Search results for: unsteady stretching sheet
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 879

Search results for: unsteady stretching sheet

519 Reflection Phase Tuning of Graphene Plasmons by Substrate Design

Authors: Xiaojie Jiang, Wei Cai, Yinxiao Xiang, Ni Zhang, Mengxin Ren, Xinzheng Zhang, Jingjun Xu

Abstract:

Reflection phase of graphene plasmons (GPs) at an abrupt interface is very important, which determines the plasmon resonance of graphene structures of deep sub-wavelength scales. However, at an abrupt graphene edge, the reflection phase is always a constant, ΦR ≈ π/4. In this work, we show that the reflection phase of GPs can be efficiently changed through substrate design. Reflection phase of graphene plasmons (GPs) at an abrupt interface is very important, which determines the plasmon resonance of graphene structures of deep sub-wavelength scales. However, at an abrupt graphene edge, the reflection phase is always a constant, ΦR ≈ π/4. In this work, we show that the reflection phase of GPs can be efficiently changed through substrate design. Specifically, the reflection phase is no longer π/4 at the interface formed by placing a graphene sheet on different substrates. Moreover, tailorable reflection phase of GPs up to 2π variation can be further achieved by scattering GPs at a junction consisting of two such dielectric interfaces with various gap width acting as a Fabry-Perot cavity. Besides, the evolution of plasmon mode in graphene ribbons based on the interface reflection phase tuning is predicted, which is expected to be observed in near-field experiments with scattering-type scanning near-field optical microscopy (s-SNOM). Our work provides another way for in-plane plasmon control, which should find applications for integrated plasmon devices design using graphene.Specifically, the reflection phase is no longer π/4 at the interface formed by placing a graphene sheet on different substrates. Moreover, tailorable reflection phase of GPs up to 2π variation can be further achieved by scattering GPs at a junction consisting of two such dielectric interfaces with various gap width acting as a Fabry-Perot cavity. Besides, the evolution of plasmon mode in graphene ribbons based on the interface reflection phase tuning is predicted, which is expected to be observed in near-field experiments with scattering-type scanning near-field optical microscopy (s-SNOM). Our work provides a new way for in-plane plasmon control, which should find applications for integrated plasmon devices design using graphene.

Keywords: graphene plasmons, reflection phase tuning, plasmon mode tuning, Fabry-Perot cavity

Procedia PDF Downloads 142
518 Conducting Glove Leathers Prepared through in-situ Polymerization of Pyrrole

Authors: Wegene Demisie Jima

Abstract:

Leather is a durable and flexible material used for various purposes including clothing, footwear, upholstery and gloves. However, the use of leather for smart product applications is a challenge since it is electrically insulating material. Here, we report a simple method to produce conducting glove leathers using an in-situ polymerization of pyrrole. The concentrations of pyrrole, ferric chloride and anthraquinone-2-sulfonic acid sodium salt monohydrate were optimized to produce maximum conductivity in the treated leathers. The coating of polypyrrole in the treated leathers was probed using FT-IR, X-ray diffraction and electron microscopic analysis. FTIR confirms that the formation of polypyrrole on the leather surface as well as presence of prominent N-C stretching band. X-ray diffraction analysis suggests para-crystallinity in the PPy-treated leathers.We further demonstrate that the treated leathers, with maximum conductivity of 7.4 S/cm, can be used for making conductive gloves for operating touch-screen devices apart from other smart product applications.

Keywords: electrical conductivity, in-situ polymerization, pyrrole, smart product

Procedia PDF Downloads 179
517 Clinicians' and Nurses' Documentation Practices in Palliative and Hospice Care: A Mixed Methods Study Providing Evidence for Quality Improvement at Mobile Hospice Mbarara, Uganda

Authors: G. Natuhwera, M. Rabwoni, P. Ellis, A. Merriman

Abstract:

