Search results for: variables
3831 Estimation of Coefficients of Ridge and Principal Components Regressions with Multicollinear Data
Authors: Rajeshwar Singh
Abstract:
The presence of multicollinearity is common in handling with several explanatory variables simultaneously due to exhibiting a linear relationship among them. A great problem arises in understanding the impact of explanatory variables on the dependent variable. Thus, the method of least squares estimation gives inexact estimates. In this case, it is advised to detect its presence first before proceeding further. Using the ridge regression degree of its occurrence is reduced but principal components regression gives good estimates in this situation. This paper discusses well-known techniques of the ridge and principal components regressions and applies to get the estimates of coefficients by both techniques. In addition to it, this paper also discusses the conflicting claim on the discovery of the method of ridge regression based on available documents.Keywords: conflicting claim on credit of discovery of ridge regression, multicollinearity, principal components and ridge regressions, variance inflation factor
Procedia PDF Downloads 4173830 Stock Market Development and the Growth of Nigerian Economy
Authors: Godwin Chigozie Okpara, Eugene Iheanacho
Abstract:
This paper examined the dynamic behavior of stock market development and the growth of Nigerian economy. The variables; market capitalization ratio, turnover ratio and liquidity proxies by the ratio of market capitalization to gross domestic product were sourced and computed from the Nigerian stock exchange fact books and the CBN statistical bulletin of the Central Bank of Nigeria. The variables were tested and found stationary and cointregrated using the augumented Dickey Fuller unit root test and the Johnson cointegration test respectively. The dynamic behavior of the stock market development model was verified using the error correction model. The result shows that about 0.4l percent of the short run deviation is corrected every year and also reveals that market capitalization ratio and market liquidity are positive and significant function of economic growth. In other words market capitalization ratio and liquidity positively and significantly impact economic growth. Market development variables such as turnover ratio and market restriction can exert positive but insignificant impact on the growth of the economy suggesting that securities transaction relative to the size of the securities market are not high enough to significantly engender economic growth in Nigeria. In the light of this, the researchers recommend that the regulatory body as well as the government, should provide a conducive environment capable of encouraging the growth and development of the stock market. This if well articulated will enhance the market turnover and the growth of the economy.Keywords: market capitalization ratio, turnover ratio, liquidity, unit root test, cointegration
Procedia PDF Downloads 3373829 Robust Shrinkage Principal Component Parameter Estimator for Combating Multicollinearity and Outliers’ Problems in a Poisson Regression Model
Authors: Arum Kingsley Chinedu, Ugwuowo Fidelis Ifeanyi, Oranye Henrietta Ebele
Abstract:
The Poisson regression model (PRM) is a nonlinear model that belongs to the exponential family of distribution. PRM is suitable for studying count variables using appropriate covariates and sometimes experiences the problem of multicollinearity in the explanatory variables and outliers on the response variable. This study aims to address the problem of multicollinearity and outliers jointly in a Poisson regression model. We developed an estimator called the robust modified jackknife PCKL parameter estimator by combining the principal component estimator, modified jackknife KL and transformed M-estimator estimator to address both problems in a PRM. The superiority conditions for this estimator were established, and the properties of the estimator were also derived. The estimator inherits the characteristics of the combined estimators, thereby making it efficient in addressing both problems. And will also be of immediate interest to the research community and advance this study in terms of novelty compared to other studies undertaken in this area. The performance of the estimator (robust modified jackknife PCKL) with other existing estimators was compared using mean squared error (MSE) as a performance evaluation criterion through a Monte Carlo simulation study and the use of real-life data. The results of the analytical study show that the estimator outperformed other existing estimators compared with by having the smallest MSE across all sample sizes, different levels of correlation, percentages of outliers and different numbers of explanatory variables.Keywords: jackknife modified KL, outliers, multicollinearity, principal component, transformed M-estimator.
