Search results for: decision based artificial neural network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33757

Search results for: decision based artificial neural network

29827 Landfill Site Selection Using Multi-Criteria Decision Analysis A Case Study for Gulshan-e-Iqbal Town, Karachi

Authors: Javeria Arain, Saad Malik

Abstract:

The management of solid waste is a crucial and essential aspect of urban environmental management especially in a city with an ever increasing population such as Karachi. The total amount of municipal solid waste generated from Gulshan e Iqbal town on average is 444.48 tons per day and landfill sites are a widely accepted solution for final disposal of this waste. However, an improperly selected site can have immense environmental, economical and ecological impacts. To select an appropriate landfill site a number of factors should be kept into consideration to minimize the potential hazards of solid waste. The purpose of this research is to analyse the study area for the construction of an appropriate landfill site for disposal of municipal solid waste generated from Gulshan e-Iqbal Town by using geospatial techniques considering hydrological, geological, social and geomorphological factors. This was achieved using analytical hierarchy process and fuzzy analysis as a decision support tool with integration of geographic information sciences techniques. Eight most critical parameters, relevant to the study area, were selected. After generation of thematic layers for each parameter, overlay analysis was performed in ArcGIS 10.0 software. The results produced by both methods were then compared with each other and the final suitability map using AHP shows that 19% of the total area is Least Suitable, 6% is Suitable but avoided, 46% is Moderately Suitable, 26% is Suitable, 2% is Most Suitable and 1% is Restricted. In comparison the output map of fuzzy set theory is not in crisp logic rather it provides an output map with a range of 0-1, where 0 indicates least suitable and 1 indicates most suitable site. Considering the results it is deduced that the northern part of the city is appropriate for constructing the landfill site though a final decision for an optimal site could be made after field survey and considering economical and political factors.

Keywords: Analytical Hierarchy Process (AHP), fuzzy set theory, Geographic Information Sciences (GIS), Multi-Criteria Decision Analysis (MCDA)

Procedia PDF Downloads 504
29826 A Cloud-Based Federated Identity Management in Europe

Authors: Jesus Carretero, Mario Vasile, Guillermo Izquierdo, Javier Garcia-Blas

Abstract:

Currently, there is a so called ‘identity crisis’ in cybersecurity caused by the substantial security, privacy and usability shortcomings encountered in existing systems for identity management. Federated Identity Management (FIM) could be solution for this crisis, as it is a method that facilitates management of identity processes and policies among collaborating entities without enforcing a global consistency, that is difficult to achieve when there are ID legacy systems. To cope with this problem, the Connecting Europe Facility (CEF) initiative proposed in 2014 a federated solution in anticipation of the adoption of the Regulation (EU) N°910/2014, the so-called eIDAS Regulation. At present, a network of eIDAS Nodes is being deployed at European level to allow that every citizen recognized by a member state is to be recognized within the trust network at European level, enabling the consumption of services in other member states that, until now were not allowed, or whose concession was tedious. This is a very ambitious approach, since it tends to enable cross-border authentication of Member States citizens without the need to unify the authentication method (eID Scheme) of the member state in question. However, this federation is currently managed by member states and it is initially applied only to citizens and public organizations. The goal of this paper is to present the results of a European Project, named eID@Cloud, that focuses on the integration of eID in 5 cloud platforms belonging to authentication service providers of different EU Member States to act as Service Providers (SP) for private entities. We propose an initiative based on a private eID Scheme both for natural and legal persons. The methodology followed in the eID@Cloud project is that each Identity Provider (IdP) is subscribed to an eIDAS Node Connector, requesting for authentication, that is subscribed to an eIDAS Node Proxy Service, issuing authentication assertions. To cope with high loads, load balancing is supported in the eIDAS Node. The eID@Cloud project is still going on, but we already have some important outcomes. First, we have deployed the federation identity nodes and tested it from the security and performance point of view. The pilot prototype has shown the feasibility of deploying this kind of systems, ensuring good performance due to the replication of the eIDAS nodes and the load balance mechanism. Second, our solution avoids the propagation of identity data out of the native domain of the user or entity being identified, which avoids problems well known in cybersecurity due to network interception, man in the middle attack, etc. Last, but not least, this system allows to connect any country or collectivity easily, providing incremental development of the network and avoiding difficult political negotiations to agree on a single authentication format (which would be a major stopper).