Aims: Health workers are likely to document patients’ care inaccurately, especially when using new and revised case tools, and this could negatively impact patient care. This study set out to; (1) assess nurses’ and clinicians’ documentation practices when using a new patients’ continuation case sheet (PCCS) and (2) explore nurses’ and clinicians’ experiences regarding documentation of patients’ information in the new PCCS. The purpose of introducing the PCCS was to improve continuity of care for patients attending clinics at which they were unlikely to see the same clinician or nurse consistently. Methods: This was a mixed methods study. The cross-sectional inquiry retrospectively reviewed 100 case notes of active patients on hospice and palliative care program. Data was collected using a structured questionnaire with constructs formulated from the new PCCS under study. The qualitative element was face-to-face audio-recorded, open-ended interviews with a purposive sample of one palliative care clinician, and four palliative care nurse specialists. Thematic analysis was used. Results: Missing patients’ biogeographic information was prevalent at 5-10%. Spiritual and psychosocial issues were not documented in 42.6%, and vital signs in 49.2%. Poorest documentation practices were observed in past medical history part of the PCCS at 40-63%. Four themes emerged from interviews with clinicians and nurses-; (1) what remains unclear and challenges, (2) comparing the past with the present, (3) experiential thoughts, and (4) transition and adapting to change. Conclusions: The PCCS seems to be a comprehensive and simple tool to be used to document patients’ information at subsequent visits. The comprehensiveness and utility of the PCCS does paper to be limited by the failure to train staff in its use prior to introducing. The authors find the PCCS comprehensive and suitable to capture patients’ information and recommend it can be adopted and used in other palliative and hospice care settings, if suitable introductory training accompanies its introduction. Otherwise, the reliability and validity of patients’ information collected by this PCCS can be significantly reduced if some sections therein are unclear to the clinicians/nurses. The study identified clinicians- and nurses-related pitfalls in documentation of patients’ care. Clinicians and nurses need to prioritize accurate and complete documentation of patient care in the PCCS for quality care provision. This study should be extended to other sites using similar tools to ensure representative and generalizable findings.

Keywords: documentation, information case sheet, palliative care, quality improvement

Procedia PDF Downloads 143
516 The Effects of SMS on the Formal Writings of the Students: A Comparative Study among the Students of Different Departments of IUB

Authors: Sumaira Saleem

Abstract:

This study reveals that the use of SMS effect the formal writing of the students. SMS is in vogue sine the last decade but its detrimental effects are effecting not only to the set norms but also deviant forms of expressions have come into the community to which all are not acquainted and it creates a hurdle in effective communication. It also determines the reasons behind the usage of SMS practices in the formal writings like in assignments and examinations. For this study a questionnaire was designed for faculty and students the data was collected from The Islamia University Bahawalpur and the formal work of the students was also collected to check the manifestation of SMS practices in writings. Data was analysed on excel sheet and the tables and graphs are used to explain the ratios and percentages of SMS usage. The results show that the usage of SMS has very strong effect upon the students writing.

Keywords: technology, writing, effects, SMS

Procedia PDF Downloads 375
515 Electro Magnetic Tractor (E. M. Tractor)

Authors: Sijo Varghese

Abstract:

A space craft (E. M. Tractor) which is intended to deflect or tug the asteroids which possesses threat towards the planets is the whole idea behind this paper. In this case "Electro Magnetic Induction" is used where it is known that when two separate circuits are connected to the electro magnet and on application of electric current through the one circuit in to the coil induces magnetic fields which repels the other circuit.( Faraday's law of Electromagnetic Induction). Basically a Spacecraft is used to attach a large sheet of aluminum on to the surface of the asteroid, the Spacecraft acts as an electro magnet and the induced magnetic field would eventually repel the aluminum intern repelling the asteroid. This method would take less time as compared to use of gravity( which requires a larger spacecraft and process will take a long time).

Keywords: asteroids, electro magnetic induction, gravity, electro magnetic tractor

Procedia PDF Downloads 483
514 Numerical Simulation of Magnetohydrodynamic (MHD) Blood Flow in a Stenosed Artery

Authors: Sreeparna Majee, G. C. Shit

Abstract:

Unsteady blood flow has been numerically investigated through stenosed arteries to achieve an idea about the physiological blood flow pattern in diseased arteries. The blood is treated as Newtonian fluid and the arterial wall is considered to be rigid having deposition of plaque in its lumen. For direct numerical simulation, vorticity-stream function formulation has been adopted to solve the problem using implicit finite difference method by developing well known Peaceman-Rachford Alternating Direction Implicit (ADI) scheme. The effects of magnetic parameter and Reynolds number on velocity and wall shear stress are being studied and presented quantitatively over the entire arterial segment. The streamlines have been plotted to understand the flow pattern in the stenosed artery, which has significant alterations in the downstream of the stenosis in the presence of magnetic field. The results show that there are nominal changes in the flow pattern when magnetic field strength is enhanced upto 8T which can have remarkable usage to MRI machines.

