Search results for: batch-constrained reinforcement learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7784

Search results for: batch-constrained reinforcement learning

3884 A Smart Contract Project: Peer-to-Peer Energy Trading with Price Forecasting in Microgrid

Authors: Şakir Bingöl, Abdullah Emre Aydemir, Abdullah Saado, Ahmet Akıl, Elif Canbaz, Feyza Nur Bulgurcu, Gizem Uzun, Günsu Bilge Dal, Muhammedcan Pirinççi

Abstract:

Smart contracts, which can be applied in many different areas, from financial applications to the internet of things, come to the fore with their security, low cost, and self-executing features. In this paper, it is focused on peer-to-peer (P2P) energy trading and the implementation of the smart contract on the Ethereum blockchain. It is assumed a microgrid consists of consumers and prosumers that can produce solar and wind energy. The proposed architecture is a system where the prosumer makes the purchase or sale request in the smart contract and the maximum price obtained through the distribution system operator (DSO) by forecasting. It is aimed to forecast the hourly maximum unit price of energy by using deep learning instead of a fixed pricing. In this way, it will make the system more reliable as there will be more dynamic and accurate pricing. For this purpose, Istanbul's energy generation, energy consumption and market clearing price data were used. The consistency of the available data and forecasting results is observed and discussed with graphs.

Keywords: energy trading smart contract, deep learning, microgrid, forecasting, Ethereum, peer to peer

Procedia PDF Downloads 138
3883 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: big data, k-NN, machine learning, traffic speed prediction

Procedia PDF Downloads 363
3882 Extent of Applying Evidence Based Practices in Inclusion Programs for Pupils with Intellectual Disability

Authors: Faris Algahtani

Abstract:

The current study aimed to reveal the extent to which evidence-based practices are applied in programs to integrate students with intellectual disabilities from the point of view of their teachers in Yanbu Governorate, and to reveal statistically significant differences in their application of evidence-based practices according to the following variables: gender, educational qualification, experience and training courses. The researcher used the descriptive approach, and accordingly; she designed a questionnaire consisting of 22 phrases applied it to a random sample of (97) teachers of intellectual disability in the integration programs of the Ministry of Education in the government sector in Yanbu Governorate, with (49) male teachers and (48) female teachers. The study showed that teachers of students with intellectual disabilities apply evidence-based practices in programs to integrate students with intellectual disabilities to a large extent. Among the most prominent of these practices came reinforcement in the first place, followed by using visual stimuli/aids, and in the third-place came starting with less complex or challenging skills then moving to more difficult skills. The results also showed no statistically significant differences over the extent of the application attributed to the variables of experience, qualification or training. On the other hand, there were statistically significant differences over the extent of the application attributed to gender in favor of females.

Keywords: evidence-based practices, intellectual disability, inclusion programs, teachers of students with intellectual disabilities

Procedia PDF Downloads 89
3881 Learning the Most Common Causes of Major Industrial Accidents and Apply Best Practices to Prevent Such Accidents

Authors: Rajender Dahiya

Abstract:

Investigation outcomes of major process incidents have been consistent for decades and validate that the causes and consequences are often identical. The debate remains as we continue to experience similar process incidents even with enormous development of new tools, technologies, industry standards, codes, regulations, and learning processes? The objective of this paper is to investigate the most common causes of major industrial incidents and reveal industry challenges and best practices to prevent such incidents. The author, in his current role, performs audits and inspections of a variety of high-hazard industries in North America, including petroleum refineries, chemicals, petrochemicals, manufacturing, etc. In this paper, he shares real life scenarios, examples, and case studies from high hazards operating facilities including key challenges and best practices. This case study will provide a clear understanding of the importance of near miss incident investigation. The incident was a Safe operating limit excursion. The case describes the deficiencies in management programs, the competency of employees, and the culture of the corporation that includes hazard identification and risk assessment, maintaining the integrity of safety-critical equipment, operating discipline, learning from process safety near misses, process safety competency, process safety culture, audits, and performance measurement. Failure to identify the hazards and manage the risks of highly hazardous materials and processes is one of the primary root-causes of an incident, and failure to learn from past incidents is the leading cause of the recurrence of incidents. Several investigations of major incidents discovered that each showed several warning signs before occurring, and most importantly, all were preventable. The author will discuss why preventable incidents were not prevented and review the mutual causes of learning failures from past major incidents. The leading causes of past incidents are summarized below. Management failure to identify the hazard and/or mitigate the risk of hazardous processes or materials. This process starts early in the project stage and continues throughout the life cycle of the facility. For example, a poorly done hazard study such as HAZID, PHA, or LOPA is one of the leading causes of the failure. If this step is performed correctly, then the next potential cause is. Management failure to maintain the integrity of safety critical systems and equipment. In most of the incidents, mechanical integrity of the critical equipment was not maintained, safety barriers were either bypassed, disabled, or not maintained. The third major cause is Management failure to learn and/or apply learning from the past incidents. There were several precursors before those incidents. These precursors were either ignored altogether or not taken seriously. This paper will conclude by sharing how a well-implemented operating management system, good process safety culture, and competent leaders and staff contributed to managing the risks to prevent major incidents.

