Search results for: module based teaching and learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33479

Search results for: module based teaching and learning

29609 Using Design Sprint For Software Engineering Undergraduate Student Projects: A Method Paper

Authors: Sobhani U. Pilapitiya, Tharanga Peiris

Abstract:

Software Engineering curriculums generally consist of industry-based practices such as project-based learning (PBL) which mainly focuses on efficient and innovative product development. These approaches can be tailored and used in project-based modules in software engineering curriculums. However, there are very limited attempts in the area especially related to the Sri Lankan context. This paper describes a tailored pedagogical approach and its results of using design sprint which can be used for project-based modules in SE curriculums. A controlled group of second-year software engineering students was selected for the study. The study results indicate that 100% of students agreed that the Design Sprint approach is effective in group-based projects and 83% of students stated that it minimized the re-work compared to traditional project approaches. The tailored process was effective, easy to implement and produced desired results at the end of the session while providing students an enjoyable experience.

Keywords: design sprint, PBL, software engineering, curriculum

Procedia PDF Downloads 209
29608 Automatic Detection Of Diabetic Retinopathy

Authors: Zaoui Ismahene, Bahri Sidi Mohamed, Abbassa Nadira

Abstract:

Diabetic Retinopathy (DR) is a leading cause of vision impairment and blindness among individuals with diabetes. Early diagnosis is crucial for effective treatment, yet current diagnostic methods rely heavily on manual analysis of retinal images, which can be time-consuming and prone to subjectivity. This research proposes an automated system for the detection of DR using Jacobi wavelet-based feature extraction combined with Support Vector Machines (SVM) for classification. The integration of wavelet analysis with machine learning techniques aims to improve the accuracy, efficiency, and reliability of DR diagnosis. In this study, retinal images are preprocessed through normalization, resizing, and noise reduction to enhance the quality of the images. The Jacobi wavelet transform is then applied to extract both global and local features, effectively capturing subtle variations in retinal images that are indicative of DR. These extracted features are fed into an SVM classifier, known for its robustness in handling high-dimensional data and its ability to achieve high classification accuracy. The SVM classifier is optimized using parameter tuning to improve performance. The proposed methodology is evaluated using a comprehensive dataset of retinal images, encompassing a range of DR severity levels. The results show that the proposed system outperforms traditional wavelet-based methods, demonstrating significantly higher accuracy, sensitivity, and specificity in detecting DR. By leveraging the discriminative power of Jacobi wavelet features and the robustness of SVM, the system provides a promising solution for the automatic detection of DR, which could assist ophthalmologists in early diagnosis and intervention, ultimately improving patient outcomes. This research highlights the potential of combining wavelet-based image processing with machine learning for advancing automated medical diagnostics.

Keywords: iabetic retinopathy (DR), Jacobi wavelets, machine learning, feature extraction, classification

Procedia PDF Downloads 13
29607 Revisited: Financial Literacy and How University Students Fare

Authors: Zaiton Osman, Phang Ing, Azaze Azizi Abd Adis, Izyanti Awg Razli, Mohd Rizwan Abd Majid, Rosle Mohidin

Abstract:

This study is conducted to investigate the level of financial literacy among students taking Financial Management and Banking in Universiti Malaysia Sabah, Malaysia. Students are asked to answer basic financial literacy questions in their first class before study commence and the similar questions were given in their final week of study (after 14 weeks of study duration). The comparison on their level of financial literacy will be examined. This study is expected to yields the following findings; firstly, comparison of the level of financial literacy 'before and after' courses in finance being introduced can be revealed. Secondly, it will provide suggestion on improving the standard of teaching and learning in financial management and banking courses and lastly it will help in identifying financial courses that are important in improving the level of financial literacy among students in Malaysia.

Keywords: financial literacy, university students, personal financial planning, business and management engineering

Procedia PDF Downloads 725
29606 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data

Authors: Gayathri Nagarajan, L. D. Dhinesh Babu

Abstract:

Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.

Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform

Procedia PDF Downloads 244
29605 A Multi-Criteria Decision Method for the Recruitment of Academic Personnel Based on the Analytical Hierarchy Process and the Delphi Method in a Neutrosophic Environment

Authors: Antonios Paraskevas, Michael Madas

Abstract:

For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to the exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes the multi-criteria nature of the problem and how decision-makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of a significant degree of ambiguity and indeterminacy observed in the decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model is the first which applies the Neutrosophic Delphi Method in the selection of academic staff. As a case study, it was decided to use our method for a real problem of academic personnel selection, having as the main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherent ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.