Keywords: magnetohydrodynamics, blood flow, stenosis, energy dissipation

Procedia PDF Downloads 265
513 Investigating Geopolymerization Process of Aluminosilicates and its Impact on the Compressive Strength of the Produced Geopolymers

Authors: Heba Fouad, Tarek M. Madkour, Safwan A. Khedr

Abstract:

This paper investigates multiple factors that impact the formation of geopolymers and their compressive strength to be utilized in construction as an environmentally-friendly material. Bentonite and Kaolinite were thermally calcinated at 750 °C to obtain Metabentonite and Metakaolinite with higher reactivity. Both source materials were activated using a solution of sodium hydroxide (NaOH). Thereafter, samples were cured at different temperatures. The samples were analyzed chemically using a host of spectroscopic techniques. The bulk density and compressive strength of the produced Geopolymer pastes were studied. Findings indicate that the ratio of NaOH solution to source material affects the compressive strength, being optimal at 0.54. Moreover, controlled heat curing was proven effective to improve compressive strength. The existence of characteristic Fourier Transform Infrared Spectroscopy (FTIR) peaks at approximately 1020 cm-1 and 460 cm-1 which corresponds to the asymmetric stretching vibration of Si-O-T and bending vibration of Si-O-Si, hence, confirming the formation of the target geopolymer.

Keywords: calcination of metakaolinite, compressive strength, FTIR analysis, geopolymer, green cement

Procedia PDF Downloads 157
512 Unsteady Numerical Analysis of Sediment Erosion Affected High Head Francis Turbine

Authors: Saroj Gautam, Ram Lama, Hari Prasad Neopane, Sailesh Chitrakar, Biraj Singh Thapa, Baoshan Zhu

Abstract:

Sediment flowing along with the water in rivers flowing in South Asia erodes the turbine components. The erosion of turbine components is influenced by the nature of fluid flow along with components of typical turbine types. This paper examines two cases of high head Francis turbines with the same speed number numerically. The numerical investigation involves both steady-state and transient analysis of the numerical model developed for both cases. Furthermore, the influence of leakage flow from the clearance gap of guide vanes is also examined and compared with no leakage flow. It presents the added pressure pulsation to rotor-stator-interaction in the turbine runner for both cases due to leakage flow. It was also found that leakage flow was a major contributor to the sediment erosion in those turbines.

Keywords: sediment erosion, Francis turbine, leakage flow, rotor stator interaction

Procedia PDF Downloads 177
511 Optimal Design of Shape for Increasing the Bonding Pressure Drawing of Hot Clad Pipes by Finite Element Method Analysis

Authors: Seok-Hyeon Park, Joon-Hong Park, Mok-Tan-Ahn, Seong-Hun Ha

Abstract:

Clad Pipe is made of a different kind of material, which is different from the internal and external materials, for the corrosive crude oil transportation tube. Most of the clad pipes are produced by hot rolling. However, problems arise due to high product prices and excessive process numbers. Therefore, in this study, the hot drawing process with excellent product cost, process number and productivity is applied. Due to the nature of the drawing process, the shape of the mold greatly influences the formability of the material and the bonding pressure of the two materials because it is a process of drawing the material to the die and reducing the cross-sectional area. Also, in case of hot drawing, if the mold shape is not suitable due to the increased fluidity of the material, it may cause problems such as tearing and stretching. Therefore, in this study, we try to find the shape of the mold which suppresses the occurrence of defects in the hot drawing process and maximizes the bonding pressure between the two materials through the mold shape optimization design by FEM analysis.

Keywords: clad pipe, hot drawing, bonding pressure, mold shape

Procedia PDF Downloads 294
510 Comparative Study of Two New Configurations of Solar Photovoltaic Thermal Collectors

Authors: K. Touafek, A. Khelifa, E. H. Khettaf, A. Embarek

Abstract:

Hybrid photovoltaic thermal (PV/T) solar system comprises a solar collector which is disposed on photovoltaic solar cells. The disadvantage of a conventional photovoltaic cell is that its performance decreases as the temperature increases. Indeed, part of the solar radiation is converted into electricity and is dissipated as heat, increasing the temperature of the photovoltaic cell with respect to the ambient temperature. The objective of this work is to study experimentally and implement a hybrid prototype to evaluate electrical and thermal performance. In this paper, an experimental study of two new configurations of hybrid collectors is exposed. The results are given and interpreted. The two configurations of absorber studied are a new combination with tubes and galvanized tank, the other is a tubes and sheet.