Keywords: incident investigation, risk management, loss prevention, process safety, accident prevention

Procedia PDF Downloads 57
3880 Promoting Students' Worldview Through Integrative Education in the Process of Teaching Biology in Grades 11 and 12 of High School

Authors: Saule Shazhanbayeva, Denise van der Merwe

Abstract:

Study hypothesis: Nazarbayev Intellectual School of Kyzylorda’s Biology teachers can use STEM-integrated learning to improve students' problem-solving ability and responsibility as global citizens. The significance of this study is to indicate how the use of STEM integrative learning during Biology lessons could contribute to forming globally-minded students who are responsible community members. For the purposes of this study, worldview is defined as a view that is broader than the country of Kazakhstan, allowing students to see the significance of their scientific contributions to the world as global citizens. The context of worldview specifically indicates that most students have never traveled outside of their city or region within Kazakhstan. In order to broaden student understanding, it is imperative that students are exposed to different world views and contrasting ideas within the educational setting of Biology as the science being used for the research. This exposure promulgates students understanding of the significance they have as global citizens alongside the obligations which would rest on them as scientifically minded global citizens. Integrative learning should be Biological Science - with Technology and engineering in the form of problem-solving, and Mathematics to allow improved problem-solving skills to develop within the students of Nazarbayev Intellectual School (NIS) of Kyzylorda. The school's vision is to allow students to realise their role as global citizens and become responsible community members. STEM allows integrations by combining four subject skills to solve topical problems designed by educators. The methods used are based on qualitative analysis: for students’ performance during a problem-solution scenario; and Biology teacher interviews to ascertain their understanding of STEM implementation and willingness to integrate it into current lessons. The research indicated that NIS is ready for a shift into STEM lessons to promote globally responsible students. The only additional need is for proper STEM integrative lesson method training for teachers.

Keywords: global citizen, STEM, Biology, high-school

Procedia PDF Downloads 72
3879 Experimental Investigation on the Anchor Behavior of Planar Clamping Anchor for Carbon Fiber-Reinforced Polymer Plate

Authors: Yongyu Duo, Xiaogang Liu, Qingrui Yue

Abstract:

The anchor plays a critical role in the utilization of the tensile strength of carbon fiber-reinforced polymer (CFRP) plate when it is applied for the prestressed retrofitted and cable structures. In this paper, the anchor behavior of planar clamping anchor (PCA) under different interface treatment forms and normal pressures was investigated by the uniaxial static tensile test. Two interface treatment forms were adopted, including pure friction and the coupling action of friction and bonding. The results indicated that the load-bearing capacity of PCA could be obviously improved by the coupling action of friction and bonding compared with the action of pure friction. Under the normal pressure of 11 MPa, 22 MPa, and 33 MPa, the load-bearing capacity of PCA was enhanced by 164.61%, 68.40%, and 52.78%, respectively, and the tensile strength of the CFRP plate was fully exploited when the normal pressure reached 44 MPa. In addition, the experimental coefficient of static friction between the galling CFRP plate and a sandblasted steel plate was in the range of 0.28-0.30, corresponding to various normal pressure. Moreover, the failure mode was determined by the interface treatment form and normal pressure. The research in this paper has important guiding significance to optimize the design of the mechanical clamping anchor, contributing to promoting the application of CFRP plate in reinforcement and cable structure.

Keywords: PCA, CFRP plate, interface treatment form, normal pressure, friction, coupling action

Procedia PDF Downloads 81
3878 Simulation of Nonlinear Behavior of Reinforced Concrete Slabs Using Rigid Body-Spring Discrete Element Method

Authors: Felix Jr. Garde, Eric Augustus Tingatinga

Abstract:

Most analysis procedures of reinforced concrete (RC) slabs are based on elastic theory. When subjected to large forces, however, slabs deform beyond elastic range and the study of their behavior and performance require nonlinear analysis. This paper presents a numerical model to simulate nonlinear behavior of RC slabs using rigid body-spring discrete element method. The proposed slab model composed of rigid plate elements and nonlinear springs is based on the yield line theory which assumes that the nonlinear behavior of the RC slab subjected to transverse loads is contained in plastic or yield-lines. In this model, the displacement of the slab is completely described by the rigid elements and the deformation energy is concentrated in the flexural springs uniformly distributed at the potential yield lines. The spring parameters are determined from comparison of transverse displacements and stresses developed in the slab obtained using FEM and the proposed model with assumed homogeneous material. Numerical models of typical RC slabs with varying geometry, reinforcement, support conditions, and loading conditions, show reasonable agreement with available experimental data. The model was also shown to be useful in investigating dynamic behavior of slabs.

Keywords: RC slab, nonlinear behavior, yield line theory, rigid body-spring discrete element method

Procedia PDF Downloads 323
3877 The Effectiveness of Homeschooling: A Stakeholder's Perception in East London Education District

Authors: N. M. Zukani, E. O. Adu

Abstract:

Homeschooling has been a primary method for parents to educate their children. It has become a growing educational phenomenon across the globe. However, homeschooling is, therefore, an alternative form of education in which children are instructed at home rather than in mainstream schools. This study evaluated the effectiveness of homeschooling in East London Education District, looking at the stakeholder’s perceptions, reviewing issues that impact on this as reflected in literature. This is a qualitative study done in selected homeschools. Semi structured interviews were used as a form of collecting data. Data was scrutinized and grouped into themes. The study revealed the importance of differentiation of instruction, and the need for flexibility in the process of homeschooling for children who faced difficulties, special needs in learning in mainstream schooling. It is therefore concluded that the participants in the study clearly showed that homeschooling is an educational choice for parents who have concerns about the quality of education of their children. Furthermore, homeschooling has the potential to be the most learner centered, nurturing educational approach. It was recommended that an effective homeschooling practice mainly, the practice should consider attention to children-parent’s goals and learning structure. Although homeschooling looks at how to overcome the drawbacks of mainstream schooling, there are also cases that reflected, the incompetency of parents or tutors conducting the homeschooling and also a need for the support material and other educational supports from the government.