Keywords: multi-criteria decision making methods, analytical hierarchy process, delphi method, personnel recruitment, neutrosophic set theory

Procedia PDF Downloads 122
29604 An Interactive Online Academic Writing Resource for Research Students in Engineering

Authors: Eleanor K. P. Kwan

Abstract:

English academic writing, it has been argued, is an acquired language even for English speakers. For research students whose English is not their first language, however, the acquisition process is often more challenging. Instead of hoping that students would acquire the conventions themselves through extensive reading, there is a need for the explicit teaching of linguistic conventions in academic writing, as explicit teaching could help students to be more aware of the different generic conventions in different disciplines in science. This paper presents an interuniversity effort to develop an online academic writing resource for research students in five subdisciplines in engineering, upon the completion of the needs analysis which indicates that students and faculty members are more concerned about students’ ability to organize an extended text than about grammatical accuracy per se. In particular, this paper focuses on the materials developed for thesis writing (also called dissertation writing in some tertiary institutions), as theses form an essential graduation requirement for all research students and this genre is also expected to demonstrate the writer’s competence in research and contributions to the research community. Drawing on Swalesian move analysis of research articles, this online resource includes authentic materials written by students and faculty members from the participating institutes. Highlight will be given to several aspects and challenges of developing this online resource. First, as the online resource aims at moving beyond providing instructions on academic writing, a range of interactive activities need to be designed to engage the users, which is one feature which differentiates this online resource from other equally informative websites on academic writing. Second, it will also include discussion on divergent textual practices in different subdisciplines, which help to illustrate different practices among these subdisciplines. Third, since theses, probably one of the most extended texts a research student will complete, require effective use of signposting devices to facility readers’ understanding, this online resource will also provide both explanation and activities on different components that contribute to text coherence. Finally results from piloting will also be included to shed light on the effectiveness of the materials, which could be useful for future development.

Keywords: academic writing, English for academic purposes, online language learning materials, scientific writing

Procedia PDF Downloads 273
29603 Exploring Disengaging and Engaging Behavior of Doctoral Students

Authors: Salome Schulze

Abstract:

The delay of students in completing their dissertations is a worldwide problem. At the University of South Africa where this research was done, only about a third of the students complete their studies within the required period of time. This study explored the reasons why the students interrupted their studies, and why they resumed their research at a later stage. If this knowledge could be utilised to improve the throughput of doctoral students, it could have significant economic benefits for institutions of higher education while at the same time enhancing their academic prestige. To inform the investigation, attention was given to key theories concerning the learning of doctoral students, namely the situated learning theory, the social capital theory and the self-regulated learning theory, based on the social cognitive theory of learning. Ten students in the faculty of Education were purposefully selected on the grounds of their poor progress, or of having been in the system for too long. The collection of the data was in accordance with a Finnish study, since the two studies had the same aims, namely to investigate student engagement and disengagement. Graphic elicitation interviews, based on visualisations were considered appropriate to collect the data. This method could stimulate the reflection and recall of the participants’ ‘stories’ with very little input from the interviewer. The interviewees were requested to visualise, on paper, their journeys as doctoral students from the time when they first registered. They were to indicate the significant events that occurred and which facilitated their engagement or disengagement. In the interviews that followed, they were requested to elaborate on these motivating or challenging events by explaining when and why they occurred, and what prompted them to resume their studies. The interviews were tape-recorded and transcribed verbatim. Information-rich data were obtained containing visual metaphors. The data indicated that when the students suffered a period of disengagement, it was sometimes related to a lack of self-regulated learning, in particular, a lack of autonomy, and the inability to manage their time effectively. When the students felt isolated from the academic community of practice disengagement also occurred. This included poor guidance by their supervisors, which accordingly deprived them of significant social capital. The study also revealed that situational factors at home or at work were often the main reasons for the students’ procrastinating behaviour. The students, however, remained in the system. They were motivated towards a renewed engagement with their studies if they were self-regulated learners, and if they felt a connectedness with the academic community of practice because of positive relationships with their supervisors and of participation in the activities of the community (e.g., in workshops or conferences). In support of their learning, networking with significant others who were sources of information provided the students with the necessary social capital. Generally, institutions of higher education cannot address the students’ personal issues directly, but they can deal with key institutional factors in order to improve the throughput of doctoral students. It is also suggested that graphic elicitation interviews be used more often in social research that investigates the learning and development of the students.

Keywords: doctoral students, engaging and disengaging experiences, graphic elicitation interviews, student procrastination

Procedia PDF Downloads 195
29602 Impact of Experiential Learning on Executive Function, Language Development, and Quality of Life for Adults with Intellectual and Developmental Disabilities (IDD)

Authors: Mary Deyo, Zmara Harrison

Abstract:

