studying life satisfaction and policy implications.

Keywords: causal model, holistic approach, life satisfaction, socio-demographic variables, subjective well-being

Procedia PDF Downloads 357
25728 Performance Analysis of Hierarchical Agglomerative Clustering in a Wireless Sensor Network Using Quantitative Data

Authors: Tapan Jain, Davender Singh Saini

Abstract:

Clustering is a useful mechanism in wireless sensor networks which helps to cope with scalability and data transmission problems. The basic aim of our research work is to provide efficient clustering using Hierarchical agglomerative clustering (HAC). If the distance between the sensing nodes is calculated using their location then it’s quantitative HAC. This paper compares the various agglomerative clustering techniques applied in a wireless sensor network using the quantitative data. The simulations are done in MATLAB and the comparisons are made between the different protocols using dendrograms.

Keywords: routing, hierarchical clustering, agglomerative, quantitative, wireless sensor network

Procedia PDF Downloads 615
25727 A Novel Hybrid Deep Learning Architecture for Predicting Acute Kidney Injury Using Patient Record Data and Ultrasound Kidney Images

Authors: Sophia Shi

Abstract:

Acute kidney injury (AKI) is the sudden onset of kidney damage in which the kidneys cannot filter waste from the blood, requiring emergency hospitalization. AKI patient mortality rate is high in the ICU and is virtually impossible for doctors to predict because it is so unexpected. Currently, there is no hybrid model predicting AKI that takes advantage of two types of data. De-identified patient data from the MIMIC-III database and de-identified kidney images and corresponding patient records from the Beijing Hospital of the Ministry of Health were collected. Using data features including serum creatinine among others, two numeric models using MIMIC and Beijing Hospital data were built, and with the hospital ultrasounds, an image-only model was built. Convolutional neural networks (CNN) were used, VGG and Resnet for numeric data and Resnet for image data, and they were combined into a hybrid model by concatenating feature maps of both types of models to create a new input. This input enters another CNN block and then two fully connected layers, ending in a binary output after running through Softmax and additional code. The hybrid model successfully predicted AKI and the highest AUROC of the model was 0.953, achieving an accuracy of 90% and F1-score of 0.91. This model can be implemented into urgent clinical settings such as the ICU and aid doctors by assessing the risk of AKI shortly after the patient’s admission to the ICU, so that doctors can take preventative measures and diminish mortality risks and severe kidney damage.

Keywords: Acute kidney injury, Convolutional neural network, Hybrid deep learning, Patient record data, ResNet, Ultrasound kidney images, VGG

Procedia PDF Downloads 131
25726 Qualitative Data Analysis for Health Care Services

Authors: Taner Ersoz, Filiz Ersoz

Abstract:

This study was designed enable application of multivariate technique in the interpretation of categorical data for measuring health care services satisfaction in Turkey. The data was collected from a total of 17726 respondents. The establishment of the sample group and collection of the data were carried out by a joint team from The Ministry of Health and Turkish Statistical Institute (Turk Stat) of Turkey. The multiple correspondence analysis (MCA) was used on the data of 2882 respondents who answered the questionnaire in full. The multiple correspondence analysis indicated that, in the evaluation of health services females, public employees, younger and more highly educated individuals were more concerned and complainant than males, private sector employees, older and less educated individuals. Overall 53 % of the respondents were pleased with the improvements in health care services in the past three years. This study demonstrates the public consciousness in health services and health care satisfaction in Turkey. It was found that most the respondents were pleased with the improvements in health care services over the past three years. Awareness of health service quality increases with education levels. Older individuals and males would appear to have lower expectancies in health services.

Keywords: multiple correspondence analysis, multivariate categorical data, health care services, health satisfaction survey

Procedia PDF Downloads 242
25725 Regulation of Desaturation of Fatty Acid and Triglyceride Synthesis by Myostatin through Swine-Specific MEF2C/miR222/SCD5 Pathway

Authors: Wei Xiao, Gangzhi Cai, Xingliang Qin, Hongyan Ren, Zaidong Hua, Zhe Zhu, Hongwei Xiao, Ximin Zheng, Jie Yao, Yanzhen Bi

Abstract:

Myostatin (MSTN) is the master regulator of double muscling phenotype with overgrown muscle and decreased fatness in animals, but its action mode to regulate fat deposition remains to be elucidated. In this study a swin-specific pathway through which MSTN acts to regulate the fat deposition was deciphered. Deep sequenincing of the mRNA and miRNA of fat tissues of MSTN knockout (KO) and wildtype (WT) pigs discovered the positive correlation of myocyte enhancer factor 2C (MEF2C) and fat-inhibiting miR222 expression, and the inverse correlation of miR222 and stearoyl-CoA desaturase 5 (SCD5) expression. SCD5 is rodent-absent and expressed only in pig, sheep and cattle. Fatty acid spectrum of fat tissues revealed a lower percentage of oleoyl-CoA (18:1) and palmitoleyl CoA (16:1) in MSTN KO pigs, which are the catalyzing products of SCD5-mediated desaturation of steroyl CoA (18:0) and palmitoyl CoA (16:0). Blood metrics demonstrated a 45% decline of triglyceride (TG) content in MSTN KO pigs. In light of these observations we hypothesized that MSTN might act through MEF2C/miR222/SCD5 pathway to regulate desaturation of fatty acid as well as triglyceride synthesis in pigs. To this end, real-time PCR and Western blotting were carried out to detect the expression of the three genes stated above. These experiments showed that MEF2C expression was up-regulated by nearly 2-fold, miR222 up-regulated by nearly 3-fold and SCD5 down-regulated by nearly 50% in MSTN KO pigs. These data were consistent with the expression change in deep sequencing analysis. Dual luciferase reporter was then used to confirm the regulation of MEF2C upon the promoter of miR222. Ecotopic expression of MEF2C in preadipocyte cells enhanced miR222 expression by 3.48-fold. CHIP-PCR identified a putative binding site of MEF2C on -2077 to -2066 region of miR222 promoter. Electrophoretic mobility shift assay (EMSA) demonstrated the interaction of MEF2C and miR222 promoter in vitro. These data indicated that MEF2C transcriptionally regulates the expression of miR222. Next, the regulation of miR222 on SCD5 mRNA as well as its physiological consequences were examined. Dual luciferase reporter testing revealed the translational inhibition of miR222 upon the 3´ UTR (untranslated region) of SCD5 in preadipocyte cells. Transfection of miR222 mimics and inhibitors resulted in the down-regulation and up-regulation of SCD5 in preadipocyte cells respectively, consistent with the results from reporter testing. RNA interference of SCD5 in preadipocyte cells caused 26.2% reduction of TG, in agreement with the results of TG content in MSTN KO pigs. In summary, the results above supported the existence of a molecular pathway that MSTN signals through MEF2C/miR222/SCD5 to regulate the fat deposition in pigs. This swine-specific pathway offers potential molecular markers for the development and breeding of a new pig line with optimised fatty acid composition. This would benefit human health by decreasing the takeup of saturated fatty acid.

Keywords: fat deposition, MEF2C, miR222, myostatin, SCD5, pig

Procedia PDF Downloads 129
25724 Adsorption of Heavy Metals Using Chemically-Modified Tea Leaves

Authors: Phillip Ahn, Bryan Kim

Abstract:

Copper is perhaps the most prevalent heavy metal used in the manufacturing industries, from food additives to metal-mechanic factories. Common methodologies to remove copper are expensive and produce undesired by-products. A good decontaminating candidate should be environment-friendly, inexpensive, and capable of eliminating low concentrations of the metal. This work suggests chemically modified spent tea leaves of chamomile, peppermint and green tea in their thiolated, sulfonated and carboxylated forms as candidates for the removal of copper from solutions. Batch experiments were conducted to maximize the adsorption of copper (II) ions. Effects such as acidity, salinity, adsorbent dose, metal concentration, and presence of surfactant were explored. Experimental data show that maximum adsorption is reached at neutral pH. The results indicate that Cu(II) can be removed up to 53%, 22% and 19% with the thiolated, carboxylated and sulfonated adsorbents, respectively. Maximum adsorption of copper on TPM (53%) is achieved with 150 mg and decreases with the presence of salts and surfactants. Conversely, sulfonated and carboxylated adsorbents show better adsorption in the presence of surfactants. Time-dependent experiments show that adsorption is reached in less than 25 min for TCM and 5 min for SCM. Instrumental analyses determined the presence of active functional groups, thermal resistance, and scanning electron microscopy, indicating that both adsorbents are promising materials for the selective recovery and treatment of metal ions from wastewaters. Finally, columns were prepared with these adsorbents to explore their application in scaled-up processes, with very positive results. A long-term goal involves the recycling of the exhausted adsorbent and/or their use in the preparation of biofuels due to changes in materials’ structures.