Keywords: cybersecurity, identity federation, trust, user authentication

Procedia PDF Downloads 167
29825 Viscoelastic Behaviour of Hyaluronic Acid Copolymers

Authors: Loredana Elena Nita, Maria Bercea, Aurica P. Chiriac, Iordana Neamtu

Abstract:

The paper is devoted to the behavior of gels based on poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane) copolymers, with different ratio between the comonomers, and hyaluronic acid (HA). The gel formation was investigated by small-amplitude oscillatory shear measurements following the viscoelastic behavior as a function of gel composition, temperature and shear conditions. Hyaluronic acid was investigated in the same conditions and its rheological behavior is typical to viscous fluids. In the case of the copolymers, the ratio between the two comonomers influences the viscoelastic behavior, a higher content of itaconic anhydride favoring the gel formation. Also, the sol-gel transition was evaluated according to Winter-Chambon criterion that identifies the gelation point when the viscoelastic moduli (G’ and G”) behave similarly as a function of oscillation frequency. From rheological measurements, an optimum composition was evidenced for which the system presents a typical gel-like behavior at 37 °C: the elastic modulus is higher than the viscous modulus and they are not dependent on the oscillation frequency. The formation of the 3D macroporous network was also evidenced by FTIR spectra, SEM microscopy and chemical imaging. These hydrogels present a high potential as drug delivery systems.

Keywords: copolymer, viscoelasticity, gelation, 3D network

Procedia PDF Downloads 287
29824 Stabilization of Rotational Motion of Spacecrafts Using Quantized Two Torque Inputs Based on Random Dither

Authors: Yusuke Kuramitsu, Tomoaki Hashimoto, Hirokazu Tahara

Abstract:

The control problem of underactuated spacecrafts has attracted a considerable amount of interest. The control method for a spacecraft equipped with less than three control torques is useful when one of the three control torques had failed. On the other hand, the quantized control of systems is one of the important research topics in recent years. The random dither quantization method that transforms a given continuous signal to a discrete signal by adding artificial random noise to the continuous signal before quantization has also attracted a considerable amount of interest. The objective of this study is to develop the control method based on random dither quantization method for stabilizing the rotational motion of a rigid spacecraft with two control inputs. In this paper, the effectiveness of random dither quantization control method for the stabilization of rotational motion of spacecrafts with two torque inputs is verified by numerical simulations.

Keywords: spacecraft control, quantized control, nonlinear control, random dither method

Procedia PDF Downloads 180
29823 A Multidimensional Exploration of Narcissistic Personality Disorder Through Psycholinguistic Analysis and Neuroscientific Correlates

Authors: Dalia Elleuch

Abstract:

Narcissistic Personality Disorder (NPD) manifests as a personality disorder marked by inflated self-importance, heightened sensitivity to criticism, a lack of empathy, a preoccupation with appearance over substance, and features such as arrogance, grandiosity, a constant need for admiration, a tendency to exploit others, and an inclination towards demanding special treatment due to a sense of excessive entitlement (APA, 2013). This interdisciplinary study delves into NPD through the systematic synthesis of psycholinguistic analysis and neuroscientific correlates. The cognitive and emotional dimensions of NPD reveal linguistic patterns, including grandiosity, entitlement, and manipulative communication. Neuroscientific investigations reveal structural brain differences and alterations in functional connectivity, further explaining the neural underpinnings of social cognition deficits observed in individuals with NPD. Genetic predispositions and neurotransmitter imbalances add a layer of complexity to the understanding of NPD. The necessity for linguistic intervention in diagnosing and treating Narcissistic Personality Disorder is underscored by an interdisciplinary study that intricately synthesizes psycholinguistic analysis and neuroscientific correlates, offering a comprehensive understanding of NPD’s cognitive, emotional, and neural dimensions and paving the way for future practical, theoretical, and pedagogical approaches to address the complexities of this personality disorder.

Keywords: Narcissistic Personality Disorder (NPD), psycholinguistic analysis, neuroscientific correlates, interpersonal dysfunction, cognitive empathy

Procedia PDF Downloads 65
29822 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning

Authors: Shayla He

Abstract:

Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.

Keywords: homeless, prediction, model, RNN

Procedia PDF Downloads 121
29821 Parameter Interactions in the Cumulative Prospect Theory: Fitting the Binary Choice Experiment Data

Authors: Elzbieta Babula, Juhyun Park

Abstract:

Tversky and Kahneman’s cumulative prospect theory assumes symmetric probability cumulation with regard to the reference point within decision weights. Theoretically, this model should be invariant under the change of the direction of probability cumulation. In the present study, this phenomenon is being investigated by creating a reference model that allows verifying the parameter interactions in the cumulative prospect theory specifications. The simultaneous parametric fitting of utility and weighting functions is applied to binary choice data from the experiment. The results show that the flexibility of the probability weighting function is a crucial characteristic allowing to prevent parameter interactions while estimating cumulative prospect theory.

Keywords: binary choice experiment, cumulative prospect theory, decision weights, parameter interactions

Procedia PDF Downloads 215
29820 Manufacturing Facility Location Selection: A Numercal Taxonomy Approach

Authors: Seifoddini Hamid, Mardikoraeem Mahsa, Ghorayshi Roya

Abstract:

Manufacturing facility location selection is an important strategic decision for many industrial corporations. In this paper, a new approach to the manufacturing location selection problem is proposed. In this approach, cluster analysis is employed to identify suitable manufacturing locations based on economic, social, environmental, and political factors. These factors are quantified using the existing real world data.