This study reports the outcomes of an 8-week experiential learning program for 6 adults with Intellectual and Developmental Disabilities (IDD) at a day habilitation program. The intervention foci for this program include executive function, language learning in the domains of expressive, receptive, and pragmatic language, and quality of life. The interprofessional collaboration aimed at supporting adults with IDD to reach person-centered, functional goals across skill domains is critical. This study is a significant addition to the speech-language pathology literature in that it examines a therapy method that potentially meets this need while targeting domains within the speech-language pathology scope of practice. Communication therapy was provided during highly valued and meaningful hands-on learning experiences, referred to as the Garden Club, which incorporated all aspects of planting and caring for a garden as well as related journaling, sensory, cooking, art, and technology-based activities. Direct care staff and an undergraduate research assistant were trained by SLP to be impactful language guides during their interactions with participants in the Garden Club. SLP also provided direct therapy and modeling during Garden Club. Research methods used in this study included a mixed methods analysis of a literature review, a quasi-experimental implementation of communication therapy in the context of experiential learning activities, Quality of Life participant surveys, quantitative pre- post- data collection and linear mixed model analysis, qualitative data collection with qualitative content analysis and coding for themes. Outcomes indicated overall positive changes in expressive vocabulary, following multi-step directions, sequencing, problem-solving, planning, skills for building and maintaining meaningful social relationships, and participant perception of the Garden Project’s impact on their own quality of life. Implementation of this project also highlighted supports and barriers that must be taken into consideration when planning similar projects. Overall findings support the use of experiential learning projects in day habilitation programs for adults with IDD, as well as additional research to deepen understanding of best practices, supports, and barriers for implementation of experiential learning with this population. This research provides an important contribution to research in the fields of speech-language pathology and other professions serving adults with IDD by describing an interprofessional experiential learning program with positive outcomes for executive function, language learning, and quality of life.

Keywords: experiential learning, adults, intellectual and developmental disabilities, expressive language, receptive language, pragmatic language, executive function, communication therapy, day habilitation, interprofessionalism, quality of life

Procedia PDF Downloads 131
29601 The Effect of Written Corrective Feedback on the Accurate Use of Grammatical Forms by Japanese Low-Intermediate EFL Learners

Authors: Ayako Hasegawa, Ken Ubukata

Abstract:

The purpose of this study is to investigate whether corrective feedback has any significant effect on Japanese low-intermediate EFL learners’ performance on a specific set of linguistic features. The subjects are Japanese college students majoring in English. They have studied English for about 7 years, but their inter-language seems to fossilize because non-target like errors is frequently observed in traditional deductive teacher-fronted approach. It has been reported that corrective feedback plays an important role in diminishing or overcoming inter-language fossilization and achieving TL competency. Therefore, it was examined how the corrective feedback (the focus of this study was metalinguistic feedback) and self-correction raised the students’ awareness and helped them notice the gaps between their inter-language and the TL.

Keywords: written corrective feedback, fossilized error, grammar teaching, language teaching

Procedia PDF Downloads 362
29600 Automatic Adult Age Estimation Using Deep Learning of the ResNeXt Model Based on CT Reconstruction Images of the Costal Cartilage

Authors: Ting Lu, Ya-Ru Diao, Fei Fan, Ye Xue, Lei Shi, Xian-e Tang, Meng-jun Zhan, Zhen-hua Deng

Abstract:

Accurate adult age estimation (AAE) is a significant and challenging task in forensic and archeology fields. Attempts have been made to explore optimal adult age metrics, and the rib is considered a potential age marker. The traditional way is to extract age-related features designed by experts from macroscopic or radiological images followed by classification or regression analysis. Those results still have not met the high-level requirements for practice, and the limitation of using feature design and manual extraction methods is loss of information since the features are likely not designed explicitly for extracting information relevant to age. Deep learning (DL) has recently garnered much interest in imaging learning and computer vision. It enables learning features that are important without a prior bias or hypothesis and could be supportive of AAE. This study aimed to develop DL models for AAE based on CT images and compare their performance to the manual visual scoring method. Chest CT data were reconstructed using volume rendering (VR). Retrospective data of 2500 patients aged 20.00-69.99 years were obtained between December 2019 and September 2021. Five-fold cross-validation was performed, and datasets were randomly split into training and validation sets in a 4:1 ratio for each fold. Before feeding the inputs into networks, all images were augmented with random rotation and vertical flip, normalized, and resized to 224×224 pixels. ResNeXt was chosen as the DL baseline due to its advantages of higher efficiency and accuracy in image classification. Mean absolute error (MAE) was the primary parameter. Independent data from 100 patients acquired between March and April 2022 were used as a test set. The manual method completely followed the prior study, which reported the lowest MAEs (5.31 in males and 6.72 in females) among similar studies. CT data and VR images were used. The radiation density of the first costal cartilage was recorded using CT data on the workstation. The osseous and calcified projections of the 1 to 7 costal cartilages were scored based on VR images using an eight-stage staging technique. According to the results of the prior study, the optimal models were the decision tree regression model in males and the stepwise multiple linear regression equation in females. Predicted ages of the test set were calculated separately using different models by sex. A total of 2600 patients (training and validation sets, mean age=45.19 years±14.20 [SD]; test set, mean age=46.57±9.66) were evaluated in this study. Of ResNeXt model training, MAEs were obtained with 3.95 in males and 3.65 in females. Based on the test set, DL achieved MAEs of 4.05 in males and 4.54 in females, which were far better than the MAEs of 8.90 and 6.42 respectively, for the manual method. Those results showed that the DL of the ResNeXt model outperformed the manual method in AAE based on CT reconstruction of the costal cartilage and the developed system may be a supportive tool for AAE.