Keywords: heavy metal removal, adsorption, wastewaters, water remediation

Procedia PDF Downloads 290
25723 Assessing the Plant Diversity's Quality, Threats and Opportunities for the Support of Sustainable City Development of the City Raipur, India

Authors: Katharina Lapin, Debashis Sanyal

Abstract:

Worldwide urban areas are growing. Urbanization has a great impact on social and economic development and ecosystem services. This global trend of urbanization also has significant impact on habitat and biodiversity. The impact of urbanization on the biodiversity of cities in Europe and North America is well studied, while there is a lack of data from cities in currently fast growing urban areas. Indian cities are expanding. The scientific community and the governmental authorities are facing the ongoing urbanization process as an opportunity for the environment. This case study supports the evaluation of urban biodiversity of the city Raipur in the North-West of India. The aim of this study is to assess the overview of the environmental and ecological implications of urbanization. The collected data and analysis was used to discuss the challenges for the sustainable city development. Vascular plants were chosen as an appropriate indicator for the assessment of local biodiversity changes. On the one hand, the vegetation cover is sensible to anthropogenic influence, and in the other hand, the local species composition is comparable to changes at the regional and national scale, using the plant index of India. Further information of abiotic situation can be gathered with the determination of indicator species. In order to calculate the influence of urbanization on the native plant diversity, the Shannon diversity index H´ was chosen. The Pielou`s pooled quadrate method was used for estimating diversity when a random sample is not expected. It was used to calculate the Pilou´s index of evenness. The estimated species coverage was used for calculating the H´ and J. Pearson correlation was performed to test the relationship between urbanization pattern and plant diversity. Further, a SWOT analysis was used in for analyzing internal and external factors impinging on a decision making process. The city of Raipur (21.25°N 81.63°E) has a population of 1,010,087 inhabitants living in an urban area of 226km², in the district of the Indian state of Chhattisgarh. Within the last decade, the urban area of Raipur increased. The results show that various novel ecosystems exist in the urban area of Raipur. The high amount of native flora is mainly to find at the shore of urban lakes and along the river Karun. These areas of high Biodiversity Index are to protect as urban biodiversity hot spots. The governmental authorities are well informed about the environmental challenges for the sustainable development of the city. Together with the scientific community of the Technical University of Raipur many engineering solutions are discussed for implementation of the future. The case study helped to point out the importance environmental measures that support the ecosystem services of green infrastructure. The fast process of urbanization is difficult to control. Uncontrolled creation of urban housing leads to difficulties in unsustainable use of natural resources. This is the major threat for the urban biodiversity.

Keywords: India, novel ecosystems, plant diversity, urban ecology

Procedia PDF Downloads 277
25722 The Application of Polymers in Enhanced Oil Recovery: Recent Trends

Authors: Reza M. Rudd, Ali Saeedi, Colin Wood

Abstract:

In this article, the latest advancements made in the applications of polymers in the enhanced hydrocarbon recovery technologies are investigated. For this purpose, different classes of polymers are reviewed and the latest progresses made in making them suitable for application under harsh reservoir conditions are discussed. The main reservoir conditions whose effects are taken into account include the temperature, rock mineralogy and brine salinity and composition. For profile modification and blocking the thief zones, polymers are used in the form of nanocomposite hydrogels. Polymers are also used as thickeners during CO2 flooding. Also, they are used in enhanced gas recovery, to inhibit the mixing of injection gas with the in-situ natural gas. This review covers the main types of polymers, their functions and the challenges in their applications, some of which are mentioned above. Included in this review are also the latest progresses made in the development of new polymeric surfactants used for surfactant flooding.

Keywords: EOR, EGR, polymer flooding, profile modification, mobility control, nanocomposite hydrogels, CO2 flooding, polymeric surfactants

Procedia PDF Downloads 567
25721 Chemical Composition and Insecticidal Activity of Three Essential Oil and Beauvericin Nanogel on Plodia Interpunctella (Lepidoptera: Pyralidae)

Authors: Magda Mahmoud Amin Sabbour, El-Sayed H. Shaurub

Abstract:

The Indian meal moth Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), of stored grain pests which destroy the seed completely. Their larval stages feed on the nutrient germinating kernels part found in the seeds grain. This leads to a reduction causing a badness to seed germination and seed viability. It controlled by many insecticides which pollute and cusses a harmful diseases to human being. Three tested oils were evaluated on this target pests. Plant extracts, essential oils and medical oils are materials which used to control many stored pests. Plant oils extracts have a lower effects on parasites and predators and not pollute the medium. By using the apparatus gas chromatography flame ionization detector gas chromatography–analysis of three essential oil tested. This research was point to explore and appreciation the activity of three oils and nano gel Beauvericin against P. interpunctella in the laboratory conditions and in the store conditions. The three essential oil tested proved that, percentage of α-Pinene recoded 7.76, 7.72 and 6.66 for C. cyminum, A. squamosal and G. officinale respectively. The composition of the β-Pinene recoded 4.61, 8.92 and 30.63 for the corresponding oils tested. Results showed that after analytically the oils tested, the effective compound of C. cyminum oil are p-cyinene and Terpinene. Results obtained show that the LC50 recorded 125, 112, 55 and 20 ppm after P. interpunctella treated with medical oils of Guaiacum officinale, Annona squamosa, Cuminum cyminum and Beauvericin 3% respectively. The accumulative mortality of P. interpunctella after treated with A.squamosa oil-loaded nanogels which showed that it is the highest oils from infestations recoded when the seed treated with 3% after 48 days, the accumulations obtained 44% at followed by 24 after24 days of storage. Results, cleared that the seed protection by G. officinale recorded 40% at concentrations of 3% after 48 days of storage seeds. C. cyminum was the highest mortality by 98, at concentrations 3%. The highest seed protection proved after C. cyminum oil-loaded nanogels 14% followed by G. officinale 29% and A.squamosa 44%.when the seeds treated with Beauvericin 3%. Results of this work cleared that the essential medical oils have a useful action effect on target insects. Plant essential and medical oils, their active ingredient have potentially high bioactivity against on P. interpunctella. The medical and essential oils incorporation and usage the nano-formulation release stopped the highly degradation vaporization and the increasing in the constancy, and save the lower effectiveness of the dosage/application. The research results proved that the highest seed protection obtained after C. cyminum oil-loaded nanogels followed by G. officinale and A.squamosa. It could be complemented that P. interpunctella were more susceptible to medical oils loaded nanogel (MOLNs ) than medical oils only (MO). MOLNs had best lower amount of the residual activity than MO only. MOLNs might mend the insecticidal action of the medical oil tested by the slow effective release of the medical oils to control P. interpunctella mostly at the lower doses.