Procedia PDF Downloads 633828 An Investigation of Thai Passengers’ Level of Understanding and Awareness: Cabin Crew Safety Briefing
Authors: Chantarat Manvichien, Kevin Wongleedee
Abstract:
The purpose of this research was to study Thai passengers’ level of understanding and awareness of the cabin crew safety briefing in the airplane during the preparation to take off and landing. It is important to know if Thai passengers pay attention to cabin crew safety briefing and to suggest a better way to draw their attention. The independent variables included gender, age, income, levels of education, travelling purpose, and travelling frequency while the dependent variables was level of awareness. A simple random sampling method was utilized to get 400 respondents. The findings revealed the ranking the first three levels of importance by highest mean to lowest mean as follows: (1) It is important to listen to cabin crew safety briefing; (2) Cabin crew briefing is interesting; (3) Information from cabin crew safety briefing is easy to understand. In addition, the overall means was 3.27 with 0.800 SD.Keywords: cabin crew, safety briefing, Thai passengers, awareness
Procedia PDF Downloads 3993827 A Machine Learning Approach for Performance Prediction Based on User Behavioral Factors in E-Learning Environments
Authors: Naduni Ranasinghe
Abstract:
E-learning environments are getting more popular than any other due to the impact of COVID19. Even though e-learning is one of the best solutions for the teaching-learning process in the academic process, it’s not without major challenges. Nowadays, machine learning approaches are utilized in the analysis of how behavioral factors lead to better adoption and how they related to better performance of the students in eLearning environments. During the pandemic, we realized the academic process in the eLearning approach had a major issue, especially for the performance of the students. Therefore, an approach that investigates student behaviors in eLearning environments using a data-intensive machine learning approach is appreciated. A hybrid approach was used to understand how each previously told variables are related to the other. A more quantitative approach was used referred to literature to understand the weights of each factor for adoption and in terms of performance. The data set was collected from previously done research to help the training and testing process in ML. Special attention was made to incorporating different dimensionality of the data to understand the dependency levels of each. Five independent variables out of twelve variables were chosen based on their impact on the dependent variable, and by considering the descriptive statistics, out of three models developed (Random Forest classifier, SVM, and Decision tree classifier), random forest Classifier (Accuracy – 0.8542) gave the highest value for accuracy. Overall, this work met its goals of improving student performance by identifying students who are at-risk and dropout, emphasizing the necessity of using both static and dynamic data.Keywords: academic performance prediction, e learning, learning analytics, machine learning, predictive model
Procedia PDF Downloads 1553826 Mean Monthly Rainfall Prediction at Benina Station Using Artificial Neural Networks
Authors: Hasan G. Elmazoghi, Aisha I. Alzayani, Lubna S. Bentaher
Abstract:
Rainfall is a highly non-linear phenomena, which requires application of powerful supervised data mining techniques for its accurate prediction. In this study the Artificial Neural Network (ANN) technique is used to predict the mean monthly historical rainfall data collected from BENINA station in Benghazi for 31 years, the period of “1977-2006” and the results are compared against the observed values. The specific objective to achieve this goal was to determine the best combination of weather variables to be used as inputs for the ANN model. Several statistical parameters were calculated and an uncertainty analysis for the results is also presented. The best ANN model is then applied to the data of one year (2007) as a case study in order to evaluate the performance of the model. Simulation results reveal that application of ANN technique is promising and can provide reliable estimates of rainfall.Keywords: neural networks, rainfall, prediction, climatic variables
Procedia PDF Downloads 4873825 Modelling Dengue Disease With Climate Variables Using Geospatial Data For Mekong River Delta Region of Vietnam
Authors: Thi Thanh Nga Pham, Damien Philippon, Alexis Drogoul, Thi Thu Thuy Nguyen, Tien Cong Nguyen
Abstract:
Mekong River Delta region of Vietnam is recognized as one of the most vulnerable to climate change due to flooding and seawater rise and therefore an increased burden of climate change-related diseases. Changes in temperature and precipitation are likely to alter the incidence and distribution of vector-borne diseases such as dengue fever. In this region, the peak of the dengue epidemic period is around July to September during the rainy season. It is believed that climate is an important factor for dengue transmission. This study aims to enhance the capacity of dengue prediction by the relationship of dengue incidences with climate and environmental variables for Mekong River Delta of Vietnam during 2005-2015. Mathematical models for vector-host infectious disease, including larva, mosquito, and human being were used to calculate the impacts of climate to the dengue transmission with incorporating geospatial data for model input. Monthly dengue incidence data were collected at provincial level. Precipitation data were extracted from satellite observations of GSMaP (Global Satellite Mapping of Precipitation), land surface temperature and land cover data were from MODIS. The value of seasonal reproduction number was estimated to evaluate the potential, severity and persistence of dengue infection, while the final infected number was derived to check the outbreak of dengue. The result shows that the dengue infection depends on the seasonal variation of climate variables with the peak during the rainy season and predicted dengue incidence follows well with this dynamic for the whole studied region. However, the highest outbreak of 2007 dengue was not captured by the model reflecting nonlinear dependences of transmission on climate. Other possible effects will be discussed to address the limitation of the model. This suggested the need of considering of both climate variables and another variability across temporal and spatial scales.Keywords: infectious disease, dengue, geospatial data, climate