Keywords: forensic anthropology, age determination by the skeleton, costal cartilage, CT, deep learning

Procedia PDF Downloads 77
29599 Impact of COVID-19 on Radiology Training in Australia and New Zealand

Authors: Preet Gill, Danus Ravindran

Abstract:

These The COVID-19 pandemic resulted in widespread implications for medical specialist training programs worldwide, including radiology. The objective of this study was to investigate the impact of COVID-19 on the Australian and New Zealand radiology trainee experience and well-being, as well as to compare the Australasian experience with that reported by other countries. An anonymised electronic online questionnaire was disseminated to all training members of the Royal Australian and New Zealand College of Radiologists who were radiology trainees during the 2020 – 2022 clinical years. Trainees were questioned about their experience from the beginning of the COVID-19 pandemic in Australasia (March 2020) to the time of survey completion. Participation was voluntary. Questions assessed the impact of the pandemic across multiple domains, including workload (inpatient/outpatient & individual modality volume), teaching, supervision, external learning opportunities, redeployment and trainee wellbeing. Survey responses were collated and compared with other peer reviewed publications. Answer options were primarily in categorical format (nominal and ordinal subtypes, as appropriate). An opportunity to provide free text answers to a minority of questions was provided. While our results mirror that of other countries, which demonstrated reduced case exposure and increased remote teaching and supervision, responses showed variation in the methods utilised by training sites during the height of the pandemic. A significant number of trainees were affected by examination cancellations/postponements and had subspecialty training rotations postponed. The majority of trainees felt that the pandemic had a negative effect on their training. In conclusion, the COVID-19 pandemic has had a significant impact on radiology trainees across Australia and New Zealand. The present study has highlighted the extent of these effects, with most aspects of training impacted. Opportunities exist to utilise this information to create robust workplace strategies to mitigate these negative effects should the need arise in the future.

Keywords: COVID-19, radiology, training, pandemic

Procedia PDF Downloads 71
29598 Simulation of Obstacle Avoidance for Multiple Autonomous Vehicles in a Dynamic Environment Using Q-Learning

Authors: Andreas D. Jansson

Abstract:

The availability of inexpensive, yet competent hardware allows for increased level of automation and self-optimization in the context of Industry 4.0. However, such agents require high quality information about their surroundings along with a robust strategy for collision avoidance, as they may cause expensive damage to equipment or other agents otherwise. Manually defining a strategy to cover all possibilities is both time-consuming and counter-productive given the capabilities of modern hardware. This paper explores the idea of a model-free self-optimizing obstacle avoidance strategy for multiple autonomous agents in a simulated dynamic environment using the Q-learning algorithm.

Keywords: autonomous vehicles, industry 4.0, multi-agent system, obstacle avoidance, Q-learning, simulation

Procedia PDF Downloads 141
29597 Problem Solving in Mathematics Education: A Case Study of Nigerian Secondary School Mathematics Teachers’ Conceptions in Relation to Classroom Instruction

Authors: Carol Okigbo

Abstract:

Mathematical problem solving has long been accorded an important place in mathematics curricula at every education level in both advanced and emerging economies. Its classroom approaches have varied, such as teaching for problem-solving, teaching about problem-solving, and teaching mathematics through problem-solving. It requires engaging in tasks for which the solution methods are not eminent, making sense of problems and persevering in solving them by exhibiting processes, strategies, appropriate attitude, and adequate exposure. Teachers play important roles in helping students acquire competency in problem-solving; thus, they are expected to be good problem-solvers and have proper conceptions of problem-solving. Studies show that teachers’ conceptions influence their decisions about what to teach and how to teach. Therefore, how teachers view their roles in teaching problem-solving will depend on their pedagogical conceptions of problem-solving. If teaching problem-solving is a major component of secondary school mathematics instruction, as recommended by researchers and mathematics educators, then it is necessary to establish teachers’ conceptions, what they do, and how they approach problem-solving. This study is designed to determine secondary school teachers’ conceptions regarding mathematical problem solving, its current situation, how teachers’ conceptions relate to their demographics, as well as the interaction patterns in the mathematics classroom. There have been many studies of mathematics problem solving, some of which addressed teachers’ conceptions using single-method approaches, thereby presenting only limited views of this important phenomenon. To address the problem more holistically, this study adopted an integrated mixed methods approach which involved a quantitative survey, qualitative analysis of open-ended responses, and ethnographic observations of teachers in class. Data for the analysis came from a random sample of 327 secondary school mathematics teachers in two Nigerian states - Anambra State and Enugu State who completed a 45-item questionnaire. Ten of the items elicited demographic information, 11 items were open-ended questions, and 25 items were Likert-type questions. Of the 327 teachers who responded to the questionnaires, 37 were randomly selected and observed in their classes. Data analysis using ANOVA, t-tests, chi-square tests, and open coding showed that the teachers had different conceptions about problem-solving, which fall into three main themes: practice on exercises and word application problems, a process of solving mathematical problems, and a way of teaching mathematics. Teachers reported that no period is set aside for problem-solving; typically, teachers solve problems on the board, teach problem-solving strategies, and allow students time to struggle with problems on their own. The result shows a significant difference between male and female teachers’ conception of problems solving, a significant relationship among teachers’ conceptions and academic qualifications, and teachers who have spent ten years or more teaching mathematics were significantly different from the group with seven to nine years of experience in terms of their conceptions of problem-solving.