Keywords: experimental, photovoltaic, solar, temperature

Procedia PDF Downloads 481
509 Mineralogical Characterization and Petrographic Classification of the Soil of Casablanca City

Authors: I. Fahi, T. Remmal, F. El Kamel, B. Ayoub

Abstract:

The treatment of the geotechnical database of the region of Casablanca was difficult to achieve due to the heterogeneity of the nomenclature of the lithological formations composing its soil. It appears necessary to harmonize the nomenclature of the facies and to produce cartographic documents useful for construction projects and studies before any investment program. To achieve this, more than 600 surveys made by the Public Laboratory for Testing and Studies (LPEE) in the agglomeration of Casablanca, were studied. Moreover, some local observations were made in different places of the metropolis. Each survey was the subject of a sheet containing lithological succession, macro and microscopic description of petrographic facies with photographic illustration, as well as measurements of geomechanical tests. In addition, an X-ray diffraction analysis was made in order to characterize the surficial formations of the region.

Keywords: Casablanca, guidebook, petrography, soil

Procedia PDF Downloads 290
508 Unsteady Simulation of Burning Off Carbon Deposition in a Coke Oven

Authors: Uzu-Kuei Hsu, Keh-Chin Chang, Joo-Guan Hang, Chang-Hsien Tai

Abstract:

Carbon Deposits are often occurred inside the industrial coke oven during the coking process. Accumulation of carbon deposits may cause a big issue, which seriously influences the coking operation. The carbon is burning off by injecting fresh air through pipes into coke oven which is an efficient way practically operated in industries. The burning off carbon deposition in coke oven performed by Computational Fluid Dynamics (CFD) method has provided an evaluation of the feasibility study. A three-dimensional, transient, turbulent reacting flow simulation has performed with three different injecting air flow rate and another kind of injecting configuration. The result shows that injection higher air flow rate would effectively reduce the carbon deposits. In the meantime, the opened charging holes would suck extra oxygen from the atmosphere to participate in reactions. In term of coke oven operating limits, the wall temperatures are monitored to prevent over-heating of the adiabatic walls during the burn-off process.

Keywords: coke oven, burning off, carbon deposits, carbon combustion, CFD

Procedia PDF Downloads 684
507 Empirical Study of Running Correlations in Exam Marks: Same Statistical Pattern as Chance

Authors: Weisi Guo

Abstract:

It is well established that there may be running correlations in sequential exam marks due to students sitting in the order of course registration patterns. As such, a random and non-sequential sampling of exam marks is a standard recommended practice. Here, the paper examines a large number of exam data stretching several years across different modules to see the degree to which it is true. Using the real mark distribution as a generative process, it was found that random simulated data had no more sequential randomness than the real data. That is to say, the running correlations that one often observes are statistically identical to chance. Digging deeper, it was found that some high running correlations have students that indeed share a common course history and make similar mistakes. However, at the statistical scale of a module question, the combined effect is statistically similar to the random shuffling of papers. As such, there may not be the need to take random samples for marks, but it still remains good practice to mark papers in a random sequence to reduce the repetitive marking bias and errors.

Keywords: data analysis, empirical study, exams, marking

Procedia PDF Downloads 177
506 3D Numerical Studies on External Aerodynamics of a Flying Car

Authors: Sasitharan Ambicapathy, J. Vignesh, P. Sivaraj, Godfrey Derek Sams, K. Sabarinath, V. R. Sanal Kumar

Abstract:

The external flow simulation of a flying car at take off phase is a daunting task owing to the fact that the prediction of the transient unsteady flow features during its deployment phase is very complex. In this paper 3D numerical simulations of external flow of Ferrari F430 proposed flying car with different NACA 9618 rectangular wings have been carried. Additionally, the aerodynamics characteristics have been generated for optimizing its geometry for achieving the minimum take off velocity with better overall performance in both road and air. The three-dimensional standard k-omega turbulence model has been used for capturing the intrinsic flow physics during the take off phase. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations is employed. Through the detailed parametric analytical studies we have conjectured that Ferrari F430 flying car facilitated with high wings having three different deployment histories during the take off phase is the best choice for accomplishing its better performance for the commercial applications.