Keywords: manufacturing facility, manufacturing sites, real world data

Procedia PDF Downloads 563
29819 Community Participation of the Villagers: Corporate Social Responsibility Programme in Pantai Harapan Jaya Village, Bekasi Regency, West Java

Authors: Auliya Adzillatin Uzhma, Ismu Rini Dwi Ari, I. Nyoman Suluh Wijaya

Abstract:

Corporate Social Responsibility (CSR) programme in Pantai Harapan Jaya village is cultivation of mangrove and fishery capital distribution, to achieve the goal the CSR programme needed participation from the society in it. Moeliono in Fahrudin (2011) mentioned that participation from society is based by intrinsic reason from inside people it self and extrinsic reason from the other who related to him or from connection with other people. The fundamental connection who caused more boundaries from action which the organization can do called the social structure. The purpose of this research is to know the form of public participation and the density of the villager and people who is participated in CSR programme. This research use Social Network Analysis method by knew the Rate of Participation and Density. The result of the research is people who is involved in the programme is lived in Dusun Pondok Dua and they work in fisheries field. Rate of Participation is 11,61 and that means people involved in 11 or 12 activites of CSR Programme. The rate of participation of CSR Programme is categorized as high rate participation. The density value from the participant is 0.516 it’s mean that 51.6% of the people that participated is involved in the same step of CSR programme.

Keywords: community participation, social network analysis, corporate social responsibility, urban and regional studies

Procedia PDF Downloads 516
29818 A Machine Learning Approach to Detecting Evasive PDF Malware

Authors: Vareesha Masood, Ammara Gul, Nabeeha Areej, Muhammad Asif Masood, Hamna Imran

Abstract:

The universal use of PDF files has prompted hackers to use them for malicious intent by hiding malicious codes in their victim’s PDF machines. Machine learning has proven to be the most efficient in identifying benign files and detecting files with PDF malware. This paper has proposed an approach using a decision tree classifier with parameters. A modern, inclusive dataset CIC-Evasive-PDFMal2022, produced by Lockheed Martin’s Cyber Security wing is used. It is one of the most reliable datasets to use in this field. We designed a PDF malware detection system that achieved 99.2%. Comparing the suggested model to other cutting-edge models in the same study field, it has a great performance in detecting PDF malware. Accordingly, we provide the fastest, most reliable, and most efficient PDF Malware detection approach in this paper.

Keywords: PDF, PDF malware, decision tree classifier, random forest classifier

Procedia PDF Downloads 92
29817 Investigating the Associative Network of Color Terms among Turkish University Students: A Cognitive-Based Study

Authors: R. Güçlü, E. Küçüksakarya

Abstract:

Word association (WA) gives the broadest information on how knowledge is structured in the human mind. Cognitive linguistics, psycholinguistics, and applied linguistics are the disciplines that consider WA tests as substantial in gaining insights into the very nature of the human cognitive system and semantic knowledge. In this study, Berlin and Kay’s basic 11 color terms (1969) are presented as the stimuli words to a total number of 300 Turkish university students. The responses are analyzed according to Fitzpatrick’s model (2007), including four categories, namely meaning-based responses, position-based responses, form-based responses, and erratic responses. In line with the findings, the responses to free association tests are expected to give much information about Turkish university students’ psychological structuring of vocabulary, especially morpho-syntactic and semantic relationships among words. To conclude, theoretical and practical implications are discussed to make an in-depth evaluation of how associations of basic color terms are represented in the mental lexicon of Turkish university students.

Keywords: color term, gender, mental lexicon, word association task

Procedia PDF Downloads 131
29816 Green Innovation and Artificial Intelligence in Service

Authors: Fatemeh Khalili Varnamkhasti

Abstract:

Numerous nations have recognized the critical ought to address natural issues, such as discuss contamination, squander transfer, worldwide warming, and common asset consumption, through the application of green innovation. The rise of cleverly advances has driven mechanical basic changes that will offer assistance accomplish carbon decrease. Manufactured insights (AI) innovation is an imperative portion of digitalization, giving unused mechanical apparatuses and bearings for the moo carbon advancement of endeavors. Quickening the brilliantly change of fabricating industry is an critical vital choice to realize the green advancement change. The reason why fabricating insights can advance the advancement of green advancement execution is that fabricating insights is conducive to the generation of "innovation advancement impact" and "fetched decrease impact" so as to advance green innovation advancement, at that point viably increment the alluring yields and essentially diminish the undesirable yields. AI improvement will boost GTI as it were when the escalated of natural direction and organization environment is over a certain edge esteem. In any case, the AI improvement spoken to by mechanical robot applications still has no self-evident impact on GTI, indeed, when the R&D venture surpasses a certain edge.