Keywords: homeschooling, effectiveness, stakeholders, parents, perception

Procedia PDF Downloads 138
3876 Diabetes Diagnosis Model Using Rough Set and K- Nearest Neighbor Classifier

Authors: Usiobaifo Agharese Rosemary, Osaseri Roseline Oghogho

Abstract:

Diabetes is a complex group of disease with a variety of causes; it is a disorder of the body metabolism in the digestion of carbohydrates food. The application of machine learning in the field of medical diagnosis has been the focus of many researchers and the use of recognition and classification model as a decision support tools has help the medical expert in diagnosis of diseases. Considering the large volume of medical data which require special techniques, experience, and high diagnostic skill in the diagnosis of diseases, the application of an artificial intelligent system to assist medical personnel in order to enhance their efficiency and accuracy in diagnosis will be an invaluable tool. In this study will propose a diabetes diagnosis model using rough set and K-nearest Neighbor classifier algorithm. The system consists of two modules: the feature extraction module and predictor module, rough data set is used to preprocess the attributes while K-nearest neighbor classifier is used to classify the given data. The dataset used for this model was taken for University of Benin Teaching Hospital (UBTH) database. Half of the data was used in the training while the other half was used in testing the system. The proposed model was able to achieve over 80% accuracy.

Keywords: classifier algorithm, diabetes, diagnostic model, machine learning

Procedia PDF Downloads 336
3875 End-to-End Pyramid Based Method for Magnetic Resonance Imaging Reconstruction

Authors: Omer Cahana, Ofer Levi, Maya Herman

Abstract:

Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.

Keywords: magnetic resonance imaging, image reconstruction, pyramid network, deep learning

Procedia PDF Downloads 91
3874 Trauma and Its High Influence on Special Education

Authors: Athena Johnson

Abstract:

Special education is an important field but often under-researched, particularly for the cause of learning deficiencies. Often times special education looks at the symptoms rather than the cause, and this can lead to many misdiagnoses. Student trauma, as measured by the Adverse Childhood Experiences (ACE) test, is extremely common, often resulting in Post Traumatic Stress Disorder (PTSD). PTSD affects the brain's ability to learn properly, making students have a much more difficult time with auditory learning and memory due to always being in flight or fight mode, and due to this, students with PTSD are often misdiagnosed with Attention Deficit and Hyperactivity Disorder (ADHD). This can lead to them getting the wrong support, with PTSD students needing more counseling than anything else. Through these research papers' methodologies, a literature review on article research from the perspectives of students who were misdiagnosed, and imperial research, the major findings of this study were the importance of trauma-informed care in schools. Trauma-informed care in the school system is crucial for helping the many students who experience traumatic life events and struggle in school due to it. It is important to support students with PTSD so that they are able to integrate and learn better in society and school with trauma-informed school care.

Keywords: ACE test, ADHD, misdiagnoses, special education, trauma, trauma-informed care, PTSD

Procedia PDF Downloads 110
3873 Census and Mapping of Oil Palms Over Satellite Dataset Using Deep Learning Model

Authors: Gholba Niranjan Dilip, Anil Kumar

Abstract:

Conduct of accurate reliable mapping of oil palm plantations and census of individual palm trees is a huge challenge. This study addresses this challenge and developed an optimized solution implemented deep learning techniques on remote sensing data. The oil palm is a very important tropical crop. To improve its productivity and land management, it is imperative to have accurate census over large areas. Since, manual census is costly and prone to approximations, a methodology for automated census using panchromatic images from Cartosat-2, SkySat and World View-3 satellites is demonstrated. It is selected two different study sites in Indonesia. The customized set of training data and ground-truth data are created for this study from Cartosat-2 images. The pre-trained model of Single Shot MultiBox Detector (SSD) Lite MobileNet V2 Convolutional Neural Network (CNN) from the TensorFlow Object Detection API is subjected to transfer learning on this customized dataset. The SSD model is able to generate the bounding boxes for each oil palm and also do the counting of palms with good accuracy on the panchromatic images. The detection yielded an F-Score of 83.16 % on seven different images. The detections are buffered and dissolved to generate polygons demarcating the boundaries of the oil palm plantations. This provided the area under the plantations and also gave maps of their location, thereby completing the automated census, with a fairly high accuracy (≈100%). The trained CNN was found competent enough to detect oil palm crowns from images obtained from multiple satellite sensors and of varying temporal vintage. It helped to estimate the increase in oil palm plantations from 2014 to 2021 in the study area. The study proved that high-resolution panchromatic satellite image can successfully be used to undertake census of oil palm plantations using CNNs.