Keywords: conceptions, education, mathematics, problem solving, teacher

Procedia PDF Downloads 79
29596 The Effectiveness of Using Picture Storybooks on Young English as a Foreign Language Learners for English Vocabulary Acquisition and Moral Education: A Case Study

Authors: Tiffany Yung Hsuan Ma

Abstract:

The Whole Language Approach, which gained prominence in the 1980s, and the increasing emphasis on multimodal resources in educational research have elevated the utilization of picture books in English as a foreign language (EFL) instruction. This approach underscores real-world language application, providing EFL learners with a range of sensory stimuli, including visual elements. Additionally, the substantial impact of picture books on fostering prosocial behaviors in children has garnered recognition. These narratives offer opportunities to impart essential values such as kindness, fairness, and respect. Examining how picture books enhance vocabulary acquisition can offer valuable insights for educators in devising engaging language activities conducive to a positive learning environment. This research entails a case study involving two kindergarten-aged EFL learners and employs qualitative methods, including worksheets, observations, and interviews with parents. It centers on three pivotal inquiries: (1) The extent of young learners' acquisition of essential vocabulary, (2) The influence of these books on their behavior at home, and (3) Effective teaching strategies for the seamless integration of picture storybooks into EFL instruction for young learners. The findings can provide guidance to parents, educators, curriculum developers, and policymakers regarding the advantages and optimal approaches to incorporating picture books into language instruction. Ultimately, this research has the potential to enhance English language learning outcomes and promote moral education within the Taiwanese EFL context.

Keywords: EFL, vocabulary acquisition, young learners, picture book, moral education

Procedia PDF Downloads 77
29595 Review on Implementation of Artificial Intelligence and Machine Learning for Controlling Traffic and Avoiding Accidents

Authors: Neha Singh, Shristi Singh

Abstract:

Accidents involving motor vehicles are more likely to cause serious injuries and fatalities. It also has a host of other perpetual issues, such as the regular loss of life and goods in accidents. To solve these issues, appropriate measures must be implemented, such as establishing an autonomous incident detection system that makes use of machine learning and artificial intelligence. In order to reduce traffic accidents, this article examines the overview of artificial intelligence and machine learning in autonomous event detection systems. The paper explores the major issues, prospective solutions, and use of artificial intelligence and machine learning in road transportation systems for minimising traffic accidents. There is a lot of discussion on additional, fresh, and developing approaches that less frequent accidents in the transportation industry. The study structured the following subtopics specifically: traffic management using machine learning and artificial intelligence and an incident detector with these two technologies. The internet of vehicles and vehicle ad hoc networks, as well as the use of wireless communication technologies like 5G wireless networks and the use of machine learning and artificial intelligence for the planning of road transportation systems, are elaborated. In addition, safety is the primary concern of road transportation. Route optimization, cargo volume forecasting, predictive fleet maintenance, real-time vehicle tracking, and traffic management, according to the review's key conclusions, are essential for ensuring the safety of road transportation networks. In addition to highlighting research trends, unanswered problems, and key research conclusions, the study also discusses the difficulties in applying artificial intelligence to road transport systems. Planning and managing the road transportation system might use the work as a resource.

Keywords: artificial intelligence, machine learning, incident detector, road transport systems, traffic management, automatic incident detection, deep learning

Procedia PDF Downloads 118
29594 Learning Resource Management of the Royal Court Courtier in the Reign of King Rama V

Authors: Chanaphop Vannaolarn, Weena Eiamprapai

Abstract:

Thai noblewomen and lady-in-waiting in the era of King Rama V stayed only inside the palace. King Rama V decided to build Dusit Palace in 1897 and another palace called Suan Sunandha in 1900 after his royal visit to Europe. This palace became the residence for noblewomen in the court until the change of political system in 1932. The study about noblewomen in the palace can educate people about how our nation was affected by western civilization in terms of architecture, food, outfit and recreations. It is a way to develop the modern society by studying the great historical value of the past. A learning center about noblewomen will not only provide knowledge but also create bond and patriotic feeling among Thais.