Keywords: greenhouse gas emissions, green infrastructure, artificial intelligence, environmental protection

Procedia PDF Downloads 70
29815 Multi-Criteria Evaluation for the Selection Process of a Wind Power Plant's Location Using Choquet Integral

Authors: Serhat Tüzün, Tufan Demirel

Abstract:

The objective of the present study is to select the most suitable location for a wind power plant station through Choquet integral method. The problem of selecting the location for a wind power station was considered as a multi-criteria decision-making problem. The essential and sub-criteria were specified and location selection was expressed in a hierarchic structure. Among the main criteria taken into account in this paper are wind potential, technical factors, social factors, transportation, and costs. The problem was solved by using different approaches of Choquet integral and the best location for a wind power station was determined. Then, the priority weights obtained from different Choquet integral approaches are compared and commented on.

Keywords: multi-criteria decision making, choquet integral, fuzzy sets, location of a wind power plant

Procedia PDF Downloads 412
29814 Factors Contributing to a Career Choice Abroad Among Rwandan Students in Poland

Authors: Faucal Marie Providence Idufashe, Rafał Katamay

Abstract:

Background: Cases of foreign students who do not return to their home countries after their graduation have been reported. Over the past years, More and more young Rwandans choose to study in Poland, appreciating the high level of education in Polish universities. However, the majority of them tend to stay there after their studies or move to other nearby countries. Therefore, this study aims at identifying factors contributing to a career choice abroad among Rwandan students in Poland. Methods: This was a cross-sectional, observational, survey-based study and targeted the Rwandan community living in Poland. All the analyses were done in SPSS. A total of 219 respondents completed the online survey within two months from July to September 2022. Results: The prevalence of migration intention among Rwandan student in Poland was estimated at 79.91%. Only religion was statistically significant, whereas other social demographic factors such as age, residence, education, and marital status did not contribute to the decision of a career choice in Poland among respondents, Rwandans in Poland. Furthermore, perceived connection to co-workers, employment company's culture and respect were the significant socio-economic factors contributed to the decision of a career choice in Poland among those studied. The level of income did not contribute. Conclusion: A high proportion expressed migration intention in our study. These intentions were attracted by opportunities in Poland in addition to the welcoming culture. Going forward, we recommend exploring those factors using in-depth interviews for more insights.

Keywords: career, choice, abroad, Poland, students, Rwandan

Procedia PDF Downloads 61
29813 Examining the Level of Career Maturity on Cultural Aspect among Undergraduate Foreign Students in A Public University in Malaysia

Authors: Mustafa Tekke, Nurullah Kurt

Abstract:

This study examined the level of career maturity of undergraduate foreign students in a public university in Malaysia by examining on cultural aspect by using the Career Maturity Inventory. Two hundred and twenty nine (Male = 106, Female = 123) foreign students studying in various majors completed the Career Maturity Inventory and the scores of the foreign students on the CMI suggested that they had slightly higher levels than the mean level of maturity in career. Result was also supported by testing the feeling about major, consideration of changing major and planning after graduation, which indicated that foreign students had their own career decision making. However, this result should be viewed with caution within ethnic difference.

Keywords: career maturity, foreign students, career decision making, feeling about major, knowledge about major

Procedia PDF Downloads 307
29812 Analysing the Applicability of a Participatory Approach to Life Cycle Sustainability Assessment: Case Study of a Housing Estate Regeneration in London

Authors: Sahar Navabakhsh, Rokia Raslan, Yair Schwartz

Abstract:

Decision-making on regeneration of housing estates, whether to refurbish or re-build, has been mostly triggered by economic factors. To enable sustainable growth, it is vital that environmental and social impacts of different scenarios are also taken into account. The methodology used to include all the three sustainable development pillars is called Life Cycle Sustainability Assessment (LCSA), which comprises of Life Cycle Assessment (LCA) for the assessment of environmental impacts of buildings. Current practice of LCA is regularly conducted post design stage and by sustainability experts. Not only is undertaking an LCA at this stage less effective, but issues such as the limited scope for the definition and assessment of environmental impacts, the implication of changes in the system boundary and the alteration of each of the variable metrics, employment of different Life Cycle Impact Assessment Methods and use of various inventory data for Life Cycle Inventory Analysis can result in considerably contrasting results. Given the niche nature and scarce specialist domain of LCA of buildings, the majority of the stakeholders do not contribute to the generation or interpretation of the impact assessment, and the results can be generated and interpreted subjectively due to the mentioned uncertainties. For an effective and democratic assessment of environmental impacts, different stakeholders, and in particular the community and design team should collaborate in the process of data collection, assessment and analysis. This paper examines and evaluates a participatory approach to LCSA through the analysis of a case study of a housing estate in South West London. The study has been conducted throughout tier-based collaborative methods to collect and share data through surveys and co-design workshops with the community members and the design team as the main stakeholders. The assessment of lifecycle impacts is conducted throughout the process and has influenced the decision-making on the design of the Community Plan. The evaluation concludes better assessment transparency and outcome, alongside other socio-economic benefits of identifying and engaging the most contributive stakeholders in the process of conducting LCSA.