Keywords: aerodynamics of flying car, air taxi, negative lift, roadable airplane

Procedia PDF Downloads 416
505 Renal Amyloidosis in Domestic Iranian Sheep

Authors: Keivan Jamshidi, Fateme Behbahani, Sara Omidi, Nadia Shahi, Alireza Farkhonde

Abstract:

Amyloidosis represents a heterogenous group of diseases that have in common the deposition of fibrils composed of proteins of beta-pleated sheet structure, which can be specifically identified by histochemistry using the Congo red or similar stains. Between October 2013 to April 2014 (6 months) different patterns of renal amyloidosis was diagnosed on histopathological examination of kidneys belong to 196 out of 7065 slaughtered sheep subjected to postmortem examination. Microscopic examination of renal tissue sections stained with H&E and CR staining techniques revealed 3 patterns of renal amyloid deposition; including glomerular (22.72%), medullary (68.18%), and vascular (9.09%) were recognized. Renal medullary amyloidosis (RMA) was detected as the most prevalence pattern of renal amyloidosis in domestic sheep.

Keywords: sheep, amyloidosis, kidney, slaughterhouse

Procedia PDF Downloads 364
504 Comparative Study of Different Enhancement Techniques for Computed Tomography Images

Authors: C. G. Jinimole, A. Harsha

Abstract:

One of the key problems facing in the analysis of Computed Tomography (CT) images is the poor contrast of the images. Image enhancement can be used to improve the visual clarity and quality of the images or to provide a better transformation representation for further processing. Contrast enhancement of images is one of the acceptable methods used for image enhancement in various applications in the medical field. This will be helpful to visualize and extract details of brain infarctions, tumors, and cancers from the CT image. This paper presents a comparison study of five contrast enhancement techniques suitable for the contrast enhancement of CT images. The types of techniques include Power Law Transformation, Logarithmic Transformation, Histogram Equalization, Contrast Stretching, and Laplacian Transformation. All these techniques are compared with each other to find out which enhancement provides better contrast of CT image. For the comparison of the techniques, the parameters Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) are used. Logarithmic Transformation provided the clearer and best quality image compared to all other techniques studied and has got the highest value of PSNR. Comparison concludes with better approach for its future research especially for mapping abnormalities from CT images resulting from Brain Injuries.

Keywords: computed tomography, enhancement techniques, increasing contrast, PSNR and MSE

Procedia PDF Downloads 303
503 Mechanical and Material Characterization on the High Nitrogen Supersaturated Tool Steels for Die-Technology

Authors: Tatsuhiko Aizawa, Hiroshi Morita

Abstract:

The tool steels such as SKD11 and SKH51 have been utilized as punch and die substrates for cold stamping, forging, and fine blanking processes. The heat-treated SKD11 punches with the hardness of 700 HV wrought well in the stamping of SPCC, normal steel plates, and non-ferrous alloy such as a brass sheet. However, they suffered from severe damage in the fine blanking process of smaller holes than 1.5 mm in diameter. Under the high aspect ratio of punch length to diameter, an elastoplastic bucking of slender punches occurred on the production line. The heat-treated punches had a risk of chipping at their edges. To be free from those damages, the blanking punch must have sufficient rigidity and strength at the same time. In the present paper, the small-hole blanking punch with a dual toughness structure was proposed to provide a solution to this engineering issue in production. The low-temperature plasma nitriding process was utilized to form the nitrogen supersaturated thick layer into the original SKD11 punch. Through the plasma nitriding at 673 K for 14.4 ks, the nitrogen supersaturated layer, with the thickness of 50 μm and without nitride precipitates, was formed as a high nitrogen steel (HNS) layer surrounding the original SKD11 punch. In this two-zone structured SKD11 punch, the surface hardness increased from 700 HV for the heat-treated SKD11 to 1400 HV. This outer high nitrogen SKD11 (HN-SKD11) layer had a homogeneous nitrogen solute depth profile with a nitrogen solute content plateau of 4 mass% till the border between the outer HN-SKD11 layer and the original SKD11 matrix. When stamping the brass sheet with the thickness of 1 mm by using this dually toughened SKD11 punch, the punch life was extended from 500 K shots to 10000 K shots to attain a much more stable production line to yield the brass American snaps. Furthermore, with the aid of the masking technique, the punch side surface layer with the thickness of 50 μm was modified by this high nitrogen super-saturation process to have a stripe structure where the un-nitrided SKD11 and the HN-SKD11 layers were alternatively aligned from the punch head to the punch bottom. This flexible structuring promoted the mechanical integrity of total rigidity and toughness as a punch with an extremely small diameter.