Procedia PDF Downloads 3813824 The Influence of Destination Image on Tourists' Experience at Osun Osogbo World Heritage Site
Authors: Bola Adeleke, Kayode Ogunsusi
Abstract:
Heritage sites have evolved to preserve culture and heritage and also to educate and entertain tourists. Tourist travel decisions and behavior are influenced by destination image and value of the experience of tourists. Perceived value is one of the important tools for securing a competitive edge in tourism destinations. The model of Ritchie and Crouch distinguished 36 attributes of competitiveness which are classified into five factors which are quality of experience, touristic attractiveness, environment and infrastructure, entertainment/outdoor activities and cultural traditions. The study extended this model with a different grouping of the determinants of destination competitiveness. The theoretical framework used for this study assumes that apart from attractions already situated in the grove, satisfaction with destination common service, and entertainment and events, can all be used in creating a positive image for/and in attracting customers (destination selection) to visit Osun Sacred Osogbo Grove during and after annual celebrations. All these will impact positively on travel experience of customers as well as their spiritual fulfillment. Destination image has a direct impact on tourists’ satisfaction which consequently impacts on tourists’ likely future behavior on whether to revisit a cultural destination or not. The study investigated the variables responsible for destination image competitiveness of the Heritage Site; assessed the factors enhancing the destination image; and evaluated the perceived value realized by tourists from their cultural experience at the grove. A complete enumeration of tourists above 18 years of age who visited the Heritage Site within the month of March and April 2017 was taken. 240 respondents, therefore, were used for the study. The structured questionnaire with 5 Likert scales was administered. Five factors comprising 63 variables were used to determine the destination image competitiveness through principal component analysis, while multiple regressions were used to evaluate perceived value of tourists at the grove. Results revealed that 11 out of the 12 variables determining the destination image competitiveness were significant in attracting tourists to the grove. From the R-value, all factors predicted tourists’ value of experience strongly (R= 0.936). The percentage variance of customer value was explained by 87.70% of the variance of destination common service, entertainment and event satisfaction, travel environment satisfaction and spiritual satisfaction, with F-value being significant at 0.00. Factors with high alpha value contributed greatly to adding value to enhancing destination and tourists’ experience. 11 variables positively predicted tourist value with significance. Managers of Osun World Heritage Site should improve on variables critical to adding values to tourists’ experience.Keywords: competitiveness, destination image, Osun Osogbo world heritage site, tourists
Procedia PDF Downloads 1843823 Relationships between Motivation Factors and English Language Proficiency of the Faculty of Management Sciences Students
Authors: Kawinphat Lertpongmanee
Abstract:
The purposes of this study were (1) investigate the English language learning motivation and the attainment of their English proficiency, (2) to find out how motivation and motivational variables of the high and low proficiency subjects are related to their English proficiency. The respondents were 80 fourth-year from Faculty of Management Sciences students in Rajabhat Suansunadha University. The instruments used for data collection were questionnaires. The statistically analyzed by using the SPSS program for frequency, percentage, arithmetic mean, standard deviation (SD), t-test, one-way analysis of variance (ANOVA), and Pearson correlation coefficient. The findings of this study are summarized as there was a significant difference in overall motivation between high and low proficiency groups of subjects at .05 (p < .05), but not in overall motivational variables. Additionally, the high proficiency group had a significantly higher level of intrinsic motivation than did the low proficiency group at .05 (p < .05).Keywords: English language proficiency, faculty of management sciences, motivation factors, proficiency subjects
Procedia PDF Downloads 2593822 Development of Pediatric Medical Trauma Stress (PMTS) Among Children at Risk
Authors: Amichai Ben ari, Daniella Margalit
Abstract:
Medical procedures, such as surgery, may have traumatic significance for some children. This study examines the relationship between maltreatment in children and the development Pediatric Medical Traumatic Stress (PMTS). To this end, differences in the level of distress of children after surgery were examined between two groups: children who were maltreated ("children at risk") and children from the control group ("children who are not at risk"). The study involved 230 parents of children who came to the hospital to undergo surgery. Parents filled out demographic questionnaires to measure socioeconomic variables and psychological questionnaires to measure the distress of the child and parent before surgery. After 6 months from the time of surgery, the parents again filled in the questionnaire measuring the child's distress. The results of the study showed that the level of distress experienced by children at risk after surgery was significantly higher relative to children who are not at risk. It was also found that the level of distress experienced by parents of children at risk in relation to their child’s surgery is significantly higher compared to parents of children who are not at risk. Finally, it was found that the variables: (1) pre-morbid psychological functioning of the child. (2) Parental and family functioning in daily life. (3) Exposure of the child to traumatic events. (4) Support factors for the family. Are variables that predict the development of PMTS in children after surgery, but only for children at risk and not for children who are not at risk. The significance of the findings in relation to the need to identify at-risk populations in the hospitals and the policies derived from them were discussed, and several directions were raised for further research.Keywords: children at risk, pediatric medical traumatic stress (PMTS), PTSD, medical procedures
Procedia PDF Downloads 1273821 Predictors of Academic Dishonesty among Serially Frustrated Students in Ogun State, Southwest, Nigeria
Authors: Oyesoji Aremu, Taiwo Williams
