Search results for: water/cement ratio
12526 Improvement of Soft Clay Soil with Biopolymer
Authors: Majid Bagherinia
Abstract:
Lime and cement are frequently used as binders in the Deep Mixing Method (DMM) to improve soft clay soils. The most significant disadvantages of these materials are carbon dioxide emissions and the consumption of natural resources. In this study, three different biopolymers, guar gum, locust bean gum, and sodium alginate, were investigated for the improvement of soft clay using DMM. In the experimental study, the effects of the additive ratio and curing time on the Unconfined Compressive Strength (UCS) of stabilized specimens were investigated. According to the results, the UCS values of the specimens increased as the additive ratio and curing time increased. The most effective additive was sodium alginate, and the highest strength was obtained after 28 days.Keywords: deep mixing method, soft clays, ground improvement, biopolymers, unconfined compressive strength
Procedia PDF Downloads 8012525 Effects of Potential Chloride-Free Admixtures on Selected Mechanical Properties of Kenya Clay-Based Cement Mortars
Authors: Joseph Mwiti Marangu, Joseph Karanja Thiong'o, Jackson Muthengia Wachira
Abstract:
The mechanical performance of hydrated cements mortars mainly depends on its compressive strength and setting time. These properties are crucial in the construction industry. Pozzolana based cements are mostly characterized by low 28 day compressive strength and long setting times. These are some of the major impediments to their production and diverse uses despite numerous technological and environmental benefits associated with them. The study investigated the effects of potential chemical activators on calcined clay- Portland cement blends with an aim to achieve high early compressive strength and shorter setting times in cement mortar. In addition, standard consistency, soundness and insoluble residue of all cement categories was determined. The test cement was made by blending calcined clays with Ordinary Portland Cement (OPC) at replacement levels from 35 to 50 percent by mass of the OPC to make test cement labeled PCC for the purposes of this study. Mortar prisms measuring 40mmx40mmx160mm were prepared and cured in accordance with KS EAS 148-3:2000 standard. Solutions of Na2SO4, NaOH, Na2SiO3 and Na2CO3 containing 0.5- 2.5M were separately added during casting. Compressive strength was determined at 2rd, 7th, 28th and 90th day of curing. For comparison purposes, commercial Portland Pozzolana cement (PPC) and Ordinary Portland Cement (OPC) were also investigated without activators under similar conditions. X-Ray Florescence (XRF) was used for chemical analysis while X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were used for mineralogical analysis of the test samples. The results indicated that addition of activators significantly increased the 2nd and 7th day compressive strength but minimal increase on the 28th and 90th day compressive strength. A relatively linear relationship was observed between compressive strength and concentration of activator solutions up to 28th of curing. Addition of the said activators significantly reduced both initial and final setting time. Standard consistency and soundness varied with increased amount of clay in the test cement and concentration of activators. Amount of insoluble residues increased with increased replacement of OPC with calcined clays. Mineralogical studies showed that N-A-S-H is formed in addition to C-S-H. In conclusion, the concentration of 2 molar for all activator solutions produced the optimum compressive strength and greatly reduced the setting times for all cement mortars.Keywords: activators, admixture, cement, clay, pozzolana
Procedia PDF Downloads 26212524 The Utilization of Rain Water to Ground Water with Tube in the Area of Tourism in Yogyakarta
Authors: Kurniawan Agung Pambudi, Alfian Deo Pradipta
Abstract:
Yogyakarta is the famous tourism city in Indonesia. The Tugu Jogja is a tourism center located in Jetis. To support the tourism activities required facilities such as tourist hotel and guest house. The existence of tourism also has an impact on the environment. The surface of the land is covered by cement and a local company dealing in ceramics, then an infiltration process is not running. The existence of the building in layers resulting in the amount of water resource in Jetis decreases. The purpose of this research is to know the impact of the construction of the building in layers in Jetis. To obtain the data done by observation, measurements and taking the land profile, along with the interview to people in Jetis. The results of the study showed that the number of water sources in Jetis, Yogyakarta start decreases as a result of the construction of the building on stilts as a result, the height of the surface of the groundwater decreases and digging a pit must be in to get the source of the waters. Based on the results of research it can be concluded that the height of the surface of the groundwater decreases. To resolve the issue required a method to rainwater can seep into the ground for maximum. The rain that fell upon the precarious houses or other buildings is channeled toward the ground through the tubes with the depth of 1-2 meters. Rainwater will be absorbed into the land and increase the amount of ground water.Keywords: rain water, tube, water resource, groundwater
Procedia PDF Downloads 22312523 Development of Light-Weight Fibre-Based Materials for Building Envelopes
Authors: René Čechmánek, Vladan Prachař, Ludvík Lederer, Jiří Loskot
Abstract:
Thin-walled elements with a matrix set on a base of high-valuable Portland cement with dispersed reinforcement from alkali-resistant glass fibres are used in a range of applications as claddings of buildings and infrastructure constructions as well as various architectural elements of residential buildings. Even if their elementary thickness and therefore total weight is quite low, architects and building companies demand on even further decreasing of the bulk density of these fibre-cement elements for the reason of loading elimination of connected superstructures and easier assembling in demand conditions. By the means of various kinds of light-weight aggregates it is possible to achieve light-weighing of thin-walled fibre-cement composite elements. From the range of possible fillers with different material properties granulated expanded glass worked the best. By the means of laboratory testing an effect of two fillers based on expanded glass on the fibre reinforced cement composite was verified. Practical applicability was tested in the production of commonly manufactured glass fibre reinforced concrete elements, such as channels for electrical cable deposition, products for urban equipment and especially various cladding elements. Even if these are not structural elements, it is necessary to evaluate also strength characteristics and resistance to environment for their durability in certain applications.Keywords: fibre-cement composite, granulated expanded glass, light-weighing
Procedia PDF Downloads 29112522 Heating and Cooling Scenario of Blended Concrete Subjected to 780 Degrees Celsius
Authors: J. E. Oti, J. M. Kinuthia, R. Robinson, P. Davies
Abstract:
In this study, The Compressive strength of concretes made with Ground Granulated Blast furnace Slag (GGBS), pulverised Fuel Ash (PFA), rice Husk Ash (RHA) and Waste Glass Powder (WGP) after they were exposed 7800C (exposure duration of around 60 minutes) and then allowed to cool down gradually in the furnace for about 280 minutes at water binder ratio of 0.50 was investigated. GGBS, PFA, RHA and WGP were used to replace up to 20% Portland cement in the control concrete. Test for the determination of workability, compressive strength and tensile splitting strength of the concretes were carried out and the results were compared with control concrete. The test results showed that the compressive strength decreased by an average of around 30% after the concretes were exposed to the heating and cooling scenario.Keywords: concrete, heating, cooling, pulverised fuel ash, rice husk ash, waste glass powder, GGBS, workability
Procedia PDF Downloads 41012521 Recycled Cellulosic Fibers and Lignocellulosic Aggregates for Sustainable Building Materials
Authors: N. Stevulova, I. Schwarzova, V. Hospodarova, J. Junak, J. Briancin
Abstract:
Sustainability is becoming a priority for developers and the use of environmentally friendly materials is increasing. Nowadays, the application of raw materials from renewable sources to building materials has gained a significant interest in this research area. Lignocellulosic aggregates and cellulosic fibers are coming from many different sources such as wood, plants and waste. They are promising alternative materials to replace synthetic, glass and asbestos fibers as reinforcement in inorganic matrix of composites. Natural fibers are renewable resources so their cost is relatively low in comparison to synthetic fibers. With the consideration of environmental consciousness, natural fibers are biodegradable so their using can reduce CO2 emissions in the building materials production. The use of cellulosic fibers in cementitious matrices have gained importance because they make the composites lighter at high fiber content, they have comparable cost - performance ratios to similar building materials and they could be processed from waste paper, thus expanding the opportunities for waste utilization in cementitious materials. The main objective of this work is to find out the possibility of using different wastes: hemp hurds as waste of hemp stem processing and recycled fibers obtained from waste paper for making cement composite products such as mortars based on cellulose fibers. This material was made of cement mortar containing organic filler based on hemp hurds and recycled waste paper. In addition, the effects of fibers and their contents on some selected physical and mechanical properties of the fiber-cement plaster composites have been investigated. In this research organic material have used to mortars as 2.0, 5.0 and 10.0 % replacement of cement weight. Reference sample is made for comparison of physical and mechanical properties of cement composites based on recycled cellulosic fibers and lignocellulosic aggregates. The prepared specimens were tested after 28 days of curing in order to investigate density, compressive strength and water absorbability. Scanning Electron Microscopy examination was also carried out.Keywords: Hemp hurds, organic filler, recycled paper, sustainable building materials
Procedia PDF Downloads 22312520 Mechanical Properties Analysis of Masonry Residue Mortar as Cement Replacement
Authors: Camila Parodi, Viviana Letelier, Giacomo Moriconi
Abstract:
The cement industry is responsible for around a 5% of the CO2 emissions worldwide and considering that concrete is one of the most used materials in construction its total effect is important. An alternative to reduce the environmental impact of concrete production is to incorporate certain amount of residues in the dosing, limiting the replacement percentages to avoid significant losses in the mechanical properties of the final material. Previous researches demonstrate the feasibility of using brick and rust residues, separately, as a cement replacement. This study analyses the variation in the mechanical properties of mortars by incorporating masonry residue composed of clay bricks and cement mortar. In order to improve the mechanical properties of masonry residue, this was subjected to a heat treatment of 650 ° C for four hours and its effect is analyzed in this study. Masonry residue was obtained from a demolition of masonry perimetral walls. The residues were crushed and sieved and the maximum size of particles used was 75 microns. The percentages of cement replaced by masonry residue were 0%, 10%, 20% and 30%. The effect of masonry residue addition and its heat treatment in the mechanical properties of mortars is evaluated through compressive and flexural strength tests after 7, 14 and 28 curing days. Results show that increasing the amount of masonry residue used increases the losses in compressive strength and flexural strength. However, the use of up to a 20% of masonry residue, when a heat treatment is applied, allows obtaining mortars with similar compressive strength to the control mortar. Masonry residues mortars without a heat treatment show losses in compressive strengths between 15% and 27% with respect to masonry residues with heat treatment, which demonstrates the effectiveness of the heat treatment. From this analysis it can be conclude that it is possible to use up to 20% of masonry residue with heat treatment as cement replacement without significant losses in mortars mechanical properties, reducing considerably the environmental impact of the final material.Keywords: cement replacement, environmental impact, masonry residue, mechanical properties of recycled mortars