Keywords: high nitrogen supersaturation, semi-dry cold stamping, solid solution hardening, tool steel dies, low temperature nitriding, dual toughness structure, extremely small diameter punch

Procedia PDF Downloads 85
502 Aerodynamic Bicycle Torque Augmentation with a Wells Turbine in Wheels

Authors: Tsuyoshi Yamazaki, Etsuo Morishita

Abstract:

Cyclists often run through a crosswind and sometimes we experience the adverse pressure. We came to an idea that Wells turbine can be used as power augmentation device in the crosswind something like sails of a yacht. Wells turbine always rotates in the same direction irrespective of the incoming flow direction, and we use it in the small-scale power generation in the ocean where waves create an oscillating flow. We incorporate the turbine to the wheel of a bike. A commercial device integrates strain gauges in the crank of a bike and transmitted force and torque applied to the pedal of the bike as an e-mail to the driver’s mobile phone. We can analyze the unsteady data in a spreadsheet sent from the crank sensor. We run the bike with the crank sensor on the rollers at the exit of a low-speed wind tunnel and analyze the effect of the crosswind to the wheel with a Wells turbine. We also test the aerodynamic characteristics of the turbine separately. Although power gain depends on the flow direction, several Watts increase might be possible by the Wells turbine incorporated to a bike wheel.

Keywords: aerodynamics, Wells turbine, bicycle, wind engineering

Procedia PDF Downloads 176
501 Prediction of Unsteady Heat Transfer over Square Cylinder in the Presence of Nanofluid by Using ANN

Authors: Ajoy Kumar Das, Prasenjit Dey

Abstract:

Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nano particles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.

Keywords: forced convection, square cylinder, nanofluid, neural network

Procedia PDF Downloads 314
500 The Free Vibration Analysis of Honeycomb Sandwich Beam using 3D and Continuum Model

Authors: Gürkan Şakar, Fevzi Çakmak Bolat

Abstract:

In this study free vibration analysis of aluminum honeycomb sandwich structures were carried out experimentally and numerically. The natural frequencies and mode shapes of sandwich structures fabricated with different configurations for clamped-free boundary condition were determined. The effects of lower and upper face sheet thickness, the core material thickness, cell diameter, cell angle and foil thickness on the vibration characteristics were examined. The numerical studies were performed with ANSYS package. While the sandwich structures were modeled in ANSYS the continuum model was used. Later, the numerical results were compared with the experimental findings.

Keywords: sandwich structure, free vibration, numeric analysis, 3D model, continuum model

Procedia PDF Downloads 410
499 A Balance Sheet On The Value Of Aid Funding And Delivery: Ingo To Ngo Pathways In Nigeria

Authors: Glory Okereke

Abstract:

Several research on the value of aid funding and delivery have emphasized the importance of partnership and accountability in implementing development projects between INGOs and NGOs. Despite challenges in accessing detailed information on their impact due to the extension of information they are willing to provide, this pathway has been seen as an alternative approach and more beneficial than aid funding and delivery through the state. This paper tends to analyze this relationship using liberal and international relations theories to understand the positive and negative aspects of INGO to NGO pathway as a better alternative to economic development. Looking through a broad spectrum of economic development, the paper focuses on Nigeria and analyzes existing empirical literature of INGOs with local NGOs with a comparative analysis of bilateral aid relations with the Nigerian government.

Keywords: NGOS, development, Nigeria, liberal theories, aid

Procedia PDF Downloads 28
498 Development of Low Noise Savonius Wind Turbines

Authors: Sanghyeon Kim, Cheolung Cheong

Abstract:

Savonius wind turbines are a drag-type of vertical-axis wind turbine that has been used most commonly as a small-scale wind generator. However, noise is a main hindrance to wide spreading of Savonius wind turbines, just like other wind turbines. Although noise levels radiating from Savonius wind turbines may be relatively low because of their small size, they induce relatively high annoyance due to their prolonged noise exposure to the near community. Therefore, aerodynamic noise of small vertical-axis wind turbines is one of most important design parameters. In this paper, aerodynamic noise characteristics of Savonius wind turbines are investigated using the hybrid CAA techniques, and their low noise designs are proposed based on understanding of noise generation mechanism. First, flow field around the turbine are analyzed by solving 3-D unsteady incompressible RANS equations. Then, noise radiation is predicted using the Ffowcs Williams and Hawkings equation. Two distinct harmonic noise components, the well-know BPF components and the harmonics whose fundamental frequency is much higher than the BPF are identified. On a basis of this finding, S-shaped blades are proposed as low noise designs and it can reduce the noise levels of Savonius wind turbines by up to 2.7 dB.