Keywords: noblewomen, palace, management, learning center

Procedia PDF Downloads 367
29593 How Natural Environments Are Being Used by Teachers to Improve Student Learning and Wellbeing in Australia

Authors: Jade Fersterer, Tristan Snell, Mark Rickinson

Abstract:

This paper is designed to provide a review of the literature concerning the impact of natural environments on student learning and wellbeing in Australia. Specific areas of interest include how child-led and teacher-led pedagogies differ in outdoor learning settings, and the impact of each approach on children’s well-being, behavior, relationships with others as well as educational outcomes. The review will include links to possibilities for future research, including a Ph.D. currently being undertaken in Australia, which aims to fulfill a considerable gap in psychological, educational and outdoor learning research, regarding how natural environments are being used by teachers to improve learning and wellbeing among primary school students. The proposed study aims to understand if children’s experience of learning, 1. in a natural environment, and 2. in a child-led way, can support and strengthen their skills across several areas of development, including those required for positive educational outcomes. Data will be collected from a sample of primary school students and teachers via both quantitative and qualitative methods, including a pre- and post-questionnaire, direct observation, and semi-structured interviews. The study will have valuable implications for the provision of quality education as well as the promotion of good health and wellbeing. The implications of the research will be useful not only for teachers and parents but also for Psychologists working with children and young people in both a school and clinical setting. Understanding the impacts and implications of child-led learning and exposure to natural environments provides the opportunity to build on the current school curriculum. The inclusion of child-led experiences in nature may provide a simple way to build enthusiasm for school and learning, cultivating skills for life and relationships as well as meeting current curriculum requirements and building capacity for ongoing academic pursuits. In addition, understanding the impact of learning in a natural environment on wellbeing will assist in the development and dissemination of an educational model that could help mitigate the negative health outcomes associated with reduced physical activity and decreasing contact with nature among children.

Keywords: child-led learning, educational outcomes, natural environments, wellbeing

Procedia PDF Downloads 128
29592 Exploring the Applications of Neural Networks in the Adaptive Learning Environment

Authors: Baladitya Swaika, Rahul Khatry

Abstract:

Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.

Keywords: computer adaptive tests, item response theory, machine learning, neural networks

Procedia PDF Downloads 180
29591 Facilitating Active Reading Strategies through Caps Chart to Foster Elementary EFL Learners’ Reading Skills and Reading Competency

Authors: Michelle Bulawan, Mei-Hua Chen

Abstract:

Reading comprehension is crucial for acquiring information, analyzing critically, and achieving academic proficiency. However, there is a lack of growth in reading comprehension skills beyond fourth grade. The developmental shift from "learning to read" to "reading to learn" occurs around this stage. Factual knowledge and diverse views in articles enhance reading comprehension abilities. Nevertheless, some face difficulties due to evolving textual requirements, such as expanding vocabulary and using longer, more complex terminology. Most research on reading strategies has been conducted at the tertiary and secondary levels, while few have focused on the elementary levels. Furthermore, the use of character, ask, problem, solution (CAPS) charts in teaching reading has also been hardly explored. Thus, the researcher decided to explore the facilitation of active reading strategies through the CAPS chart and address the following research questions: a) What differences existed in elementary EFL learners' reading competency among those who engaged in active reading strategies and those who did not? b) What are the learners’ metacognitive skills of those who engage in active reading strategies and those who do not, and what are their effects on their reading competency? c) For those participants who engage in active reading activities, what are their perceptions about incorporating active reading activities into their English classroom learning? Two groups of elementary EFL learners, each with 18 students of the same level of English proficiency, participated in this study. Group A served as the control group, while Group B served as the experimental group. Two teachers also participated in this research; one of them was the researcher who handled the experimental group. The treatment lasts for one whole semester or seventeen weeks. In addition to the CAPS chart, the researcher also used the metacognitive awareness of reading strategy inventory (MARSI) and a ten-item, five-point Likert scale survey.

Keywords: active reading, EFL learners, metacognitive skills, reading competency, student’s perception

Procedia PDF Downloads 96
29590 Orchestrating Self-Regulated Learning and Speaking Skills Improvement in Higher Education in South Sulawesi, Indonesia: A Sociocultural Perspective

Authors: Nasmilah, Gary Bonar, Abdul Hakim Yassi, Sitti Sahraeny

Abstract:

Every individual is socially connected to other members of a shared community, carrying various social attributes. Among these, the ability to speak is a critical skill, enabling individuals to interact effectively with others. This study aims to explore the relationship between self-regulated learning—self-generated thoughts, feelings, and behaviors directed towards achieving personal goals—and the speaking performance of tertiary students majoring in English language and literature. A total of 68 students from three universities in South Sulawesi participated in the study, comprising 24 students from Hasanuddin University, 20 from Universitas Muhammadiyah Pare-Pare, and 24 from Universitas Islam Negeri (UIN) Makassar. This qualitative research employed interviews, questionnaires, and observation to gather data. The findings indicate that students rely on prior knowledge to engage with tasks, drawing upon their experiences as a core source of knowledge. These experiences shape their self-regulated learning processes, which, in turn, influence their ability to speak confidently. Consequently, enhancing students’ self-regulated learning skills is essential for improving their speaking abilities.

Keywords: self-regulated learning, prior knowledge, speaking performance, sociocultural aspects.