Keywords: life cycle assessment, participatory LCA, life cycle sustainability assessment, participatory processes, decision-making, housing estate regeneration

Procedia PDF Downloads 147
29811 The Influence of Advertising Captions on the Internet through the Consumer Purchasing Decision

Authors: Suwimol Apapol, Punrapha Praditpong

Abstract:

The objectives of the study were to find out the frequencies of figures of speech in fragrance advertising captions as well as the types of figures of speech most commonly applied in captions. The relation between figures of speech and fragrance was also examined in order to analyze how figures of speech were used to represent fragrance. Thirty-five fragrance advertisements were randomly selected from the Internet. Content analysis was applied in order to consider the relation between figures of speech and fragrance. The results showed that figures of speech were found in almost every fragrance advertisement except one advertisement of several Goods service. Thirty-four fragrance advertising captions used at least one kind of figure of speech. Metaphor was most frequently found and also most frequently applied in fragrance advertising captions, followed by alliteration, rhyme, simile and personification, and hyperbole respectively which is in harmony with the research hypotheses as well.

Keywords: advertising captions, captions on internet, consumer purchasing decision, e-commerce

Procedia PDF Downloads 270
29810 The Application and Relevance of Costing Techniques in Service Oriented Business Organisations: A Review of the Activity-Based Costing (ABC) Technique

Authors: Udeh Nneka Evelyn

Abstract:

The shortcomings of traditional costing system, in terms of validity, accuracy, consistency and relevance increased the need for modern management accounting system. ABC (Activity-Based Costing) can be used as a modern tool for planning, control and decision making for management. Past studies on activity-based costing (ABC) system have focused on manufacturing firms thereby making the studies on service firms scanty to some extent. This paper reviewed the application and relevance of activity-based costing techniques in service oriented business organisations by employing a qualitative research method which relied heavily on literature review of past and current relevant articles focusing on activity-based costing (ABC). Findings suggest that ABC is not only appropriate for use in a manufacturing environment; it is also most appropriate for service organizations such as financial institutions, the healthcare industry, and government organizations. In fact, some banking and financial institutions have been applying the concept for years under other names. One of them is unit costing, which is used to calculate the cost of banking services by determining the cost and consumption of each unit of output of functions required to deliver the service. ABC in very basic terms may provide very good payback for businesses. Some of the benefits that relate directly to the financial services industry are: Identification of the most profitable customers; more accurate product and service pricing; increase product profitability; well-organized process costs.

Keywords: profitability, activity-based costing (ABC), management accounting, manufacture

Procedia PDF Downloads 580
29809 Distributed Generation Connection to the Network: Obtaining Stability Using Transient Behavior

Authors: A. Hadadi, M. Abdollahi, A. Dustmohammadi

Abstract:

The growing use of DGs in distribution networks provide many advantages and also cause new problems which should be anticipated and be solved with appropriate solutions. One of the problems is transient voltage drop and short circuit in the electrical network, in the presence of distributed generation - which can lead to instability. The appearance of the short circuit will cause loss of generator synchronism, even though if it would be able to recover synchronizing mode after removing faulty generator, it will be stable. In order to increase system reliability and generator lifetime, some strategies should be planned to apply even in some situations which a fault prevent generators from separation. In this paper, one fault current limiter is installed due to prevent DGs separation from the grid when fault occurs. Furthermore, an innovative objective function is applied to determine the impedance optimal amount of fault current limiter in order to improve transient stability of distributed generation. Fault current limiter can prevent generator rotor's sudden acceleration after fault occurrence and thereby improve the network transient stability by reducing the current flow in a fast and effective manner. In fact, by applying created impedance by fault current limiter when a short circuit happens on the path of current injection DG to the fault location, the critical fault clearing time improve remarkably. Therefore, protective relay has more time to clear fault and isolate the fault zone without any instability. Finally, different transient scenarios of connection plan sustainability of small scale synchronous generators to the distribution network are presented.