Keywords: aerodynamic noise, Savonius wind turbine, vertical-axis wind turbine

Procedia PDF Downloads 452
497 Heat Transfer Enhancement by Localized Time Varying Thermal Perturbations at Hot and Cold Walls in a Rectangular Differentially Heated Cavity

Authors: Nicolas Thiers, Romain Gers, Olivier Skurtys

Abstract:

In this work, we study numerically the effect of a thermal perturbation on the heat transfer in a rectangular differentially heated cavity of aspect ratio 4, filled by air. In order to maintain the center symmetry, the thermal perturbation is imposed by a square wave at both active walls, at the same relative position of the hot or cold boundary layers. The influences of the amplitude and the vertical location of the perturbation are investigated. The air flow is calculated solving the unsteady Boussinesq-Navier-Stokes equations using the PN - PN-2 Spectral Element Method (SEM) programmed in the Nek5000 opencode, at RaH= 9x107, just before the first bifurcation which leads to periodical flow. The results show that the perturbation has a major impact for the highest amplitude, and at about three quarters of the cavity height, upstream, in both hot and cold boundary layers.

Keywords: direct numerical simulation, heat transfer enhancement, localized thermal perturbations, natural convection, rectangular differentially-heated cavity

Procedia PDF Downloads 137
496 Transient Free Laminar Convection in the Vicinity of a Thermal Conductive Vertical Plate

Authors: Anna Bykalyuk, Frédéric Kuznik, Kévyn Johannes

Abstract:

In this paper, the influence of a vertical plate’s thermal capacity is numerically investigated in order to evaluate the evolution of the thermal boundary layer structure, as well as the convective heat transfer coefficient and the velocity and temperature profiles. Whereas the heat flux of the heated vertical plate is evaluated under time depending boundary conditions. The main important feature of this problem is the unsteadiness of the physical phenomena. A 2D CFD model is developed with the Ansys Fluent 14.0 environment and is validated using unsteady data obtained for plasterboard studied under a dynamic temperature evolution. All the phenomena produced in the vicinity of the thermal conductive vertical plate (plasterboard) are analyzed and discussed. This work is the first stage of a holistic research on transient free convection that aims, in the future, to study the natural convection in the vicinity of a vertical plate containing Phase Change Materials (PCM).

Keywords: CFD modeling, natural convection, thermal conductive plate, time-depending boundary conditions

Procedia PDF Downloads 271
495 Physico-Chemical Properties of Silurian Hot Shale in Ahnet Basin, Algeria: Case Study Well ASS-1

Authors: Mohamed Mehdi Kadri

Abstract:

The prediction of hot shale interval in Silurian formation in a well drilled vertically in Ahnet basin Is by logging Data (Resistivity, Gamma Ray, Sonic) with the calculation of total organic carbon (TOC) using ∆ log R Method. The aim of this paper is to present Physico-chemical Properties of Hot Shale using IR spectroscopy and gas chromatography-mass spectrometry analysis; this mixture of measurements, evaluation and characterization show that the hot shale interval located in the lower of Silurian, the molecules adsorbed at the surface of shale sheet are significantly different from petroleum hydrocarbons this result are also supported with gas-liquid chromatography showed that the study extract is a hydroxypropyl.

Keywords: physic-chemical analysis, reservoirs characterization, sweet window evaluation, Silurian shale, Ahnet basin

Procedia PDF Downloads 94
494 The Incompressible Preference of Turbulence

Authors: Samuel David Dunstan

Abstract:

An elementary observation of a laminar cylindrical Poiseulle-Couette flow profile reveals no distinction in the parabolic streamwise profile from one without a cross-stream flow in whatever reference frame the observation is made. This is because the laminar flow is in solid-body rotation, and there is no intrinsic fluid rotation. Hence the main streamwise Poiseuille flow is unaffected. However, in turbulent (unsteady) cylindrical Poiseuille-Couette flow, the rotational reference frame must be considered, and any observation from an external inertial reference frame can give outright incorrect results. A common misconception in the study of fluid mechanics is the position of the observer does not matter. In this DNS (direct numerical simulation) study, firstly, turbulent flow in a pipe with axial rotation is established. Then in turbulent flow in the concentric pipe, with inner wall rotation, it is shown how the wall streak direction is oriented by the rotational reference frame. The Coriolis force here is not so fictitious after all!