Keywords: object detection, oil palm tree census, panchromatic images, single shot multibox detector

Procedia PDF Downloads 160
3872 Early Adolescents Motivation and Engagement Levels in Learning in Low Socio-Economic Districts in Sri Lanka (Based on T-Tests Results)

Authors: Ruwandika Perera

Abstract:

Even though the Sri Lankan government provides a reasonable level of support for students at all levels of the school system, for example, free education, textbooks, school uniforms, subsidized public transportation, and school meals, low participation in learning among secondary students is an issue warranting investigation, particularly in low socio-economic districts. This study attempted to determine the levels of motivation and engagement amongst students in a number of schools in two low socio-economic districts of Sri Lanka. This study employed quantitative research design in an attempt to determine levels of motivation and engagement amongst Sri Lankan secondary school students. Motivation and Engagement Scale-Junior School (MES-JS) was administered among 100 Sinhala-medium and 100 Tamil-medium eighth-grade students (50 students from each gender). The mean age of the students was 12.8 years. Schools were represented by type 2 government schools located in Monaragala and Nuwara Eliya districts in Sri Lanka. Confirmatory factor analysis (CFA) was conducted to measure the construct validity of the scale. Since this did not provide a robust solution, exploratory factor analysis (EFA) was conducted. Four factors were identified; Failure Avoidance and Anxiety (FAA), Positive Motivation (PM), Uncertain Control (UC), and Positive Engagement (PE). An independent-samples t-test was conducted to compare PM, PE, FAA, and UC in gender and ethnic groups. There was no significant difference identified for PE, FAA, and UC scales based upon gender. These results indicate that for the participants in this study, there were no significant differences based on gender in the levels of failure avoidance and anxiety, uncertain control, and positive engagement in the school experience. But, the result for the PM scale was close to significant, indicating there may be differences based on gender for positive motivation. A significant difference exists for all scales based on ethnicity, with the mean result for the Tamil students being significantly higher than that for the Sinhala students. These results indicate those Sinhala-medium students’ levels of positive motivation and positive engagement in learning was lower than Tamil-medium students. Also, these results indicate those Tamil-medium students’ levels of failure avoidance, anxiety, and uncertain control was higher than Sinhala-medium students. It could be concluded that male students levels of PM were significantly lower than female students. Also, Sinhala-medium students’ levels of PM and PE was lower than Tamil-medium students, and Tamil-medium students levels of FAA and UC was significantly higher than Sinhala-medium students. Thus, there might be particular school-related conditions affecting this situation, which are related to early adolescents’ motivation and engagement in learning.

Keywords: early adolescents, engagement, low socio-economic districts, motivation

Procedia PDF Downloads 163
3871 An Event Relationship Extraction Method Incorporating Deep Feedback Recurrent Neural Network and Bidirectional Long Short-Term Memory

Authors: Yin Yuanling

Abstract:

A Deep Feedback Recurrent Neural Network (DFRNN) and Bidirectional Long Short-Term Memory (BiLSTM) are designed to address the problem of low accuracy of traditional relationship extraction models. This method combines a deep feedback-based recurrent neural network (DFRNN) with a bi-directional long short-term memory (BiLSTM) approach. The method combines DFRNN, which extracts local features of text based on deep feedback recurrent mechanism, BiLSTM, which better extracts global features of text, and Self-Attention, which extracts semantic information. Experiments show that the method achieves an F1 value of 76.69% on the CEC dataset, which is 0.0652 better than the BiLSTM+Self-ATT model, thus optimizing the performance of the deep learning method in the event relationship extraction task.

Keywords: event relations, deep learning, DFRNN models, bi-directional long and short-term memory networks

Procedia PDF Downloads 144
3870 Application of the Pattern Method to Form the Stable Neural Structures in the Learning Process as a Way of Solving Modern Problems in Education

Authors: Liudmyla Vesper

Abstract:

The problems of modern education are large-scale and diverse. The aspirations of parents, teachers, and experts converge - everyone interested in growing up a generation of whole, well-educated persons. Both the family and society are expected in the future generation to be self-sufficient, desirable in the labor market, and capable of lifelong learning. Today's children have a powerful potential that is difficult to realize in the conditions of traditional school approaches. Focusing on STEM education in practice often ends with the simple use of computers and gadgets during class. "Science", "technology", "engineering" and "mathematics" are difficult to combine within school and university curricula, which have not changed much during the last 10 years. Solving the problems of modern education largely depends on teachers - innovators, teachers - practitioners who develop and implement effective educational methods and programs. Teachers who propose innovative pedagogical practices that allow students to master large-scale knowledge and apply it to the practical plane. Effective education considers the creation of stable neural structures during the learning process, which allow to preserve and increase knowledge throughout life. The author proposed a method of integrated lessons – cases based on the maths patterns for forming a holistic perception of the world. This method and program are scientifically substantiated and have more than 15 years of practical application experience in school and student classrooms. The first results of the practical application of the author's methodology and curriculum were announced at the International Conference "Teaching and Learning Strategies to Promote Elementary School Success", 2006, April 22-23, Yerevan, Armenia, IREX-administered 2004-2006 Multiple Component Education Project. This program is based on the concept of interdisciplinary connections and its implementation in the process of continuous learning. This allows students to save and increase knowledge throughout life according to a single pattern. The pattern principle stores information on different subjects according to one scheme (pattern), using long-term memory. This is how neural structures are created. The author also admits that a similar method can be successfully applied to the training of artificial intelligence neural networks. However, this assumption requires further research and verification. The educational method and program proposed by the author meet the modern requirements for education, which involves mastering various areas of knowledge, starting from an early age. This approach makes it possible to involve the child's cognitive potential as much as possible and direct it to the preservation and development of individual talents. According to the methodology, at the early stages of learning students understand the connection between school subjects (so-called "sciences" and "humanities") and in real life, apply the knowledge gained in practice. This approach allows students to realize their natural creative abilities and talents, which makes it easier to navigate professional choices and find their place in life.