Keywords: critical clearing time, fault current limiter, synchronous generator, transient stability, transient states

Procedia PDF Downloads 197
29808 Microstructural Interactions of Ag and Sc Alloying Additions during Casting and Artificial Ageing to a T6 Temper in a A356 Aluminium Alloy

Authors: Dimitrios Bakavos, Dimitrios Tsivoulas, Chaowalit Limmaneevichitr

Abstract:

Aluminium cast alloys, of the Al-Si system, are widely used for shape castings. Their microstructures can be further improved on one hand, by alloying modification and on the other, by optimised artificial ageing. In this project four hypoeutectic Al-alloys, the A356, A356+ Ag, A356+Sc, and A356+Ag+Sc have been studied. The interactions of Ag and Sc during solidification and artificial ageing at 170°C to a T6 temper have been investigated in details. The evolution of the eutectic microstructure is studied by thermal analysis and interrupted solidification. The ageing kinetics of the alloys has been identified by hardness measurements. The precipitate phases, number density, and chemical composition has been analysed by means of transmission electron microscopy (TEM) and EDS analysis. Furthermore, the SHT effect onto the Si eutectic particles for the four alloys has been investigated by means of optical microscopy, image analysis, and the UTS strength has been compared with the UTS of the alloys after casting. The results suggest that the Ag additions, significantly enhance the ageing kinetics of the A356 alloy. The formation of β” precipitates were kinetically accelerated and an increase of 8% and 5% in peak hardness strength has been observed compared to the base A356 and A356-Sc alloy. The EDS analysis demonstrates that Ag is present on the β” precipitate composition. After prolonged ageing 100 hours at 170°C, the A356-Ag exhibits 17% higher hardness strength compared to the other three alloys. During solidification, Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction. In contrast, Ag has no significance effect on the solidification mode revealing a macroscopic eutectic growth similar to A356 base alloy. However, the mechanical strength of the as cast A356-Ag, A356-Sc, and A356+Ag+Sc additions has increased by 5, 30, and 35 MPa, respectively. The outcome is a tribute to the refining of the eutectic Si that takes place which it is strong in the A356-Sc alloy and more profound when silver and scandium has been combined. Moreover after SHT the Al alloy with the highest mechanical strength, is the one with Ag additions, in contrast to the as-cast condition where the Sc and Sc+Ag alloy was the strongest. The increase of strength is mainly attributed to the dissolution of grain boundary precipitates the increase of the solute content into the matrix, the spherodisation, and coarsening of the eutectic Si. Therefore, we could safely conclude for an A356 hypoeutectic alloy additions of: Ag exhibits a refining effect on the Si eutectic which is improved when is combined with Sc. In addition Ag enhance, the ageing kinetics increases the hardness and retains its strength at prolonged artificial ageing in a Al-7Si 0.3Mg hypoeutectic alloy. Finally the addition of Sc is beneficial due to the refinement of the α-Al grain and modification-refinement of the eutectic Si increasing the strength of the as-cast product.

Keywords: ageing, casting, mechanical strength, precipitates

Procedia PDF Downloads 498
29807 Method for Selecting and Prioritising Smart Services in Manufacturing Companies

Authors: Till Gramberg, Max Kellner, Erwin Gross

Abstract:

This paper presents a comprehensive investigation into the topic of smart services and IIoT-Platforms, focusing on their selection and prioritization in manufacturing organizations. First, a literature review is conducted to provide a basic understanding of the current state of research in the area of smart services. Based on discussed and established definitions, a definition approach for this paper is developed. In addition, value propositions for smart services are identified based on the literature and expert interviews. Furthermore, the general requirements for the provision of smart services are presented. Subsequently, existing approaches for the selection and development of smart services are identified and described. In order to determine the requirements for the selection of smart services, expert opinions from successful companies that have already implemented smart services are collected through semi-structured interviews. Based on the results, criteria for the evaluation of existing methods are derived. The existing methods are then evaluated according to the identified criteria. Furthermore, a novel method for the selection of smart services in manufacturing companies is developed, taking into account the identified criteria and the existing approaches. The developed concept for the method is verified in expert interviews. The method includes a collection of relevant smart services identified in the literature. The actual relevance of the use cases in the industrial environment was validated in an online survey. The required data and sensors are assigned to the smart service use cases. The value proposition of the use cases is evaluated in an expert workshop using different indicators. Based on this, a comparison is made between the identified value proposition and the required data, leading to a prioritization process. The prioritization process follows an established procedure for evaluating technical decision-making processes. In addition to the technical requirements, the prioritization process includes other evaluation criteria such as the economic benefit, the conformity of the new service offering with the company strategy, or the customer retention enabled by the smart service. Finally, the method is applied and validated in an industrial environment. The results of these experiments are critically reflected upon and an outlook on future developments in the area of smart services is given. This research contributes to a deeper understanding of the selection and prioritization process as well as the technical considerations associated with smart service implementation in manufacturing organizations. The proposed method serves as a valuable guide for decision makers, helping them to effectively select the most appropriate smart services for their specific organizational needs.