Procedia PDF Downloads 19
29589 Roles Currently Played by Educational Middle Leaders

Authors: Elaine Marta Pereira Aaltonen

Abstract:

Effective school leadership materialised in educational settings through the high standard professional performance of senior and middle leaders, has increasingly become an education policy priority around the world due to a wide recognition that schools need knowledgeable, skilled, and committed leaders, along with great teachers, in order to ensure outstanding education at all levels of schooling. The scope of this paper is the work of middle leaders, whose direct influence on teachers and classroom teaching, thus, on student learning outcomes, is a key component for successful school systems. It particularly aims at sharing some of the findings obtained through an academic study recently carried out by the same researcher, which was focused on enhancing understanding about aspects related to the professional performance of educational middle leaders, applied to the context of the lower elementary school division of a private mainstream school located in Brazil. The master´s dissertation findings included identifying the roles performed by a team of educational middle leaders throughout the year of 2021, as well as gaining insights on their perceptions about the roles performed, both through an electronic questionnaire and individual face-to-face interviews. Not only the roles of the middle leaders who participated in the research have been identified through the qualitative case study undertaken, but additional research finding lying within the sphere of the categorisation of such roles, based upon coherent domains of practice, has possibly been made. Hence, the main purpose of this paper is to outline the findings concerning the current roles played by educational middle leaders.

Keywords: roles, middle leaders, educational leadership, school leadership, and management

Procedia PDF Downloads 111
29588 Latitudinal Patterns of Pre-industrial Human Cultural Diversity and Societal Complexity

Authors: Xin Chen

Abstract:

Pre-industrial old-world human cultural diversity and societal complexity exhibits remarkable geographic regularities. Along the latitudinal axis from the equator to the arctic, a descending trend of human ethno-cultural diversity is found to be in coincidence with a descending trend of biological diversity. Along the same latitudinal axis, the pre-industrial human societal complexity shows to peak at the intermediate latitude. It is postulated that human cultural diversity and societal complexity are strongly influenced by collective learning, and that collective learning is positively related to human population size, social interactions, and environmental challenges. Under such postulations the relationship between collective learning and important geographical-environmental factors, including climate and biodiversity/bio-productivity is examined. A hypothesis of intermediate bio-productivity is formulated to account for those latitudinal patterns of pre-industrial human societal complexity.

Keywords: cultural diversity, soetal complexity, latitudinal patterns, biodiversity, bio-productivity, collective learning

Procedia PDF Downloads 84
29587 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 74
29586 Development of an Advanced Power Ultrasonic-Assisted Drilling System

Authors: M. A. Moghaddas, M. Short, N. Wiley, A. Y. Yi, K. F. Graff

Abstract:

The application of ultrasonic vibrations to machining processes has a long history, ranging from slurry-based systems able to drill brittle materials, to more recent developments involving low power ultrasonics for high precision machining, with many of these at the research and laboratory stages. The focus of this development is the application of high levels of ultrasonic power (1,000’s of watts) to standard, heavy duty machine tools – drilling being the immediate focus, with developments in milling in progress – with the objective of dramatically increasing system productivity through faster feed rates, this benefit arising from the thrust force reductions obtained by power ultrasonic vibrations. The presentation will describe development of an advanced drilling system based on a special, acoustically designed, rugged drill module capable of functioning under heavy duty production conditions, and making use of standard tool holder means, and able to obtain thrust force reductions while maintaining or improving surface finish and drilling accuracy. The characterization of the system performance will be described, and results obtained in drilling several materials (Aluminum, Stainless steel, Titanium) presented.

Keywords: dimensional accuracy, machine tool, productivity, surface roughness, thrust force, ultrasonic vibrations, ultrasonic-assisted drilling

Procedia PDF Downloads 279
29585 Short-Term Operation Planning for Energy Management of Exhibition Hall

Authors: Yooncheol Lee, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

This paper deals with the establishment of a short-term operational plan for an air conditioner for efficient energy management of exhibition hall. The short-term operational plan is composed of a time series of operational schedules, which we have searched using genetic algorithms. Establishing operational schedule should be considered the future trends of the variables affecting the exhibition hall environment. To reflect continuously changing factors such as external temperature and occupant, short-term operational plans should be updated in real time. But it takes too much time to evaluate a short-term operational plan using EnergyPlus, a building emulation tool. For that reason, it is difficult to update the operational plan in real time. To evaluate the short-term operational plan, we designed prediction models based on machine learning with fast evaluation speed. This model, which was created by learning the past operational data, is accurate and fast. The collection of operational data and the verification of operational plans were made using EnergyPlus. Experimental results show that the proposed method can save energy compared to the reactive control method.