Abstract:
This study examined some factors (academic self-efficacy, locus of control, motivation and gender) that could predict academic dishonesty among serially frustrated students in Ogun State, South West, Nigeria. Serial academically frustrated students are students who are unable to attain and meet academic expectations set by themselves or significant others. A sample of 250 undergraduate students selected from two faculties from a University in Ogun State,South West Nigeria took part in the study. Multiple regression analysis was employed to determine the joint and relative contributions of the independent variables to the prediction of the dependent variable. T-test was used to test the hypothesis determining the gender difference between the independent variables (academic self-efficacy, locus of control and motivation) and academic dishonesty of serial academically frustrated male and female students. The results of the study showed all the independent variables jointly contributed to predicting academic dishonesty, while only academic self-efficacy and motivation had relative contributions to the dependent measure. There was no significant difference in the academic self-efficacy and motivation among males and females on academic dishonesty of the serial academically frustrated students but locus of control showed a significant difference between male and female students on academic dishonesty. Implications for counseling of the findings are discussed in the study.Keywords: academic dishonesty, serially frustrated students, academic self-efficacy, locus of control
Procedia PDF Downloads 2513820 Identifying and Quantifying Factors Affecting Traffic Crash Severity under Heterogeneous Traffic Flow
Authors: Praveen Vayalamkuzhi, Veeraragavan Amirthalingam
Abstract:
Studies on safety on highways are becoming the need of the hour as over 400 lives are lost every day in India due to road crashes. In order to evaluate the factors that lead to different levels of crash severity, it is necessary to investigate the level of safety of highways and their relation to crashes. In the present study, an attempt is made to identify the factors that contribute to road crashes and to quantify their effect on the severity of road crashes. The study was carried out on a four-lane divided rural highway in India. The variables considered in the analysis includes components of horizontal alignment of highway, viz., straight or curve section; time of day, driveway density, presence of median; median opening; gradient; operating speed; and annual average daily traffic. These variables were considered after a preliminary analysis. The major complexities in the study are the heterogeneous traffic and the speed variation between different classes of vehicles along the highway. To quantify the impact of each of these factors, statistical analyses were carried out using Logit model and also negative binomial regression. The output from the statistical models proved that the variables viz., horizontal components of the highway alignment; driveway density; time of day; operating speed as well as annual average daily traffic show significant relation with the severity of crashes viz., fatal as well as injury crashes. Further, the annual average daily traffic has significant effect on the severity compared to other variables. The contribution of highway horizontal components on crash severity is also significant. Logit models can predict crashes better than the negative binomial regression models. The results of the study will help the transport planners to look into these aspects at the planning stage itself in the case of highways operated under heterogeneous traffic flow condition.Keywords: geometric design, heterogeneous traffic, road crash, statistical analysis, level of safety
Procedia PDF Downloads 3013819 The Communication Between Visual Aesthetic Criteria of Product with User Experience and Social Sustainability: A Study of Street Furniture
Authors: Hassan Sadeghi Naeini, Mozhgan Sabzehparvar, Mahdiye Jafarnezhad, Neda Brumandi, Mohammad Parsa Sabzehparvar
Abstract:
This study aims to discover the relationship between the factors of aesthetics, user experience, and social sustainability concerning the design of street furniture and the impact of these factors on the emotional arousal of citizens to encourage and make them prefer to use street furniture. The method used in this research included extracting indicators related to each of the factors of aesthetics, user experience, and social sustainability from the articles and then selecting indicators related to the purpose of the research in consultation with industrial design experts and architects. Finally, 9 variables for aesthetics, 7 variables for user experience, and 5 variables for evaluating social sustainability were selected. To identify the effect of each of these factors on street furniture and to recognize their relationship with each other. A 10-scale prioritization questionnaire, from 1, the least amount of importance, to 10, the most amount of importance, was answered by architects and industrial designers on the “Pors Line” online platform for three consecutive weeks, and a total of 82 people answered the questionnaire. The results showed that by using aesthetic factors in the design of street furniture and having a positive impact on users’ experience of using the product, we could expect the occurrence of behavioral factors, such as creating constructive interaction and product acceptance so that the satisfaction of the user in the use of street furniture and optimal interaction in the urban environment is formed, followed by that, the requirements of social sustainability will be met.Keywords: visual aesthetic, user experience, social sustainability, street furniture
Procedia PDF Downloads 953818 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis
Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante
Abstract:
The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.Keywords: dynamic analysis, long short-term memory, prediction, sepsis
Procedia PDF Downloads 1243817 Analysing Time Series for a Forecasting Model to the Dynamics of Aedes Aegypti Population Size
Authors: Flavia Cordeiro, Fabio Silva, Alvaro Eiras, Jose Luiz Acebal
Abstract:
Aedes aegypti is present in the tropical and subtropical regions of the world and is a vector of several diseases such as dengue fever, yellow fever, chikungunya, zika etc. The growth in the number of arboviruses cases in the last decades became a matter of great concern worldwide. Meteorological factors like mean temperature and precipitation are known to influence the infestation by the species through effects on physiology and ecology, altering the fecundity, mortality, lifespan, dispersion behaviour and abundance of the vector. Models able to describe the dynamics of the vector population size should then take into account the meteorological variables. The relationship between meteorological factors and the population dynamics of Ae. aegypti adult females are studied to provide a good set of predictors to model the dynamics of the mosquito population size. The time-series data of capture of adult females of a public health surveillance program from the city of Lavras, MG, Brazil had its association with precipitation, humidity and temperature analysed through a set of statistical methods for time series analysis commonly adopted in Signal Processing, Information Theory and Neuroscience. Cross-correlation, multicollinearity test and whitened cross-correlation were applied to determine in which time lags would occur the influence of meteorological variables on the dynamics of the mosquito abundance. Among the findings, the studied case indicated strong collinearity between humidity and precipitation, and precipitation was selected to form a pair of descriptors together with temperature. In the techniques used, there were observed significant associations between infestation indicators and both temperature and precipitation in short, mid and long terms, evincing that those variables should be considered in entomological models and as public health indicators. A descriptive model used to test the results exhibits a strong correlation to data.Keywords: Aedes aegypti, cross-correlation, multicollinearity, meteorological variables
Procedia PDF Downloads 1783816 Determinants of Non-Performing Loans: An Empirical Investigation of Bank-Specific Micro-Economic Factors
Authors: Amir Ikram, Faisal Ijaz, Qin Su
Abstract:
The empirical study was undertaken to explore the determinants of non-performing loans (NPLs) of small and medium enterprises (SMEs) sector held by the commercial banks. Primary data was collected through well-structured survey questionnaire from credit analysts/bankers of 42 branches of 9 commercial banks, operating in the district of Lahore (Pakistan), for 2014-2015. Selective descriptive analysis and Pearson chi-square technique were used to illustrate and evaluate the significance of different variables affecting NPLs. Branch age, duration of the loan, and credit policy were found to be significant determinants of NPLs. The study proposes that bank-specific and SME-specific microeconomic variables directly influence NPLs, while macroeconomic factors act as intermediary variables. Framework exhibiting causal nexus of NPLs was also drawn on the basis of empirical findings. The results elaborate various origins of NPLs and suggest that they are primarily instigated by the loan sanctioning procedure of the financial institution. The paper also underlines the risk management practices adopted by the bank at branch level to averse the risk of loan default. Empirical investigation of bank-specific microeconomic factors of NPLs with respect to Pakistan’s economy is the novelty of the study. Broader strategic policy implications are provided for credit analysts and entrepreneurs.Keywords: commercial banks, microeconomic factors, non-performing loans, small and medium enterprises
Procedia PDF Downloads 2573815 A Sensor Placement Methodology for Chemical Plants
Authors: Omid Ataei Nia, Karim Salahshoor
Abstract:
In this paper, a new precise and reliable sensor network methodology is introduced for unit processes and operations using the Constriction Coefficient Particle Swarm Optimization (CPSO) method. CPSO is introduced as a new search engine for optimal sensor network design purposes. Furthermore, a Square Root Unscented Kalman Filter (SRUKF) algorithm is employed as a new data reconciliation technique to enhance the stability and accuracy of the filter. The proposed design procedure incorporates precision, cost, observability, reliability together with importance-of-variables (IVs) as a novel measure in Instrumentation Criteria (IC). To the best of our knowledge, no comprehensive approach has yet been proposed in the literature to take into account the importance of variables in the sensor network design procedure. In this paper, specific weight is assigned to each sensor, measuring a process variable in the sensor network to indicate the importance of that variable over the others to cater to the ultimate sensor network application requirements. A set of distinct scenarios has been conducted to evaluate the performance of the proposed methodology in a simulated Continuous Stirred Tank Reactor (CSTR) as a highly nonlinear process plant benchmark. The obtained results reveal the efficacy of the proposed method, leading to significant improvement in accuracy with respect to other alternative sensor network design approaches and securing the definite allocation of sensors to the most important process variables in sensor network design as a novel achievement.Keywords: constriction coefficient PSO, importance of variable, MRMSE, reliability, sensor network design, square root unscented Kalman filter
Procedia PDF Downloads 1583814 A Study of Emotional Intelligence and Perceived Stress among First and Second Year Medical Students in South India
Authors: Nitin Joseph
Abstract:
Objectives: This study was done to assess emotional intelligence levels and to find out its association with socio demographic variables and perceived stress among medical students. Material and Methods: This study was done among first and second year medical students. Data was collected using a self-administered questionnaire. Results: Emotional intelligence scores was found to significantly increase with age of the participants (F=2.377, P < 0.05). Perceived stress was found to be significantly more among first year (t=1.997, P=0.05). Perceived stress was found to significantly decrease with increasing emotional intelligence scores (r = – 0.226, P < 0.001). Conclusion: First year students were found to be more vulnerable to stress than their seniors probably due to lesser emotional intelligence. As both these parameters are related, ample measures to improve emotional intelligence needs to be supported in the training curriculum of beginners so as to make them more stress free during early student life.Keywords: emotional intelligence, medical students, perceived stress, socio demographic variables
Procedia PDF Downloads 4503813 Validity Study of The Zimbardo’s Stanford Time Perspective Inventory in Indonesia Students Context