Procedia PDF Downloads 39212519 Hydrogeochemical Assessment, Evaluation and Characterization of Groundwater Quality in Ore, South-Western, Nigeria
Authors: Olumuyiwa Olusola Falowo
Abstract:
One of the objectives of the Millennium Development Goals is to have sustainable access to safe drinking water and basic sanitation. In line with this objective, an assessment of groundwater quality was carried out in Odigbo Local Government Area of Ondo State in November – February, 2019 to assess the drinking, domestic and irrigation uses of the water. Samples from 30 randomly selected ground water sources; 16 shallow wells and 14 from boreholes and analyzed using American Public Health Association method for the examination of water and wastewater. Water quality index calculation, and diagrams such as Piper diagram, Gibbs diagram and Wilcox diagram have been used to assess the groundwater in conjunction with irrigation indices such as % sodium, sodium absorption ratio, permeability index, magnesium ratio, Kelly ratio, and electrical conductivity. In addition statistical Principal component analysis were used to determine the homogeneity and source(s) influencing the chemistry of the groundwater. The results show that all the parameters are within the permissible limit of World Health Organization. The physico-chemical analysis of groundwater samples indicates that the dominant major cations are in decreasing order of Na+, Ca2+, Mg2+, K+ and the dominant anions are HCO-3, Cl-, SO-24, NO-3. The values of water quality index varies suggest a Good water (WQI of 50-75) accounts for 70% of the study area. The dominant groundwater facies revealed in this study are the non-carbonate alkali (primary salinity) exceeds 50% (zone 7); and transition zone with no one cation-anion pair exceeds 50% (zone 9), while evaporation; rock–water interaction, and precipitation; and silicate weathering process are the dominant processes in the hydrogeochemical evolution of the groundwater. The study indicates that waters were found within the permissible limits of irrigation indices adopted, and plot on excellent category on Wilcox plot. In conclusion, the water in the study area are good/suitable for drinking, domestic and irrigation purposes with low equivalent salinity concentrate and moderate electrical conductivity.Keywords: equivalent salinity concentration, groundwater quality, hydrochemical facies, principal component analysis, water-rock interaction
Procedia PDF Downloads 14812518 A Study of Soft Soil Improvement by Using Lime Grit
Authors: Ashim Kanti Dey, Briti Sundar Bhowmik
Abstract:
This paper presents an idea to improve the soft soil by using lime grits which are normally produced as waste product in the paper manufacturing industries. This waste material cannot be used as a construction material because of its light weight, uniform size and poor compaction control. With scarcity in land, effective disposal of lime grit is a major concern of all paper manufacturing industries. Considering its non-plasticity and high permeability characteristics the lime grit may suitably be used as a drainage material for speedy consolidation of cohesive soil. It can also be used to improve the bearing capacity of soft clay. An attempt has been made in this paper to show the usefulness of lime grit in improving the bearing capacity of shallow foundation resting on soft clayey soil. A series of undrained unconsolidated cyclic triaxial tests performed at different area ratios and at three different water contents shows that dynamic shear modulus and damping ratio can be substantially improved with lime grit. Improvement is observed to be more in case of higher area ratio and higher water content. Static triaxial tests were also conducted on lime grit reinforced clayey soil after application of 50 load cycles to determine the effect of lime grit columns on cyclically loaded clayey soils. It is observed that the degradation is less for lime grit stabilized soil. A study of model test with different area ratio of lime column installation is also included to see the field behaviour of lime grit reinforced soil.Keywords: lime grit column, area ratio, shear modulus, damping ratio, strength ratio, improvement factor, degradation factor
Procedia PDF Downloads 50312517 Oriented Strandboard-GEOGYPTM Undelayment, a Novel Composite Flooring System
Authors: B. Noruziaan, A. Shvarzman, R. Leahy
Abstract:
An innovative flooring underlayment was produced and tested. The composite system is made of common OSB boards and a layer of eco-friendly non-cement gypsum based material (GeoGypTM). It was found that the shear bond between the two materials is sufficient to secure the composite interaction between the two. The very high compressive strength and relatively high tensile strength of the non-cement based component together with its high modulus of elasticity provides enough strength and stiffness for the composite product to cover wider spacing between the joists. The initial findings of this study indicate that with joist spacing as wide as 800 mm, the flooring system provides enough strength without compromising the serviceability requirements of the building codes.Keywords: Composite, floor deck, gypsum based, lumber joist, non-cement, oriented strandboard, shear bond
Procedia PDF Downloads 42012516 Fairly Irrigation Water Distribution between Upstream and Downstream Water Users in Water Shortage Periods
Authors: S. M. Hashemy Shahdany
Abstract:
Equitable water delivery becomes one of the main concerns for water authorities in arid regions. Due to water scarcity, providing reliable amount of water is not possible for most of the irrigation districts in arid regions. In this paper, water level difference control is applied to keep the water level errors equal in adjacent reaches. Distant downstream decentralized configurations of the control method are designed and tested under a realistic scenario shows canal operation under water shortage. The simulation results show that the difference controllers share the water level error among all of the users in a fair way. Therefore, water deficit has a similar influence on downstream as well as upstream and water offtakes.Keywords: equitable water distribution, precise agriculture, sustainable agriculture, water shortage