Keywords: science education, maths education, AI, neuroplasticity, innovative education problem, creativity development, modern education problem

Procedia PDF Downloads 62
3869 The Use of Educational Language Games

Authors: April Love Palad, Charita B. Lasala

Abstract:

Mastery on English language is one of the important goals of all English language teachers. This goal can be seen based from the students’ actual performance using the target language which is English. Learning the English language includes hard work where efforts need to be exerted and this can be attained gradually over a long period of time. It is extremely important for all English language teachers to know the effects of incorporating games in teaching. Whether this strategy can have positive or negative effects in students learning, teachers should always consider what is best for their learners. Games may help and provide confidents language learners. These games help teachers to create context in which the language is suitable and significant. Focusing in accuracy and fluency is the heart of this study and this will be obtain in either teaching English using the traditional method or teaching English using language games. It is very important for all English teachers to know which strategy is effective in teaching English to be able to cope with students’ underachievement in this subject. This study made use of the comparative-experimental method. It made use of the pre-post test design with the aim to explore the effectiveness of the language games as strategy used in language teaching for high school students. There were two groups of students being observed, the controlled and the experimental, employing the two strategies in teaching English –traditional and with the use of language games. The scores obtained by two samples were compared to know the effectiveness of the two strategies in teaching English. In this study, it found out that language games help improve students’ fluency and accuracy in the use of target language and this is very evident in the results obtained in the pre-test and post –test result as well the mean gain scores by the two groups of students. In addition, this study also gives us a clear view on the positive effects on the use of language games in teaching which also supported by the related studies based from this research. The findings of the study served as the bases for the creation of the proposed learning plan that integrated language games that teachers may use in their own teaching. This study further concluded that language games are effective in developing students’ fluency in using the English language. This justifies that games help encourage students to learn and be entertained at the same time. Aside from that, games also promote developing language competency. This study will be very useful to teachers who are in doubt in the use of this strategy in their teaching.

Keywords: language games, experimental, comparative, strategy, language teaching, methodology

Procedia PDF Downloads 421
3868 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method

Authors: Dangut Maren David, Skaf Zakwan

Abstract:

Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.

Keywords: prognostics, data-driven, imbalance classification, deep learning

Procedia PDF Downloads 174
3867 Resilience-Vulnerability Interaction in the Context of Disasters and Complexity: Study Case in the Coastal Plain of Gulf of Mexico

Authors: Cesar Vazquez-Gonzalez, Sophie Avila-Foucat, Leonardo Ortiz-Lozano, Patricia Moreno-Casasola, Alejandro Granados-Barba

Abstract:

In the last twenty years, academic and scientific literature has been focused on understanding the processes and factors of coastal social-ecological systems vulnerability and resilience. Some scholars argue that resilience and vulnerability are isolated concepts due to their epistemological origin, while others note the existence of a strong resilience-vulnerability relationship. Here we present an ordinal logistic regression model based on the analytical framework about dynamic resilience-vulnerability interaction along adaptive cycle of complex systems and disasters process phases (during, recovery and learning). In this way, we demonstrate that 1) during the disturbance, absorptive capacity (resilience as a core of attributes) and external response capacity explain the probability of households capitals to diminish the damage, and exposure sets the thresholds about the amount of disturbance that households can absorb, 2) at recovery, absorptive capacity and external response capacity explain the probability of households capitals to recovery faster (resilience as an outcome) from damage, and 3) at learning, adaptive capacity (resilience as a core of attributes) explains the probability of households adaptation measures based on the enhancement of physical capital. As a result, during the disturbance phase, exposure has the greatest weight in the probability of capital’s damage, and households with absorptive and external response capacity elements absorbed the impact of floods in comparison with households without these elements. At the recovery phase, households with absorptive and external response capacity showed a faster recovery on their capital; however, the damage sets the thresholds of recovery time. More importantly, diversity in financial capital increases the probability of recovering other capital, but it becomes a liability so that the probability of recovering the household finances in a longer time increases. At learning-reorganizing phase, adaptation (modifications to the house) increases the probability of having less damage on physical capital; however, it is not very relevant. As conclusion, resilience is an outcome but also core of attributes that interacts with vulnerability along the adaptive cycle and disaster process phases. Absorptive capacity can diminish the damage experienced by floods; however, when exposure overcomes thresholds, both absorptive and external response capacity are not enough. In the same way, absorptive and external response capacity diminish the recovery time of capital, but the damage sets the thresholds in where households are not capable of recovering their capital.

Keywords: absorptive capacity, adaptive capacity, capital, floods, recovery-learning, social-ecological systems

Procedia PDF Downloads 133
3866 Teaching Audiovisual Translation (AVT):Linguistic and Technical Aspects of Different Modes of AVT

Authors: Juan-Pedro Rica-Peromingo

Abstract:

Teachers constantly need to innovate and redefine materials for their lectures, especially in areas such as Language for Specific Purposes (LSP) and Translation Studies (TS). It is therefore essential for the lecturers to be technically skilled to handle the never-ending evolution in software and technology, which are necessary elements especially in certain courses at university level. This need becomes even more evident in Audiovisual Translation (AVT) Modules and Courses. AVT has undergone considerable growth in the area of teaching and learning of languages for academic purposes. We have witnessed the development of a considerable number of masters and postgraduate courses where AVT becomes a tool for L2 learning. The teaching and learning of different AVT modes are components of undergraduate and postgraduate courses. Universities, in which AVT is offered as part of their teaching programme or training, make use of professional or free software programs. This paper presents an approach in AVT withina specific university context, in which technology is used by means of professional and nonprofessional software. Students take an AVT subject as part of their English Linguistics Master’s Degree at the Complutense University (UCM) in which they are using professional (Spot) and nonprofessional (Subtitle Workshop, Aegisub, Windows Movie Maker) software packages. The students are encouraged to develop their tasks and projects simulating authentic professional experiences and contexts in the different AVT modes: subtitling for hearing and deaf and hard of hearing population, audio description and dubbing. Selected scenes from TV series such as X-Files, Gossip girl, IT Crowd; extracts from movies: Finding Nemo, Good Will Hunting, School of Rock, Harry Potter, Up; and short movies (Vincent) were used. Hence, the complexity of the audiovisual materials used in class as well as the activities for their projects were graded. The assessment of the diverse tasks carried out by all the students are expected to provide some insights into the best way to improve their linguistic accuracy and oral and written productions with the use of different AVT modes in a very specific ESP university context.

Keywords: ESP, audiovisual translation, technology, university teaching, teaching

Procedia PDF Downloads 518
3865 Shear Behavior of Steel-Fiber-Reinforced Precast/Prestressed Concrete Hollow Core Slabs

Authors: Thi Nguyet Hang Nguyen, Kang Hai Tan

Abstract:

Precast/prestressed concrete hollow core (PCHC) slabs, especially ones with depth more than 300 mm, are susceptible to web-shear failure. The reasons lie on the fact that the production process of PCHC slabs, i.e., the extrusion method (the most common method to cast PCHC slabs nowadays), does not allow them to contain any shear reinforcement. Moreover, due to the presence of the longitudinal voids, cross sections of PCHC slabs are reduced. Therefore, the shear capacity of the slabs depends solely on the tensile strength of concrete which is relatively low. Given that shear is a major concern in using hollow-core slabs, this paper investigates the possibility of adopting steel fibers in PCHC slabs produced by the extrusion method to enhance the shear capacity of the slabs. Three full-scale PCHC slabs with and without hooked-steel fibers were cast and tested until failure. Three different volumetric fiber contents of 0, 0.51 and 0.89% were investigated. The test results showed that there were substantial increases in shear capacity and ductility with the use of hooked-steel fibers. Ultimate shear strength increased with fiber content. In addition, while the specimen without steel fibers and the one with the steel-fiber volume fraction of 0.51% failed in web-shear mode, the specimen with the higher fiber content (0.89%) collapsed in flexural-shear mode. However, as the hooked-steel fibers with the fiber content of 0.89% were used, difficulties in concrete consolidation were observed while concrete was being cast. This could lead to a lower ultimate shear capacity due to a poorer bond between the concrete and the steel fibers.

Keywords: hollow-core slabs, shear strength, steel fibers, web-shear failure

Procedia PDF Downloads 172
3864 F-VarNet: Fast Variational Network for MRI Reconstruction

Authors: Omer Cahana, Maya Herman, Ofer Levi

Abstract:

Magnetic resonance imaging (MRI) is a long medical scan that stems from a long acquisition time. This length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach, such as compress sensing (CS) or parallel imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. In order to achieve that, two properties have to exist: i) the signal must be sparse under a known transform domain, ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm needs to be applied to recover the signal. While the rapid advance in the deep learning (DL) field, which has demonstrated tremendous successes in various computer vision task’s, the field of MRI reconstruction is still in an early stage. In this paper, we present an extension of the state-of-the-art model in MRI reconstruction -VarNet. We utilize VarNet by using dilated convolution in different scales, which extends the receptive field to capture more contextual information. Moreover, we simplified the sensitivity map estimation (SME), for it holds many unnecessary layers for this task. Those improvements have shown significant decreases in computation costs as well as higher accuracy.

Keywords: MRI, deep learning, variational network, computer vision, compress sensing

Procedia PDF Downloads 162
3863 Designing Information Systems in Education as Prerequisite for Successful Management Results

Authors: Vladimir Simovic, Matija Varga, Tonco Marusic

Abstract:

This research paper shows matrix technology models and examples of information systems in education (in the Republic of Croatia and in the Germany) in support of business, education (when learning and teaching) and e-learning. Here we researched and described the aims and objectives of the main process in education and technology, with main matrix classes of data. In this paper, we have example of matrix technology with detailed description of processes related to specific data classes in the processes of education and an example module that is support for the process: ‘Filling in the directory and the diary of work’ and ‘evaluation’. Also, on the lower level of the processes, we researched and described all activities which take place within the lower process in education. We researched and described the characteristics and functioning of modules: ‘Fill the directory and the diary of work’ and ‘evaluation’. For the analysis of the affinity between the aforementioned processes and/or sub-process we used our application model created in Visual Basic, which was based on the algorithm for analyzing the affinity between the observed processes and/or sub-processes.

Keywords: designing, education management, information systems, matrix technology, process affinity

Procedia PDF Downloads 439
3862 A Comparison of the First Language Vocabulary Used by Indonesian Year 4 Students and the Vocabulary Taught to Them in English Language Textbooks

Authors: Fitria Ningsih

Abstract:

This study concerns on the process of making corpus obtained from Indonesian year 4 students’ free writing compared to the vocabulary taught in English language textbooks. 369 students’ sample writings from 19 public elementary schools in Malang, East Java, Indonesia and 5 selected English textbooks were analyzed through corpus in linguistics method using AdTAT -the Adelaide Text Analysis Tool- program. The findings produced wordlists of the top 100 words most frequently used by students and the top 100 words given in English textbooks. There was a 45% match between the two lists. Furthermore, the classifications of the top 100 most frequent words from the two corpora based on part of speech found that both the Indonesian and English languages employed a similar use of nouns, verbs, adjectives, and prepositions. Moreover, to see the contextualizing the vocabulary of learning materials towards the students’ need, a depth-analysis dealing with the content and the cultural views from the vocabulary taught in the textbooks was discussed through the criteria developed from the checklist. Lastly, further suggestions are addressed to language teachers to understand the students’ background such as recognizing the basic words students acquire before teaching them new vocabulary in order to achieve successful learning of the target language.