Keywords: Cuminum cyminum, annona squamosa, guaiacum officinale, beauvericin 3 %, plodia interpunctella

Procedia PDF Downloads 120
25720 Willingness of Spanish Wineries to Implement Renewable Energies in Their Vineyards and Wineries, as Well as the Limitations They Perceive for Their Implementation

Authors: Javier Carroquino, Nieves García-Casarejos, Pilar Gargallo

Abstract:

Climate change, depletion of non-renewable resources in the current energies, pollution from them, the greater ecological awareness of the population, are factors that suggest the change of energy sources in business. The agri-food industry is a growth sector, concerned about product innovation, process and with a clear awareness of what climate change may mean for it. This sector is supposed to have a high receptivity to the implementation of clean energy, as this favors not only the environment but also the essence of its business. This work, through surveys, aims to know the willingness of Spanish wineries to implement renewable energies in their vineyards, as well as the limitations they perceive for their implementation. This questionnaire allows the characterization of the sector in terms of its geographical typologies, their activity levels, their perception of environmental issues, the degree of implementation of measures to mitigate climate change and improve energy efficiency, and its uses and energy consumption. The analysis of data proves that the penetration of renewable energies is still at low levels, being the most used energies, solar thermal, photovoltaic and biomass. The initial investment seems to be at the origin of the lack of implantation of this type of energy in the wineries, and not so much the costs of operations and maintenance. The environmental management of the wineries is still at an embryonic stage within the company's organization chart, because these services are either outsourced or, if technicians are available, they are not exclusively dedicated to these tasks. However, there is a strong environmental awareness, as evidenced by the number of climate change mitigation and energy efficiency measures already adopted. The gap between high awareness and low achievement is probably due to the lack of knowledge about how to do it or the perception of a high cost.

Keywords: survey, renewable energy, winery, Spanish case

Procedia PDF Downloads 252
25719 Development of a Numerical Model to Predict Wear in Grouted Connections for Offshore Wind Turbine Generators

Authors: Paul Dallyn, Ashraf El-Hamalawi, Alessandro Palmeri, Bob Knight

Abstract:

In order to better understand the long term implications of the grout wear failure mode in large-diameter plain-sided grouted connections, a numerical model has been developed and calibrated that can take advantage of existing operational plant data to predict the wear accumulation for the actual load conditions experienced over a given period, thus limiting the need for expensive monitoring systems. This model has been derived and calibrated based on site structural condition monitoring (SCM) data and supervisory control and data acquisition systems (SCADA) data for two operational wind turbine generator substructures afflicted with this challenge, along with experimentally derived wear rates.

Keywords: grouted connection, numerical model, offshore structure, wear, wind energy

Procedia PDF Downloads 453
25718 Technology Use by African Smallholder Farmers and the Significant Mediating Factors

Authors: Enobong Akpan-Etuk

Abstract:

The willingness of smallholder farmers in Africa to adopt new agricultural technologies has been low, despite the technological advancement in agriculture. Although technology is seen as the main route out of the traditional methods of food production and poverty, the rate of adoption of agricultural technology remains low among farmers in Africa. Factors affecting the adoption of agricultural technologies include the acquisition of information, characteristics of the technology, education of farmers, social capital, farm size, and household size. This paper explored the literature on the influence of the factors that determine the adoption of technology by smallholder farmers.

Keywords: smallholder, technology, adoption

Procedia PDF Downloads 146
25717 Multimodal Deep Learning for Human Activity Recognition

Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja

Abstract:

In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.

Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness

Procedia PDF Downloads 101