Procedia PDF Downloads 46312515 Engineering of Filtration Systems in Egyptian Cement Plants: Industrial Case Study
Authors: Mohamed. A. Saad
Abstract:
The paper represents a case study regarding the conversion of Electro-Static Precipitators (ESP`s) into Fabric Filters (FF). Seven cement production companies were established in Egypt during the period 1927 to 1980 and 6 new companies were established to cope with the increasing cement demand in 1980's. The cement production market shares in Egypt indicate that there are six multinational companies in the local market, they are interested in the environmental conditions improving and so decided to achieve emission reduction project. The experimental work in the present study is divided into two main parts: (I) Measuring Efficiency of Filter Fabrics with detailed description of a designed apparatus. The paper also reveals the factors that should be optimized in order to assist problem diagnosis, solving and increasing the life of bag filters. (II) Methods to mitigate dust emissions in Egyptian cement plants with a special focus on converting the Electrostatic Precipitators (ESP`s) into Fabric Filters (FF) using the same ESP casing, bottom hoppers, dust transportation system, and ESP ductwork. Only the fan system for the higher pressure drop with the fabric filter was replaced. The proper selection of bag material was a prime factor with regard to gas composition, temperature and particle size. Fiberglass with PTFE membrane coated bags was selected. This fabric is rated for a continuous temperature of 250 C and a surge temperature of 280C. The dust emission recorded was less than 20 mg/m3 from the production line fitted with fabric filters which is super compared with the ESP`s working lines stack.Keywords: Engineering Electrostatic Precipitator, filtration, dust collectors, cement
Procedia PDF Downloads 25312514 Study of the Effect of Using Corn-Cob Ash on Mortar and Concrete Properties: Case Study of Sudan
Authors: Taghried I. M. Abdel-Magid, Gheida T. A. Al-Khelifa, Ahmed O. Adam, Esra G. A. Mohamed, Saeed M. S. Saeed
Abstract:
The use of pozzolanic materials in concrete industry is facing challenges due to unpredictable behavior of natural materials. Corncob ash (CCA) is considered to be one of the promising plant-based materials that possess cementitious properties. Corn is one of the major planted crops in Sudan. Corncob is considered as waste and normally thrown away or burnt. The main purpose of this research was to test the hypothesis that CCA can sufficiently replace cement in a concrete mixture or a cement mortar. In this study, CCA was used to replace cement in mortar in three percentages: 0, 20, and 25%. The effect of this replacement was found to be positive in terms of long-term compressive strength, while not as such in short-term compressive strength. In the concrete mix, the introduction of CCA was found to have a positive impact on the slump test characteristics, whereas the early and late compressive strengths deteriorated by approximately 30%. More research is needed in this area to upgrade the efficient use of CCA in cement mortar and concrete properties.Keywords: cementitious materials, compressive strength, corncob ash, pozzolanic materials
Procedia PDF Downloads 24012513 The Influence of Incorporating in the Concrete of Recycled Waste from Shredding Used Tires and Crushed Glass on Their Characteristics and Behavior
Authors: Samiha Ramdani, Abdelhamid Geuttala
Abstract:
There is no doubt that the batteries increasingly used tires create environmental concerns. Algeria generates large amounts of by industrial and household waste, such as used tires and colored glass bottles and dishes, whose valuation in cementitious materials could be an interesting ecological and economical alternative for broadening eliminating cumbersome landfills. This work is a contribution to the promotion of local materials with the use of waste tires and glass bottle in the development of a new cementitious composite having the acceptable compressive strength and a capacity of improved strains. For this purpose, rubber crumb (GC) from shredding used tires were used as partial replacement of quarry sand with 10%, 20%, 40, 60%. In addition, some mixtures also contain glass powder at15% cement replacement by volume. The compressive strength, tensile strength, deformability, the water permeability and penetration Inions chlorides are studied. As results; an acceptable compressive strength was obtained with the substitution rate of 10% and 20% by volume, the deformability of the composite increases with increased replacement rate. The addition of finely ground glass as a partial replacement of cement concrete increases the resistance to penetration of Inions chloride and reduce the water permeability thereof; then increases their durability.Keywords: crumb rubber, deformability, compressive strength, finely ground glass, durability, behavior law
Procedia PDF Downloads 32112512 Modified Evaluation of the Hydro-Mechanical Dependency of the Water Coefficient of Permeability of a Clayey Sand with a Novel Permeameter for Unsaturated Soils
Authors: G. Adelian, A. Mirzaii, S. S. Yasrobi
Abstract:
This paper represents data of an extensive experimental laboratory testing program for the measurement of the water coefficient of permeability of clayey sand in different hydraulic and mechanical boundary conditions. A novel permeameter was designed and constructed for the experimental testing program, suitable for the study of flow in unsaturated soils in different hydraulic and mechanical loading conditions. In this work, the effect of hydraulic hysteresis, net isotropic confining stress, water flow condition, and sample dimensions are evaluated on the water coefficient of permeability of understudying soil. The experimental results showed a hysteretic variation for the water coefficient of permeability versus matrix suction and degree of saturation, with higher values in drying portions of the SWCC. The measurement of the water permeability in different applied net isotropic stress also signified that the water coefficient of permeability increased within the increment of net isotropic consolidation stress. The water coefficient of permeability also appeared to be independent of different applied flow heads, water flow condition, and sample dimensions.Keywords: water permeability, unsaturated soils, hydraulic hysteresis, void ratio, matrix suction, degree of saturation