Keywords: corpus, frequency, English, Indonesian, linguistics, textbooks, vocabulary, wordlists, writing

Procedia PDF Downloads 187
3861 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level

Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar

Abstract:

Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.

Keywords: machine learning, hydro-gravimetry, ground water level, predictive model

Procedia PDF Downloads 127
3860 The Opinions of Nursing Students Regarding Humanized Care through Volunteer Activities at Boromrajonani College of Nursing, Chonburi

Authors: P. Phenpun, S. Wareewan

Abstract:

This qualitative study aimed to describe the opinions in relation to humanized care emerging from the volunteer activities of nursing students at Boromarajonani College of Nursing, Chonburi, Thailand. One hundred and twenty-seven second-year nursing students participated in this study. The volunteer activity model was composed of preparation, implementation, and evaluation through a learning log, in which students were encouraged to write their daily activities after completing practical training at the healthcare center. The preparation content included three main categories: service minded, analytical thinking, and client participation. The preparation process took over three days that accumulates up to 20 hours only. The implementation process was held over 10 days, but with a total of 70 hours only, with participants taking part in volunteer work activities at a healthcare center. A learning log was used for evaluation and data were analyzed using content analysis. The findings were as follows. With service minded, there were two subcategories that emerged from volunteer activities, which were service minded towards patients and within themselves. There were three categories under service minded towards patients, which were rapport, compassion, and empathy service behaviors, and there were four categories under service minded within themselves, which were self-esteem, self-value, management potential, and preparedness in providing good healthcare services. In line with analytical thinking, there were two components of analytical thinking, which were analytical skill for their works and analytical thinking for themselves. There were four subcategories under analytical thinking for their works, which were evidence based thinking, real situational thinking, cause analysis thinking, and systematic thinking, respectively. There were four subcategories under analytical thinking for themselves, which were comparative between themselves, towards their clients that leads to the changing of their service behaviors, open-minded thinking, modernized thinking, and verifying both verbal and non-verbal cues. Lastly, there were three categories under participation, which were mutual rapport relationship; reconsidering client’s needs services and providing useful health care information.

Keywords: humanized care service, volunteer activity, nursing student, learning log

Procedia PDF Downloads 307
3859 Analytical Studies on Subgrade Soil Using Jute Geotextiles

Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra

Abstract:

Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural Geotextile material obtained from gunny bags was used due to vast local availability material. Construction of flexible pavement on weaker soil such as clay soils are a significant problem in construction as well as in design due to its expansive characteristics. Jute Geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to economically design. The California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen; JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.

Keywords: CBR, Jute geotextile, low volume road, weaker soil

Procedia PDF Downloads 428
3858 Time Organization for Decongesting Urban Mobility: New Methodology Identifying People's Behavior

Authors: Yassamina Berkane, Leila Kloul, Yoann Demoli

Abstract:

Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a new methodology for predicting peoples' intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples' intentions to reschedule their activities (work, study, commerce, etc.).

Keywords: urban mobility, decongestion, machine learning, neural network

Procedia PDF Downloads 194
3857 Motivation and Multiglossia: Exploring the Diversity of Interests, Attitudes, and Engagement of Arabic Learners

Authors: Anna-Maria Ramezanzadeh

Abstract:

Demand for Arabic language is growing worldwide, driven by increased interest in the multifarious purposes the language serves, both for the population of heritage learners and those studying Arabic as a foreign language. The diglossic, or indeed multiglossic nature of the language as used in Arabic speaking communities however, is seldom represented in the content of classroom courses. This disjoint between the nature of provision and students’ expectations can severely impact their engagement with course material, and their motivation to either commence or continue learning the language. The nature of motivation and its relationship to multiglossia is sparsely explored in current literature on Arabic. The theoretical framework here proposed aims to address this gap by presenting a model and instruments for the measurement of Arabic learners’ motivation in relation to the multiple strands of the language. It adopts and develops the Second Language Motivation Self-System model (L2MSS), originally proposed by Zoltan Dörnyei, which measures motivation as the desire to reduce the discrepancy between leaners’ current and future self-concepts in terms of the second language (L2). The tripartite structure incorporates measures of the Current L2 Self, Future L2 Self (consisting of an Ideal L2 Self, and an Ought-To Self), and the L2 Learning Experience. The strength of the self-concepts is measured across three different domains of Arabic: Classical, Modern Standard and Colloquial. The focus on learners’ self-concepts allows for an exploration of the effect of multiple factors on motivation towards Arabic, including religion. The relationship between Islam and Arabic is often given as a prominent reason behind some students’ desire to learn the language. Exactly how and why this factor features in learners’ L2 self-concepts has not yet been explored. Specifically designed surveys and interview protocols are proposed to facilitate the exploration of these constructs. The L2 Learning Experience component of the model is operationalized as learners’ task-based engagement. Engagement is conceptualised as multi-dimensional and malleable. In this model, situation-specific measures of cognitive, behavioural, and affective components of engagement are collected via specially designed repeated post-task self-report surveys on Personal Digital Assistant over multiple Arabic lessons. Tasks are categorised according to language learning skill. Given the domain-specific uses of the different varieties of Arabic, the relationship between learners’ engagement with different types of tasks and their overall motivational profiles will be examined to determine the extent of the interaction between the two constructs. A framework for this data analysis is proposed and hypotheses discussed. The unique combination of situation-specific measures of engagement and a person-oriented approach to measuring motivation allows for a macro- and micro-analysis of the interaction between learners and the Arabic learning process. By combining cross-sectional and longitudinal elements with a mixed-methods design, the model proposed offers the potential for capturing a comprehensive and detailed picture of the motivation and engagement of Arabic learners. The application of this framework offers a number of numerous potential pedagogical and research implications which will also be discussed.