Authors: Anggi Permana, Zahrah Nabila Putri, Anisa Dwi Arifani, Veany Aprillia
Abstract:
This research aims to evaluate the validity of Zimbardo’s Stanford Time Perspective Inventory (STPI) in Indonesian context. The model of validity used in this study is the criterion-based validity, in which the associated variables are depression and subjective well-being (SWB). BDI (Beck Depression Inventory) was used to measure depression, while PANAS (Positive Affect and Negative Affect Scale) and SWLS (Satisfaction with Life Scale) were used to measure subjective well-being. The analysis showed that STPI variables are closely related to STPI Dimension, Present Hedonistic showed pro validity to SWB, Future indicated contra validity to SWB, and Present Fatalistic revealed contra validity to depression and pro validity to SWB. The subjects of this research are from the same university.Keywords: BDI, PANAS, STPI, subjective well-being, SWLS
Procedia PDF Downloads 2413812 Applying Multivariate and Univariate Analysis of Variance on Socioeconomic, Health, and Security Variables in Jordan
Authors: Faisal G. Khamis, Ghaleb A. El-Refae
Abstract:
Many researchers have studied socioeconomic, health, and security variables in the developed countries; however, very few studies used multivariate analysis in developing countries. The current study contributes to the scarce literature about the determinants of the variance in socioeconomic, health, and security factors. Questions raised were whether the independent variables (IVs) of governorate and year impact the socioeconomic, health, and security dependent variables (DVs) in Jordan, whether the marginal mean of each DV in each governorate and in each year is significant, which governorates are similar in difference means of each DV, and whether these DVs vary. The main objectives were to determine the source of variances in DVs, collectively and separately, testing which governorates are similar and which diverge for each DV. The research design was time series and cross-sectional analysis. The main hypotheses are that IVs affect DVs collectively and separately. Multivariate and univariate analyses of variance were carried out to test these hypotheses. The population of 12 governorates in Jordan and the available data of 15 years (2000–2015) accrued from several Jordanian statistical yearbooks. We investigated the effect of two factors of governorate and year on the four DVs of divorce rate, mortality rate, unemployment percentage, and crime rate. All DVs were transformed to multivariate normal distribution. We calculated descriptive statistics for each DV. Based on the multivariate analysis of variance, we found a significant effect in IVs on DVs with p < .001. Based on the univariate analysis, we found a significant effect of IVs on each DV with p < .001, except the effect of the year factor on unemployment was not significant with p = .642. The grand and marginal means of each DV in each governorate and each year were significant based on a 95% confidence interval. Most governorates are not similar in DVs with p < .001. We concluded that the two factors produce significant effects on DVs, collectively and separately. Based on these findings, the government can distribute its financial and physical resources to governorates more efficiently. By identifying the sources of variance that contribute to the variation in DVs, insights can help inform focused variation prevention efforts.Keywords: ANOVA, crime, divorce, governorate, hypothesis test, Jordan, MANOVA, means, mortality, unemployment, year
Procedia PDF Downloads 2743811 An Investigation of Service Quality in Tourism: An Experience of International Tourists in Bangkok, Thailand
Authors: Sakul Jaariyachamsit, Kevin Wongleedee
Abstract:
The objectives of this research were to study five perceptions of service quality from international tourists who visited Bangkok, Thailand. The independent variables included gender, age, levels of education, occupation, and income while the dependent variables included their opinion on the service provided by employees in Thai tourism. An accidental random sampling method was utilized to get 215 respondents. The respondents were both male and female in the same proportion and most were between 21-40 years old. Most were married and had a graduate degree. The average income of the respondents was between $20,000-40,000. The findings revealed that the majority of respondents came to Thailand for the first time and spent about 6-8 days in Thailand and preferred to travel in small groups with no children. The five service perceptions of employees in tourism by the international tourists in descending order according to mean were reliable employees, neat and clean employees, polite employees, timely employees, and competent employees.Keywords: experience, international tourists, service quality, Thailand
Procedia PDF Downloads 3013810 Loan Portfolio Quality and the Bank Soundness in the Eccas: An Empirical Evaluation of Cameroonians Banks
Authors: Andre Kadandji, Mouhamadou Fall, Francois Koum Ekalle
Abstract:
This paper aims to analyze the sound banking through the effects of the damage of the loan portfolio in the Cameroonian banking sector through the Z-score. The approach is to test the effect of other CAMEL indicators and macroeconomics indicators on the relationship between the non-performing loan and the soundness of Cameroonian banks. We use a dynamic panel data, made by 13 banks for the period 2010-2013. The analysis provides a model equations embedded in panel data. For the estimation, we use the generalized method of moments to understand the effects of macroeconomic and CAMEL type variables on the ability of Cameroonian banks to face a shock. We find that the management quality and macroeconomic variables neutralize the effects of the non-performing loan on the banks soundness.Keywords: loan portfolio, sound banking, Z-score, dynamic panel
Procedia PDF Downloads 2903809 Optimization of Electrocoagulation Process Using Duelist Algorithm
Authors: Totok R. Biyanto, Arif T. Mardianto, M. Farid R. R., Luthfi Machmudi, kandi mulakasti
Abstract:
The main objective of this research is optimizing the electrocoagulation process design as a post-treatment for biologically vinasse effluent process. The first principle model with three independent variables that affect the energy consumption of electrocoagulation process i.e. current density, electrode distance, and time of treatment process are chosen as optimized variables. The process condition parameters were determined with the value of pH, electrical conductivity, and temperature of vinasse about 6.5, 28.5 mS/cm, 52 oC, respectively. Aluminum was chosen as the electrode material of electrocoagulation process. Duelist algorithm was used as optimization technique due to its capability to reach a global optimum. The optimization results show that the optimal process can be reached in the conditions of current density of 2.9976 A/m2, electrode distance of 1.5 cm and electrolysis time of 119 min. The optimized energy consumption during process is 34.02 Wh.Keywords: optimization, vinasse effluent, electrocoagulation, energy consumption