Procedia PDF Downloads 52712511 High Resolution Solid State NMR Structural Study of a Ternary Hydraulic Mixture
Authors: Rym Sassi, Franck Fayon, Mohend Chaouche, Emmanuel Veron, Valerie Montouillout
Abstract:
The chemical phenomena occurring during cement hydration are complex and interdependent, and even after almost two centuries of studies, they are still difficult to solve for complex mixtures combining different hydraulic binders. Powder-XRD has been widely used for characterizing the crystalline phases in both anhydrous and hydrated cement, but only limited information is obtained in the case of strongly disordered and amorphous phases. In contrast, local spectroscopies like solid-state NMR can provide a quantitative description of noncrystalline phases. In this work, the structural modifications occurring during hydration of a fast-setting ternary binder based on white Portland cement, white calcium aluminate cement, and calcium sulfate were investigated using advanced solid-state NMR methods. We particularly focused on the early stage of the hydration up to 28 days, working with samples whose hydration was controlled and stopped. ²⁷Al MQ-MAS as well as {¹H}-²⁷Al and {¹H}-²⁹Si Cross- Polarization MAS NMR techniques were combined to distinguish all of the aluminum and silicon species formed during the hydration. The NMR quantification of the different phases was conducted in parallel with the XRD analyses. The consumption of initial products, as well as the precipitation of hydraulic phases (ettringite, monosulfate, strätlingite, CSH, and CASH), were unambiguously quantified. Finally, the drawing of the consumption and formation of phases was correlated with mechanical strength measurements.Keywords: cement, hydration, hydrates structure, mechanical strength, NMR
Procedia PDF Downloads 15412510 Investigating Al₂O₃ Nanofluid Based on Seawater and Effluent Water Mix for Water Injection Application; Sandstone
Authors: Meshal Al-Samhan, Abdullah Al-Marshed
Abstract:
Recently, there has been a tremendous increase in interest in nanotechnology applications and nanomaterials in the oilfield. In the last decade, the global increase in oil production resulted in large amounts of produced water, causing a significant problem for all producing countries and companies. This produced water deserves special attention and a study of its characteristics to understand and determine how it can be treated and later used for suitable applications such as water injection for Enhance Oil Recovery (EOR) without harming the environment. This work aims to investigate the prepared compatible mixed water (seawater and effluent water) response to nanoparticles for EOR water injection. The evaluation of different mix seawater/effluent water ratios (60/40,70/30) for their characteristics prior to nanofluid preparation using Inductive Couple Plasma (ICP) analysis, potential zeta test, and OLI software (the OLI Systems is a recognised leader in aqueous chemistry). This step of the work revealed the suitability of the water mix with a lower effluent-water ratio. Also, OLI predicted that the 60:40 mix needs to be balanced around temperatures of 70 ºC to avoid the mass accumulation of calcium sulfate and strontium sulfate. Later the prepared nanofluid was tested for interfacial tension (IFT) and wettability restoration in the sandstone rock; the Al2O3 nanofluid at 0.06 wt% concentration reduced the IFT by more than 16% with moderate water wet contact angle. The study concluded that the selected nanoparticle Al2O3 had demonstrated excellent performance in decreasing the interfacial tension with respect to the selected water mix type (60/40) at low nanoparticles wt%.Keywords: nano AL2O3, sanstone, nanofluid, IFT, wettability
Procedia PDF Downloads 10812509 Irrigation Water Quality Evaluation in Jiaokou Irrigation District, Guanzhong Basin
Authors: Qiying Zhang, Panpan Xu, Hui Qian
Abstract:
Groundwater is an important water resource in the world, especially in arid and semi-arid regions. In the present study, 141 groundwater samples were collected and analyzed for various physicochemical parameters to assess the irrigation water quality using six indicators (sodium percentage (Na%), sodium adsorption ratio (SAR), magnesium hazard (MH), residual sodium carbonate (RSC), permeability index (PI), and potential salinity (PS)). The results show that the patterns for the average cation and anion concentrations were in decreasing orders of Na+ > Mg2+ > Ca2+ > K+and SO42- > HCO3- > Cl- > NO3- > CO32- > F-, respectively. The values of Na%, MH, and PS show that most of the groundwater samples are not suitable for irrigation. The same conclusion is drawn from the USSL and Wilcox diagrams. PS values indicate that Cl-and SO42-have a great influence on irrigation water in Jiaokou Irrigation District. RSC and PI values indicate that more than half of groundwater samples are suitable for irrigation. The finding is beneficial for the policymakers for future water management schemes to achieve a sustainable development goal.Keywords: groundwater chemistry, Guanzhong Basin, irrigation water quality evaluation, Jiaokou Irrigation District
Procedia PDF Downloads 21012508 Enhancing Performance of Semi-Flexible Pavements through Self-Compacting Cement Mortar as Cementitious Grout
Authors: Mohamed Islam Dahmani
Abstract:
This research investigates the performance enhancement of semi-flexible pavements by incorporating self-compacting cement mortar as a cementitious grout. The study is divided into three phases for comprehensive evaluation. In the initial phase, a porous asphalt mixture is formulated with a target voids content of 25-30%. The goal is to achieve optimal interconnected voids that facilitate effective penetration of self-compacting cement mortar. The mixture's compliance with porous asphalt performance standards is ensured through tests such as marshal stability, indirect tensile strength, contabro test, and draindown test. The second phase focuses on creating a self-compacting cement mortar with high workability and superior penetration capabilities. This mortar is designed to fill the interconnected voids within the porous asphalt mixture. The formulated mortar's characteristics are assessed through tests like mini V funnel flow time, slump flow mini cone, as well as mechanical properties such as compressive strength, bending strength, and shrinkage strength. In the final phase, the performance of the semi-flexible pavement is thoroughly studied. Various tests, including marshal stability, indirect tensile strength, high-temperature bending, low-temperature bending, resistance to rutting, and fatigue life, are conducted to assess the effectiveness of the self-compacting cement mortar-enhanced pavement.Keywords: semi-flexible pavements, cementitious grout, self-compacting cement mortar, porous asphalt mixture, interconnected voids, rutting resistance
Procedia PDF Downloads 9112507 Combined Effect of Heat Stimulation and Delayed Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar
Authors: Faraidoon Rahmanzai, Mizuki Takigawa, Yu Bomura, Shigeyuki Date
Abstract:
To obtain the high quality and essential workability of mortar, different types of superplasticizers are used. The superplasticizers are the chemical admixture used in the mix to improve the fluidity of mortar. Many factors influenced the superplasticizer to disperse the cement particle in the mortar. Nature and amount of replaced cement by slag, mixing procedure, delayed addition time, and heat stimulation technique of superplasticizer cause the varied effect on the fluidity of the cementitious material. In this experiment, the superplasticizers were heated for 1 hour under 60 °C in a thermostatic chamber. Furthermore, the effect of delayed addition time of heat stimulated superplasticizers (SP) was also analyzed. This method was applied to two types of polycarboxylic acid based ether SP (precast type superplasticizer (SP2) and ready-mix type superplasticizer (SP1)) in combination with a partial replacement of normal Portland cement with blast furnace slag (BFS) with 30% w/c ratio. On the other hands, the fluidity, air content, fresh density, and compressive strength for 7 and 28 days were studied. The results indicate that the addition time and heat stimulation technique improved the flow and air content, decreased the density, and slightly decreased the compressive strength of mortar. Moreover, the slag improved the flow of mortar by increasing the amount of slag, and the effect of external temperature of SP on the flow of mortar was decreased. In comparison, the flow of mortar was improved on 5-minute delay for both kinds of SP, but SP1 has improved the flow in all conditions. Most importantly, the transition points in both types of SP appear to be the same, at about 5±1 min. In addition, the optimum addition time of SP to mortar should be in this period.Keywords: combined effect, delay addition, heat stimulation, flow of mortar
Procedia PDF Downloads 20212506 Exploration on Extraction of Coalbed Seam in Water Sensitive Reservoir by Combustion of Coal Seams
Authors: Liu Yinga, Bai Xingjiab
Abstract:
The conventional way to exploit coalbed methane is to drop reservoirs pressure through drainage, which means that reducing pressure through water drainage for coalbed methane desorption. However, it has many limitations. In this paper, the recovery by conventional way is low, in order to exploit water-sensitive reservoir, combustion of coal seam is proposed to increase recovery ratio, and then theoretical feasibility is elaborated through four aspects: temperature, pressure, superficial area, competitive adsorption, then given an example of water sensitive reservoir, results can be obtained that recovery is effectively improved through combustion of coal seam. At the same time, the suitability and efficiency of combustion of coal seam determine that it can be widely applied.Keywords: coalbed methane, drainage decompression, water-sensitive, combustion of coal seams, competitive adsorption
Procedia PDF Downloads 26412505 Direct Oxidation Synthesis for a Dual-Layer Silver/Silver Orthophosphate with Controllable Tetrahedral Structure as an Active Photoanode for Solar-Driven Photoelectrochemical Water Splitting
Authors: Wen Cai Ng, Saman Ilankoon, Meng Nan Chong
Abstract:
The vast increase in global energy demand, coupled with the growing concerns on environmental issues, has triggered the search for cleaner alternative energy sources. In view of this, the photoelectrochemical (PEC) water splitting offers a sustainable hydrogen (H2) production route that only requires solar energy, water, and PEC system operating in an ambient environment. However, the current advancement of PEC water splitting technologies is still far from the commercialization benchmark indicated by the solar-to-H2 (STH) efficiency of at least 10 %. This is largely due to the shortcomings of photoelectrodes used in the PEC system, such as the rapid recombination of photogenerated charge carriers and limited photo-responsiveness in the visible-light spectrum. Silver orthophosphate (Ag3PO4) possesses many desirable intrinsic properties for the fabrication into photoanode used in PEC systems, such as narrow bandgap of 2.4 eV and low valence band (VB) position. Hence, in this study, a highly efficient Ag3PO4-based photoanode was synthesized and characterized. The surface of the Ag foil substrate was directly oxidized to fabricate a top layer composed of {111}-bound Ag3PO4 tetrahedrons layer with a porous structure, forming the dual-layer Ag/Ag3PO4 photoanode. Furthermore, the key synthesis parameters were systematically investigated by varying the concentration ratio of capping agent-to-precursor (R), the volume ratio of hydrogen peroxide (H2O2)-to-water, and reaction period. Results showed that the optimized dual-layer Ag/Ag3PO4 photoanode achieved a photocurrent density as high as 4.19 mA/cm2 at 1 V vs. Ag/AgCl for the R-value of 4, the volume ratio of H2O2-to-water of 3:5 and 20 h reaction period. The current work provides a solid foundation for further nanoarchitecture modification strategies on Ag3PO4-based photoanodes for more efficient PEC water splitting applications. This piece of information needs to be backed up by evidence; therefore, you need to provide a reference. As the abstract should be self-contained, all information requiring a reference should be removed. This is a fact known to the area of research, and not necessarily required a reference to support.Keywords: solar-to-hydrogen fuel, photoelectrochemical water splitting, photoelectrode, silver orthophosphate