Keywords: Arabic, diglossia, engagement, motivation, multiglossia, sociolinguistics

Procedia PDF Downloads 166
3856 Strength of Soft Clay Reinforced with Polypropylene Column

Authors: Muzamir Hasan, Anas Bazirgan

Abstract:

Granular columns is a technique that has the properties of improving bearing capacity, accelerating the dissipation of excess pore water pressure and reducing settlement in a weak soft soil. This research aims to investigate the role of Polypropylene column in improving the shear strength and compressibility of soft reconstituted kaolin clay by determining the effects of area replacement ratio, height penetrating ratio and volume replacement ratio of a singular Polypropylene column on the strength characteristics. Reinforced kaolin samples were subjected to Unconfined Compression (UCT) and Unconsolidated Undrained (UU) triaxial tests. The kaolin samples were 50 mm in diameter and 100 mm in height. Using the PP column reinforcement, with an area replacement ratio of 0.8, 0.5 and 0.3, shear strength increased approximately 5.27%, 26.22% and 64.28%, and 37.14%, 42.33% and 51.17%, for area replacement ratios of 25% and 10.24%. Meanwhile, UU testing showed an increase in shear strength of 24.01%, 23.17% and 23.49% and 28.79%, 27.29 and 30.81% for the same ratios. Based on the UCT results, the undrained shear strength generally increased with the decrease in height penetration ratio. However, based on the UU test results Mohr-Coulomb failure criteria, the installation of Polypropylene columns did not show any significant difference in effective friction angle. However, there was an increase in the apparent cohesion and undrained shear strength of the kaolin clay. In conclusion, Polypropylene column greatly improved the shear strength; and could therefore be implemented in reducing the cost of soil improvement as a replacement for non-renewable materials.

Keywords: polypropylene, UCT, UU test, Kaolin S300, ground improvement

Procedia PDF Downloads 329
3855 Developing Pan-University Collaborative Initiatives in Support of Diversity and Inclusive Campuses

Authors: David Philpott, Karen Kennedy

Abstract:

In recognition of an increasingly diverse student population, a Teaching and Learning Framework was developed at Memorial University of Newfoundland. This framework emphasizes work that is engaging, supportive, inclusive, responsive, committed to discovery, and is outcomes-oriented for both educators and learners. The goal of the Teaching and Learning framework was to develop a number of initiatives that builds on existing knowledge, proven programs, and existing supports in order to respond to the specific needs of identified groups of diverse learners: 1) academically vulnerable first year students; 2) students with individual learning needs associated with disorders and/or mental health issues; 3) international students and those from non-western cultures. This session provides an overview of this process. The strategies employed to develop these initiatives were drawn primarily from research on student success and retention (literature review), information on pre-existing programs (environmental scan), an analysis of in-house data on students at our institution; consultations with key informants at all of Memorial’s campuses. The first initiative that emerged from this research was a pilot project proposal for a first-year success program in support of the first-year experience of academically vulnerable students. This program offers a university experience that is enhanced by smaller classes, supplemental instruction, learning communities, and advising sessions. The second initiative that arose under the mandate of the Teaching and Learning Framework was a collaborative effort between two institutions (Memorial University and the College of the North Atlantic). Both institutions participated in a shared conversation to examine programs and services that support an accessible and inclusive environment for students with disorders and/or mental health issues. A report was prepared based on these conversations and an extensive review of research and programs across the country. Efforts are now being made to explore possible initiatives that address culturally diverse and non-traditional learners. While an expanding literature has emerged on diversity in higher education, the process of developing institutional initiatives is usually excluded from such discussions, while the focus remains on effective practice. The proposals that were developed constitute a co-ordination and strengthening of existing services and programs; a weaving of supports to engage a diverse body of students in a sense of community. This presentation will act as a guide through the process of developing projects addressing learner diversity and engage attendees in a discussion of institutional practices that have been implemented in support of overcoming challenges, as well as provide feedback on institutional and student outcomes. The focus of this session will be on effective practice, and will be of particular interest to university administrators, educational developers, and educators wishing to implement similar initiatives on their campuses; possible adaptations for practice will be addressed. A presentation of findings from this research will be followed by an open discussion where the sharing of research, initiatives, and best practices for the enhancement of teaching and learning is welcomed. There is much insight and understanding to be gained through the sharing of ideas and collaborative practice as we move forward to further develop the program and prepare other initiatives in support of diversity and inclusion.

Keywords: eco-scale, green analysis, environmentally-friendly, pharmaceuticals analysis

Procedia PDF Downloads 292