Keywords: smart services, IIoT, industrie 4.0, IIoT-platform, big data

Procedia PDF Downloads 89
29806 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: big data, k-NN, machine learning, traffic speed prediction

Procedia PDF Downloads 363
29805 Gender Differences in Negotiation: Considering the Usual Driving Forces

Authors: Claude Alavoine, Ferkan Kaplanseren

Abstract:

Negotiation is a specific form of interaction based on communication in which the parties enter into deliberately, each with clear but different interests or goals and a mutual dependency towards a decision due to be taken at the end of the confrontation. Consequently, negotiation is a complex activity involving many different disciplines from the strategic aspects and the decision making process to the evaluation of alternatives or outcomes and the exchange of information. While gender differences can be considered as one of the most researched topic within negotiation studies, empirical works and theory present many conflicting evidences and results about the role of gender in the process or the outcome. Furthermore, little interest has been shown over gender differences in the definition of what is negotiation, its essence or fundamental elements. Or, as differences exist in practices, it might be essential to study if the starting point of these discrepancies does not come from different considerations about what is negotiation and what will encourage the participants in their strategic decisions. Some recent and promising experiments made with diverse groups show that male and female participants in a common and shared situation barely consider the same way the concepts of power, trust or stakes which are largely considered as the usual driving forces of any negotiation. Furthermore, results from Human Resource self-assessment tests display and confirm considerable differences between individuals regarding essential behavioral dimensions like capacity to improvise and to achieve, aptitude to conciliate or to compete and orientation towards power and group domination which are also part of negotiation skills. Our intention in this paper is to confront these dimensions with negotiation’s usual driving forces in order to build up new paths for further research.

Keywords: negotiation, gender, trust, power, stakes, strategies

Procedia PDF Downloads 509
29804 Military Use of Artificial Intelligence under International Humanitarian Law: Insights from Canada

Authors: Mahshid TalebianKiakalayeh

Abstract:

As AI technologies can be used by both civilians and soldiers, it is vital to consider the consequences emanating from AI military as well as civilian use. Indeed, many of the same technologies can have a dual-use. This paper will explore the military uses of AI and assess its compliance with international legal norms. AI developments not only have changed the capacity of the military to conduct complex operations but have also increased legal concerns. The existence of a potential legal vacuum in legal principles on the military use of AI indicates the necessity of more study on compliance with International Humanitarian Law (IHL), the branch of international law which governs the conduct of hostilities. While capabilities of new means of military AI continue to advance at incredible rates, this body of law is seeking to limit the methods of warfare protecting civilian persons who are not participating in an armed conflict. Implementing AI in the military realm would result in potential issues, including ethical and legal challenges. For instance, when intelligence can perform any warfare task without any human involvement, a range of humanitarian debates will be raised as to whether this technology might distinguish between military and civilian targets or not. This is mainly because AI in fully military systems would not seem to carry legal and ethical judgment, which can interfere with IHL principles. The paper will take, as a case study, Canada’s compliance with IHL in the area of AI and the related legal issues that are likely to arise as this country continues to develop military uses of AI.

Keywords: artificial intelligence, military use, international humanitarian law, the Canadian perspective

Procedia PDF Downloads 188
29803 Optimizing Agricultural Packaging in Fiji: Strategic Barrier Analysis Using Interpretive Structural Modeling and Cross-Impact Matrix Multiplication Applied to Classification

Authors: R. Ananthanarayanan, S. B. Nakula, D. R. Seenivasagam, J. Naua, B. Sharma

Abstract:

Product packaging is a critical component of production, trade, and marketing, playing numerous vital roles that often go unnoticed by consumers. Packaging is essential for maintaining the shelf life, quality assurance, and safety of both manufactured and agricultural products. For example, harvested produce or processed foods can quickly lose quality and freshness, making secure packaging crucial for preservation and safety throughout the food supply chain. In Fiji, agricultural packaging has primarily been managed by local companies for international trade, with gradual advancements in these practices. To further enhance the industry’s performance, this study examines the challenges and constraints hindering the optimization of agricultural packaging practices in Fiji. The study utilizes Multi-Criteria Decision Making (MCDM) tools, specifically Interpretive Structural Modeling (ISM) and Cross-Impact Matrix Multiplication Applied to Classification (MICMAC). ISM analyzes the hierarchical structure of barriers, categorizing them from the least to the most influential, while MICMAC classifies barriers based on their driving and dependence power. This approach helps identify the interrelationships between barriers, providing valuable insights for policymakers and decision-makers to propose innovative solutions for sustainable development in the agricultural packaging sector, ultimately shaping the future of packaging practices in Fiji.

Keywords: agricultural packaging, barriers, ISM, MICMAC

Procedia PDF Downloads 32
29802 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction

Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba

Abstract:

Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.

Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform

Procedia PDF Downloads 53
29801 Big Data for Local Decision-Making: Indicators Identified at International Conference on Urban Health 2017

Authors: Dana R. Thomson, Catherine Linard, Sabine Vanhuysse, Jessica E. Steele, Michal Shimoni, Jose Siri, Waleska Caiaffa, Megumi Rosenberg, Eleonore Wolff, Tais Grippa, Stefanos Georganos, Helen Elsey

Abstract:

The Sustainable Development Goals (SDGs) and Urban Health Equity Assessment and Response Tool (Urban HEART) identify dozens of key indicators to help local decision-makers prioritize and track inequalities in health outcomes. However, presentations and discussions at the International Conference on Urban Health (ICUH) 2017 suggested that additional indicators are needed to make decisions and policies. A local decision-maker may realize that malaria or road accidents are a top priority. However, s/he needs additional health determinant indicators, for example about standing water or traffic, to address the priority and reduce inequalities. Health determinants reflect the physical and social environments that influence health outcomes often at community- and societal-levels and include such indicators as access to quality health facilities, access to safe parks, traffic density, location of slum areas, air pollution, social exclusion, and social networks. Indicator identification and disaggregation are necessarily constrained by available datasets – typically collected about households and individuals in surveys, censuses, and administrative records. Continued advancements in earth observation, data storage, computing and mobile technologies mean that new sources of health determinants indicators derived from 'big data' are becoming available at fine geographic scale. Big data includes high-resolution satellite imagery and aggregated, anonymized mobile phone data. While big data are themselves not representative of the population (e.g., satellite images depict the physical environment), they can provide information about population density, wealth, mobility, and social environments with tremendous detail and accuracy when combined with population-representative survey, census, administrative and health system data. The aim of this paper is to (1) flag to data scientists important indicators needed by health decision-makers at the city and sub-city scale - ideally free and publicly available, and (2) summarize for local decision-makers new datasets that can be generated from big data, with layperson descriptions of difficulties in generating them. We include SDGs and Urban HEART indicators, as well as indicators mentioned by decision-makers attending ICUH 2017.

Keywords: health determinant, health outcome, mobile phone, remote sensing, satellite imagery, SDG, urban HEART

Procedia PDF Downloads 210
29800 Use of Integrated Knowledge Networks to Increase Innovation in Nanotechnology Research and Development

Authors: R. Byler

Abstract:

Innovation, particularly in technology development, is a crucial aspect of nanotechnology R&D and, although several approaches to effective innovation management exist, organizational structures that promote knowledge exchange have been found to be most effect in supporting new and emerging technologies. This paper discusses Integrated Knowledge Networks (IKNs) and evaluates its use within nanotechnology R&D to increase technology innovation. Specifically, this paper reviews the role of IKNs in bolstering national and international nanotechnology development and in enhancing nanotechnology innovation. Both physical and virtual IKNs, particularly IT-based network platforms for community-based innovation, offer strategies for enhanced technology innovation, interdisciplinary cooperation, and enterprise development. Effectively creating and managing technology R&D networks can facilitate successful knowledge exchange, enhanced innovation, commercialization, and technology transfer. As such, IKNs are crucial to technology development processes and, thus, in increasing the quality and access to new, innovative nanoscience and technologies worldwide.

Keywords: community-based innovation, integrated knowledge networks, nanotechnology, technology innovation

Procedia PDF Downloads 413
29799 Machine Learning for Rational Decision-Making: Introducing Creativity to Teachers within a School System

Authors: Larry Audet

Abstract:

Creativity is suddenly and fortunately a new educational focus in the United Arab Emirates and around the world. Yet still today many leaders of creativity are not sure how to introduce it to their teachers. It is impossible to simultaneously introduce every aspect of creativity into a work climate and reach any degree of organizational coherence. The number of alternatives to explore is so great; the information teachers need to learn is so vast, that even an approximation to including every concept and theory of creativity into the school organization is hard to conceive. Effective leaders of creativity need evidence-based and practical guidance for introducing and stimulating creativity in others. Machine learning models reveal new findings from KEYS Survey© data about teacher perceptions of stimulants and barriers to their individual and collective creativity. Findings from predictive and causal models provide leaders with a rational for decision-making when introducing creativity into their organization. Leaders should focus on management practices first. Analyses reveal that creative outcomes are more likely to occur when teachers perceive supportive management practices: providing teachers with challenging work that calls for their best efforts; allowing freedom and autonomy in their practice of work; allowing teachers to form creative work-groups; and, recognizing them for their efforts. Once management practices are in place, leaders should focus their efforts on modeling risk-taking, providing optimal amounts of preparation time, and evaluating teachers fairly.

Keywords: creativity, leadership, KEYS survey, teaching, work climate

Procedia PDF Downloads 166
29798 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms

Authors: Sekkal Nawel, Mahammed Nadir

Abstract:

The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.

Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network

Procedia PDF Downloads 67