Keywords: exhibition hall, energy management, predictive model, simulation-based optimization

Procedia PDF Downloads 341
29584 Modified 'Perturb and Observe' with 'Incremental Conductance' Algorithm for Maximum Power Point Tracking

Authors: H. Fuad Usman, M. Rafay Khan Sial, Shahzaib Hamid

Abstract:

The trend of renewable energy resources has been amplified due to global warming and other environmental related complications in the 21st century. Recent research has very much emphasized on the generation of electrical power through renewable resources like solar, wind, hydro, geothermal, etc. The use of the photovoltaic cell has become very public as it is very useful for the domestic and commercial purpose overall the world. Although a single cell gives the low voltage output but connecting a number of cells in a series formed a complete module of the photovoltaic cells, it is becoming a financial investment as the use of it fetching popular. This also reduced the prices of the photovoltaic cell which gives the customers a confident of using this source for their electrical use. Photovoltaic cell gives the MPPT at single specific point of operation at a given temperature and level of solar intensity received at a given surface whereas the focal point changes over a large range depending upon the manufacturing factor, temperature conditions, intensity for insolation, instantaneous conditions for shading and aging factor for the photovoltaic cells. Two improved algorithms have been proposed in this article for the MPPT. The widely used algorithms are the ‘Incremental Conductance’ and ‘Perturb and Observe’ algorithms. To extract the maximum power from the source to the load, the duty cycle of the convertor will be effectively controlled. After assessing the previous techniques, this paper presents the improved and reformed idea of harvesting maximum power point from the photovoltaic cells. A thoroughly go through of the previous ideas has been observed before constructing the improvement in the traditional technique of MPP. Each technique has its own importance and boundaries at various weather conditions. An improved technique of implementing the use of both ‘Perturb and Observe’ and ‘Incremental Conductance’ is introduced.

Keywords: duty cycle, MPPT (Maximum Power Point Tracking), perturb and observe (P&O), photovoltaic module

Procedia PDF Downloads 181
29583 A Multi-criteria Decision Method For The Recruitment Of Academic Personnel Based On The Analytical Hierarchy Process And The Delphi Method In A Neutrosophic Environment (Full Text)

Authors: Antonios Paraskevas, Michael Madas

Abstract:

For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes on the multi-criteria nature of the problem and on how decision makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of significant degree of ambiguity and indeterminacy observed in decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model is the first which applies Neutrosophic Delphi Method in the selection of academic staff. As a case study, it was decided to use our method to a real problem of academic personnel selection, having as main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherit ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.

Keywords: analytical hierarchy process, delphi method, multi-criteria decision maiking method, neutrosophic set theory, personnel recruitment

Procedia PDF Downloads 206
29582 The Impact of Motivation on English Language Learning: A Study of HSC Students of Jatir Janak Bangabandhu Sheikh Mujibur Rahman Government College, Dhaka, Bangladesh

Authors: Farina Yasmin

Abstract:

Motivation is an important issue in an EFL setting where very little exposure to English in everyday life is clearly evident. In Bangladesh, English is taught as a foreign language. Language teachers cannot effectively teach a language if they do not understand the relationship between motivation and its effect on foreign language learning. The main purpose of this research is to explore the fact why HSC students are less motivated towards English language learning, what factors are affecting motivation, how to motivate them and the role of motivation in their success. The research questions were (a) what are the reasons of lack of motivation? and (b) what are the impacts of motivation on English language learning? The study was both qualitative and quantitative in nature. The data was collected via pretest - posttest, interviews, and a questionnaire on the five point Likert scale. Triangulation of the data was made for the validity of the research. The population of this research consisted of 50 HSC level students from Jatir Janak Bangabandhu Sheikh Mujibur Rahman Government College, Dhaka, Bangladesh. The data was analyzed with means, comparison and t-test. The results showed that there is a strong relation between motivation and success in foreign language learning. Finally, some pedagogical implications and suggestions were presented to arouse the students’ motivation to learn English.

Keywords: EFL, HSC, motivation, success

Procedia PDF Downloads 383
29581 Etiquette Learning and Public Speaking: Early Etiquette Learning and Its Impact on Higher Education and Working Professionals

Authors: Simran Ballani

Abstract:

The purpose of this paper is to call education professionals to implement etiquette and public speaking skills for preschoolers, primary, middle and higher school students. In this paper the author aims to present importance of etiquette learning and public speaking curriculum for preschoolers, reflect on experiences from implementation of the curriculum and discuss the effect of the said implementation on higher education/global job market. Author’s aim to introduce this curriculum was to provide children with innovative learning and all around development. This training of soft skills at kindergarten level can have a long term effect on their social behaviors which in turn can contribute to professional success once they are ready for campus recruitment/global job markets. Additionally, if preschoolers learn polite, appropriate behavior at early age, it will enable them to become more socially attentive and display good manners as an adult. It is easier to nurture these skills in a child rather than changing bad manners at adulthood. Preschool/Kindergarten education can provide the platform for children to learn these crucial soft skills irrespective of the ethnicity, economic or social background they come from. These skills developed at such early years can go a long way to shape them into better and confident individuals. Unfortunately, accessibility of the etiquette learning and public speaking skill education is not standardized in pre-primary or primary level and most of the time embedding into the kindergarten curriculum is next to nil. All young children should be provided with equal opportunity to learn these soft skills which are essential for finding their place in job market.

Keywords: Early Childhood Learning, , public speaking, , confidence building, , innovative learning

Procedia PDF Downloads 116
29580 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller

Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni

Abstract:

With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.

Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning

Procedia PDF Downloads 234