Procedia PDF Downloads 4693808 Scale Prototype to Estimate the Resistance to Lateral Displacement Buried Pipes and submerged in non-Cohesive Soils
Authors: Enrique Castañeda, Tomas Hernadez, Mario Ulloa
Abstract:
Recent studies related to submarine pipelines under high pressure, temperature and buried, forces us to make bibliographical and documentary research to make us of references applicable to our problem. This paper presents an experimental methodology to the implementation of results obtained in a scale model, bibliography soil mechanics and finite element simulation. The model consists of a tank of 0.60 x 0.90 x 0.60 basis equipped high side windows, tires and digital hardware devices for measuring different variables to be applied to the model, where the mechanical properties of the soil are determined, simulation of drag a pipeline buried in a non-cohesive seafloor of the Gulf of Mexico, estimate the failure surface and application of each of the variables for the determination of mechanical elements.Keywords: static friction coefficient, maximum passive force resistant soil, normal, tangential stress
Procedia PDF Downloads 3593807 Study of Storms on the Javits Center Green Roof
Authors: Alexander Cho, Harsho Sanyal, Joseph Cataldo
Abstract:
A quantitative analysis of the different variables on both the South and North green roofs of the Jacob K. Javits Convention Center was taken to find mathematical relationships between net radiation and evapotranspiration (ET), average outside temperature, and the lysimeter weight. Groups of datasets were analyzed, and the relationships were plotted on linear and semi-log graphs to find consistent relationships. Antecedent conditions for each rainstorm were also recorded and plotted against the volumetric water difference within the lysimeter. The first relation was the inverse parabolic relationship between the lysimeter weight and the net radiation and ET. The peaks and valleys of the lysimeter weight corresponded to valleys and peaks in the net radiation and ET respectively, with the 8/22/15 and 1/22/16 datasets showing this trend. The U-shaped and inverse U-shaped plots of the two variables coincided, indicating an inverse relationship between the two variables. Cross variable relationships were examined through graphs with lysimeter weight as the dependent variable on the y-axis. 10 out of 16 of the plots of lysimeter weight vs. outside temperature plots had R² values > 0.9. Antecedent conditions were also recorded for rainstorms, categorized by the amount of precipitation accumulating during the storm. Plotted against the change in the volumetric water weight difference within the lysimeter, a logarithmic regression was found with large R² values. The datasets were compared using the Mann Whitney U-test to see if the datasets were statistically different, using a significance level of 5%; all datasets compared showed a U test statistic value, proving the null hypothesis of the datasets being different from being true.Keywords: green roof, green infrastructure, Javits Center, evapotranspiration, net radiation, lysimeter
Procedia PDF Downloads 1133806 Design, Development and Evaluation of Ketoconazole Loaded Nanosponges in Hydrogel for the Management of Topical Fungal Infections
Authors: Nagasamy Venkatesh Dhandapani
Abstract:
This work aims at investigating the use of β-Cyclodextrin as a cross linker, in an attempt to formulate nanosponges containing ketoconazole. The nanosponges were prepared by cross-linking method. The excipients used in this study did not alter the physicochemical properties of a drug as revealed by FTIR spectroscopy. Studies on various formulation variables revealed that all the variables are inter-related with the formulation. The ideal batch among the formulation was selected based on the higher entrapment efficiency and drug loading. The in vitro release studies of ketoconazole nanosponges in hydrogel exhibited a sustained release over a period of 24 hours. Mathematical analysis of drug release from the formulation followed non-Fickian diffusion obeying first order kinetics. The anti-fungal activity of the formulation exhibited better zone of inhibition when compared to pure drug (ketoconazole) against Tinea corporis.Keywords: nanosponges, beta-cyclodextrin, ketoconazole, tinea corporis
Procedia PDF Downloads 1543805 Assessing the Impact of Climate Change on Pulses Production in Khyber Pakhtunkhwa, Pakistan
Authors: Khuram Nawaz Sadozai, Rizwan Ahmad, Munawar Raza Kazmi, Awais Habib
Abstract:
Climate change and crop production are intrinsically associated with each other. Therefore, this research study is designed to assess the impact of climate change on pulses production in Southern districts of Khyber Pakhtunkhwa (KP) Province of Pakistan. Two pulses (i.e. chickpea and mung bean) were selected for this research study with respect to climate change. Climatic variables such as temperature, humidity and precipitation along with pulses production and area under cultivation of pulses were encompassed as the major variables of this study. Secondary data of climatic variables and crop variables for the period of thirty four years (1986-2020) were obtained from Pakistan Metrological Department and Agriculture Statistics of KP respectively. Panel data set of chickpea and mung bean crops was estimated separately. The analysis validate that both data sets were a balanced panel data. The Hausman specification test was run separately for both the panel data sets whose findings had suggested the fixed effect model can be deemed as an appropriate model for chickpea panel data, however random effect model was appropriate for estimation of the panel data of mung bean. Major findings confirm that maximum temperature is statistically significant for the chickpea yield. This implies if maximum temperature increases by 1 0C, it can enhance the chickpea yield by 0.0463 units. However, the impact of precipitation was reported insignificant. Furthermore, the humidity was statistically significant and has a positive association with chickpea yield. In case of mung bean the minimum temperature was significantly contributing in the yield of mung bean. This study concludes that temperature and humidity can significantly contribute to enhance the pulses yield. It is recommended that capacity building of pulses growers may be made to adapt the climate change strategies. Moreover, government may ensure the availability of climate change resistant varieties of pulses to encourage the pulses cultivation.Keywords: climate change, pulses productivity, agriculture, Pakistan