Procedia PDF Downloads 12112504 A Study on Bonding Strength, Waterproofing and Flexibility of Environment Friendly, and Cost Effective Cementitious Grout Mixture for Tile Joints
Authors: Gowthamraj Vungarala
Abstract:
This paper presents the experimental investigation on the bond strength, waterproofing abilities and flexibility of tile joint when Ordinary Portland Cement (OPC) or White Portland Cement (WPC) CEM II A-LL 42.5N and porcelain powder graded between 200 microns and 75 microns is mixed with vinyl acetate monomer (VAM), hydroxypropyl methyl cellulose ether, ethylene co-polymer rubber powder and Styrene butyl rubber (SBR). Use of porcelain powder which is tough to decompose as a form of industrial refuse which helps environmental safety and waste usage.Keywords: styrene butane rubber, hydroxypropyl methyl cellulose ether, vinyl acetate monomer, polymer modified cement, polyethylene, porcelain powder
Procedia PDF Downloads 9512503 Mechanical Properties of Class F Fly Ash Blended Concrete Incorporation with Natural Admixture
Authors: T. S. Ramesh Babu, D. Neeraja
Abstract:
This research work revealed that effect of Natural admixture (NAD) on Conventional Concrete (CC) and Class F Fly Ash(FA) blended concrete. Broiler hen egg white albumen and yellow yolk were used as Natural Admixture. Cement was replaced by Class F fly ash at various levels of 0%, 25%, 35%, 45% and 55% by its mass and NAD was added to concrete at different replacement dosages of 0%, 0.25%, 0.5%, 0.75% and 1.00% by its volume to water content and liquid to binder ratio was maintained at 0.5. For all replacement levels of FA and NAD, the mechanical properties viz unit weight, compressive strength, splitting tensile strength and modulus of elasticity of CC and Class F fly ash (FA) were studied at 7, 28, 56 and 112 days. From the results, it was concluded that 0.25% of NAD dosage was considered as optimum dosage for both CC and class F fly ash blended concrete. The studies revealed that 35% Class F fly ash blended concrete mix is concluded as optimum mix and 55% Class F fly ash blended concrete mix is concluded as economical mix with 0.25% NAD dosage.Keywords: Class F fly ash, compressive strength, modulus of elasticity, natural admixture, splitting tensile strength, unit weight
Procedia PDF Downloads 28912502 Study of Physico-Chimical Properties of a Silty Soil
Authors: Moulay Smaïne Ghembaza, Mokhtar Dadouch, Nour-Said Ikhlef
Abstract:
Soil treatment is to make use soil that does not have the characteristics required in a given context. We limit ourselves in this work to the field of road earthworks where we have chosen to develop a local material in the region of Sidi Bel Abbes (Algeria). This material has poor characteristics not meeting the standards used in road geo technics. To remedy this, firstly, we were trying to improve the Proctor Standard characteristics of this material by mechanical treatment increasing the compaction energy. Then, by a chemical treatment, adding some cement dosages, our results show that this material classified A1h a increase maximum dry density and a reduction in the water content of compaction. A comparative study is made on the optimal properties of the material between the two modes of treatment. On the other hand, after treatment, one finds a decrease in the plasticity index and the methylene blue value. This material exhibits a change of class. Therefore, soil class CL turned into a soil class composed CL-ML (Silt of low plasticity). This observation allows this material to be used as backfill or sub grade.Keywords: treatment of soil, cement, subgrade, Atteberg limits, classification, optimum proctor properties
Procedia PDF Downloads 47212501 Assessment of Socio-Economic and Water Related Topics at Community Level in Yatta Town, Palestine
Authors: Nibal Al-Batsh, Issam A. Al-Khatib, Subha Ghannam
Abstract:
Yatta is a town in the Governorate of Hebron, located 9 km south of Hebron City in the West Bank. The town houses over 100,000 people, 49% of which are females; a population that doubles every 15 years. Yatta has been connected to a water network since 1974 serving nearly 85% of the households. The water network is old and inadequate to meet the needs of the population. The water supply made available to the area is also very limited, estimated to be around 20 l/c/d. Residents are thus forced to rely on water vendors which supply water with a lower quality compared to municipal water while being 400% more expensive. As a cheaper and more reliable alternative, rainwater harvesting is a common practice in the area, with the majority of the households owning at least one cistern. Rainwater harvesting is of great socioeconomic importance in areas where water sources are scarce or polluted. In this research, the quality of harvested rainwater used for drinking and domestic purposes in the Yatta area was assessed throughout a year. A total of 100 samples, were collected from (cisterns) with an average capacity of 69 m3, which are adjacent to cement-roof catchment areas with an average area of 145 m2. Samples were analyzed for a number of parameters including: pH, alkalinity, hardness, turbidity, Total Dissolved Solids (TDS), NO3, NH4, chloride and salinity. Biological and microbiological contents such as Total Coliforms (TCC) and Fecal Coliforms (FC) bacteria were also tested. Results showed that most of the rainwater samples were within WHO and EPA guidelines set for chemical parameters. The research also addressed the impact of different socioeconomic attributes on rainwater harvesting through questionnaire that was pre-tested before the actual statically sample is collected.Keywords: rainwater, harvesting, water quality, socio-economic aspects
Procedia PDF Downloads 25112500 Experimental Investigation of Air Gap Membrane Distillation System with Heat Recovery
Authors: Yasser Elhenaw, A. Farag, Mohamed El-Ghandour, M. Shatat, G. H. Moustafa
Abstract:
This study investigates the performance of two spiral-wound Air Gap Membrane Distillation (AGMD) units. These units are connected in two different configurations in order to be tested and compared experimentally. In AGMD, the coolant water is used to condensate water vapor leaving membrane via condensing plate. The rejected cooling water has a relativity high temperature which can be used, depending on operation parameters, to increase the thermal efficiency and water productivity. In the first configuration, the seawater feed flows parallel and equally through both units then rejected. The coolant water is divided into the two units, and the heat source is divided into the two heat exchangers. In the second one, only the feed of the first unit is heated while the cooling rejected from the unit is used in heating the feed to the second. The performance of the system, estimated by the water productivity as well as the Gain Output Ratio (GOR), is measured for the two configurations at different feed flow rates, temperatures and salinities. The results show that at steady state condition, the heat recovery configurations lead to an increase in water productivity by 25%.Keywords: membrane distillation, heat transfer, heat recovery, desalination
Procedia PDF Downloads 26712499 Investigations on Utilization of Chrome Sludge, Chemical Industry Waste, in Cement Manufacturing and Its Effect on Clinker Mineralogy
Authors: Suresh Vanguri, Suresh Palla, Prasad G., Ramaswamy V., Kalyani K. V., Chaturvedi S. K., Mohapatra B. N., Sunder Rao TBVN
Abstract:
The utilization of industrial waste materials and by-products in the cement industry helps in the conservation of natural resources besides avoiding the problems arising due to waste dumping. The use of non-carbonated materials as raw mix components in clinker manufacturing is identified as one of the key areas to reduce Green House Gas (GHG) emissions. Chrome sludge is a waste material generated from the manufacturing process of sodium dichromate. This paper aims to present studies on the use of chrome sludge in clinker manufacturing, its impact on the development of clinker mineral phases and on the cement properties. Chrome sludge was found to contain substantial amounts of CaO, Fe2O3 and Al2O3 and therefore was used to replace some conventional sources of alumina and iron in the raw mix. Different mixes were prepared by varying the chrome sludge content from 0 to 5 % and the mixes were evaluated for burnability. Laboratory prepared clinker samples were evaluated for qualitative and quantitative mineralogy using X-ray Diffraction Studies (XRD). Optical microscopy was employed to study the distribution of clinker phases, their granulometry and mineralogy. Since chrome sludge also contains considerable amounts of chromium, studies were conducted on the leachability of heavy elements in the chrome sludge as well as in the resultant cement samples. Estimation of heavy elements, including chromium was carried out using ICP-OES. Further, the state of chromium valence, Cr (III) & Cr (VI), was studied using conventional chemical analysis methods coupled with UV-VIS spectroscopy. Assimilation of chromium in the clinker phases was investigated using SEM-EDXA studies. Bulk cement was prepared from the clinker to study the effect of chromium sludge on the cement properties such as setting time, soundness, strength development against the control cement. Studies indicated that chrome sludge can be successfully utilized and its content needs to be optimized based on raw material characteristics.Keywords: chrome sludge, leaching, mineralogy, non-carbonate materials
Procedia PDF Downloads 21712498 Leaching Properties of Phosphate Rocks in the Nile River
Authors: Abdelkader T. Ahmed
Abstract:
Phosphate Rocks (PR) are natural sediment rocks. These rocks contain several chemical compositions of heavy metals and radioactive elements. Mining and transportation these rocks beside or through the natural water streams may lead to water contamination. When PR is in contact with water in the field, as a consequence of precipitation events, changes in water table or sinking in water streams, elements such as salts and heavy metals, may be released to the water. In this work, the leaching properties of PR in Nile River water was investigated by experimental lab work. The study focused on evaluating potential environmental impacts of some constituents, including phosphors, cadmium, curium and lead of PR on the water quality of Nile by applying tank leaching tests. In these tests the potential impact of changing conditions, such as phosphate content in PR, liquid to solid ratio (L/S) and pH value, was studied on the long-term release of heavy metals and salts. Experimental results showed that cadmium and lead were released in very low concentrations but curium and phosphors were in high concentrations. Results showed also that the release rate from PR for all constituents was low even in long periods.Keywords: leaching tests, Nile river, phosphate rocks, water quality
Procedia PDF Downloads 32312497 The Influence of Feedgas Ratio on the Ethene Hydroformylation using Rh-Co Bimetallic Catalyst Supported by Reduced Graphene Oxide
Authors: Jianli Chang, Yusheng Zhang, Yali Yao, Diane Hildebrandt, Xinying Liu
Abstract:
The influence of feed-gas ratio on the ethene hydroformylation over an Rh-Co bimetallic catalyst supported by reduced graphene oxide (RGO) has been investigated in a tubular fixed bed reactor. Argon was used as balance gas when the feed-gas ratio was changed, which can keep the partial pressure of the other two kinds of gas constant while the ratio of one component in feed-gas was changed. First, the effect of single-component gas ratio on the performance of ethene hydroformylation was studied one by one (H₂, C₂H₄ and CO). Then an optimized ratio was found to obtain a high selectivity to C₃ oxygenates. The results showed that: (1) 0.5%Rh-20%Co/RGO is a promising heterogeneous catalyst for ethene hydroformylation. (2) H₂ and CO have a more significant influence than C₂H₄ on selectivity to oxygenates. (3) A lower H₂ ratio and a higher CO ratio in feed-gas can lead to a higher selectivity to oxygenates. (4) The highest selectivity to oxygenates, 61.70%, was obtained at the feed-gas ratio CO: C₂H₄: H₂ = 4: 2: 1.Keywords: ethene hydroformylation, reduced graphene oxide, rhodium cobalt bimetallic catalyst, the effect of feed-gas ratio
Procedia PDF Downloads 163