Procedia PDF Downloads 423804 Governance Models of Higher Education Institutions
Authors: Zoran Barac, Maja Martinovic
Abstract:
Higher Education Institutions (HEIs) are a special kind of organization, with its unique purpose and combination of actors. From the societal point of view, they are central institutions in the society that are involved in the activities of education, research, and innovation. At the same time, their societal function derives complex relationships between involved actors, ranging from students, faculty and administration, business community and corporate partners, government agencies, to the general public. HEIs are also particularly interesting as objects of governance research because of their unique public purpose and combination of stakeholders. Furthermore, they are the special type of institutions from an organizational viewpoint. HEIs are often described as “loosely coupled systems” or “organized anarchies“ that implies the challenging nature of their governance models. Governance models of HEIs describe roles, constellations, and modes of interaction of the involved actors in the process of strategic direction and holistic control of institutions, taking into account each particular context. Many governance models of the HEIs are primarily based on the balance of power among the involved actors. Besides the actors’ power and influence, leadership style and environmental contingency could impact the governance model of an HEI. Analyzing them through the frameworks of institutional and contingency theories, HEI governance models originate as outcomes of their institutional and contingency adaptation. HEIs tend to fit to institutional context comprised of formal and informal institutional rules. By fitting to institutional context, HEIs are converging to each other in terms of their structures, policies, and practices. On the other hand, contingency framework implies that there is no governance model that is suitable for all situations. Consequently, the contingency approach begins with identifying contingency variables that might impact a particular governance model. In order to be effective, the governance model should fit to contingency variables. While the institutional context creates converging forces on HEI governance actors and approaches, contingency variables are the causes of divergence of actors’ behavior and governance models. Finally, an HEI governance model is a balanced adaptation of the HEIs to the institutional context and contingency variables. It also encompasses roles, constellations, and modes of interaction of involved actors influenced by institutional and contingency pressures. Actors’ adaptation to the institutional context brings benefits of legitimacy and resources. On the other hand, the adaptation of the actors’ to the contingency variables brings high performance and effectiveness. HEI governance models outlined and analyzed in this paper are collegial, bureaucratic, entrepreneurial, network, professional, political, anarchical, cybernetic, trustee, stakeholder, and amalgam models.Keywords: governance, governance models, higher education institutions, institutional context, situational context
Procedia PDF Downloads 3353803 Modeling and Statistical Analysis of a Soap Production Mix in Bejoy Manufacturing Industry, Anambra State, Nigeria
Authors: Okolie Chukwulozie Paul, Iwenofu Chinwe Onyedika, Sinebe Jude Ebieladoh, M. C. Nwosu
Abstract:
The research work is based on the statistical analysis of the processing data. The essence is to analyze the data statistically and to generate a design model for the production mix of soap manufacturing products in Bejoy manufacturing company Nkpologwu, Aguata Local Government Area, Anambra state, Nigeria. The statistical analysis shows the statistical analysis and the correlation of the data. T test, Partial correlation and bi-variate correlation were used to understand what the data portrays. The design model developed was used to model the data production yield and the correlation of the variables show that the R2 is 98.7%. However, the results confirm that the data is fit for further analysis and modeling. This was proved by the correlation and the R-squared.Keywords: General Linear Model, correlation, variables, pearson, significance, T-test, soap, production mix and statistic
Procedia PDF Downloads 4433802 Study on the Effect of Weather Variables on the Spider Abundance in Two Ecological Zones of Ogun State, Nigeria
Authors: Odejayi Adedayo Olugbenga, Aina Adebisi
Abstract:
Weather variables (rainfall and temperature) affect the diversity and abundance of both fauna and flora species. This study compared the weather variables with spider abundance in two ecological zones of Ogun State, Nigeria namely Ago-iwoye (Rainforest) in the Ijebu axis and Aiyetoro (Derived Savannah) in the Yewa axis. Seven study sites chosen by Simple Random Sampling in each ecosystem were used for the study. In each sampling area, a 60 m x 120 m land area was marked and sampled, spider collection techniques were; hand picking, use of sweep netting, and Pitfall trap. Adult spiders were identified to the species level. Species richness was estimated by a non-parametric species estimator while the diversity of spider species was assessed by Simpson Diversity Index and Species Richness by One-way Analysis of Variance. Results revealed that spiders were more abundant in rainforest zones than in derived savannah ecosystems. However, the pattern of spider abundance in rainforest zone and residential areas were similar. During high temperatures, the activities of spiders tended to increase according to this study. In contrast, results showed that there was a negative correlation between rainfall and spider species abundance in addition to a negative and weak correlation between rainfall and species richness. It was concluded that heavy downpour has lethal effects on both immature and sometimes matured spiders, which could lead to the extinction of some unknown species of spiders. Tree planting should be encouraged, as this shelters the spider.Keywords: spider, abundance, species richness, species diversity
Procedia PDF Downloads 90