Keywords: concentric pipe, rotational and inertial frames, frame invariance, wall streaks, flow orientation

Procedia PDF Downloads 84
493 Numerical Simulation of Convective Flow of Nanofluids with an Oriented Magnetic Field in a Half Circular-Annulus

Authors: M. J. Uddin, M. M. Rahman

Abstract:

The unsteady convective heat transfer flow of nanofluids in a half circular-annulus shape enclosure using nonhomogeneous dynamic model has been investigated numerically. The round upper wall of the enclosure is maintained at constant low temperature whereas the bottom wall is heated by three different thermal conditions. The enclosure is permeated by a uniform magnetic field having variable orientation. The Brownian motion and thermophoretic phenomena of the nanoparticles are taken into account in model construction. The governing nonlinear momentum, energy, and concentration equations are solved numerically using Galerkin weighted residual finite element method. To discover the best performer, the average Nusselt number is demonstrated for different types of nanofluids. The heat transfer rate for different flow parameters, positions of the annulus, thicknesses of the half circular-annulus and thermal conditions is also exhibited.

Keywords: nanofluid, convection, semicircular-annulus, nonhomogeneous dynamic model, finite element method

Procedia PDF Downloads 218
492 Structural Evaluation of Cell-Filled Pavement

Authors: Subrat Roy

Abstract:

This paper describes the findings of a study carried out for evaluating the performance of cell-filled pavement for low volume roads. Details of laboratory investigations and the methodology adopted for construction of cell-filled pavement are presented. The aim of this study is to evaluate the structural behaviour of cement concrete filled cell pavement laid over three different types of subbases (water bound macadam, soil-cement and moorum). A formwork of cells of a thin plastic sheet was used to construct the cell-filled pavements to form flexible, interlocked block pavements. Surface deflections were measured using falling weight deflectometer and benkelman beam methods. Resilient moduli of pavement layers were estimated from the measured deflections. A comparison of deflections obtained from both the methodology is also presented.

Keywords: cell-filled pavement, WBM, FWD, Moorum

Procedia PDF Downloads 293
491 Folding of β-Structures via the Polarized Structure-Specific Backbone Charge (PSBC) Model

Authors: Yew Mun Yip, Dawei Zhang

Abstract:

Proteins are the biological machinery that executes specific vital functions in every cell of the human body by folding into their 3D structures. When a protein misfolds from its native structure, the machinery will malfunction and lead to misfolding diseases. Although in vitro experiments are able to conclude that the mutations of the amino acid sequence lead to incorrectly folded protein structures, these experiments are unable to decipher the folding process. Therefore, molecular dynamic (MD) simulations are employed to simulate the folding process so that our improved understanding of the folding process will enable us to contemplate better treatments for misfolding diseases. MD simulations make use of force fields to simulate the folding process of peptides. Secondary structures are formed via the hydrogen bonds formed between the backbone atoms (C, O, N, H). It is important that the hydrogen bond energy computed during the MD simulation is accurate in order to direct the folding process to the native structure. Since the atoms involved in a hydrogen bond possess very dissimilar electronegativities, the more electronegative atom will attract greater electron density from the less electronegative atom towards itself. This is known as the polarization effect. Since the polarization effect changes the electron density of the two atoms in close proximity, the atomic charges of the two atoms should also vary based on the strength of the polarization effect. However, the fixed atomic charge scheme in force fields does not account for the polarization effect. In this study, we introduce the polarized structure-specific backbone charge (PSBC) model. The PSBC model accounts for the polarization effect in MD simulation by updating the atomic charges of the backbone hydrogen bond atoms according to equations derived between the amount of charge transferred to the atom and the length of the hydrogen bond, which are calculated from quantum-mechanical calculations. Compared to other polarizable models, the PSBC model does not require quantum-mechanical calculations of the peptide simulated at every time-step of the simulation and maintains the dynamic update of atomic charges, thereby reducing the computational cost and time while accounting for the polarization effect dynamically at the same time. The PSBC model is applied to two different β-peptides, namely the Beta3s/GS peptide, a de novo designed three-stranded β-sheet whose structure is folded in vitro and studied by NMR, and the trpzip peptides, a double-stranded β-sheet where a correlation is found between the type of amino acids that constitute the β-turn and the β-propensity.

Keywords: hydrogen bond, polarization effect, protein folding, PSBC

Procedia PDF Downloads 261
490 Assessment of Solid Insulating Material Using Partial Discharge Characteristics

Authors: Qasim Khan, Furkan Ahmad, Asfar A. Khan, M. Saad Alam, Faiz Ahmad

Abstract:

In this paper, partial discharge analysis is performed in cavities artificially created in insulation. The setup is according with Cigre-II Method. Circular Samples created from Perspex Sheet with different configuration with changing number of cavities. Assessment of insulation health can be performed by Partial Discharge measurement as this has been found to be important means of condition monitoring. The experiments are done using MPD 540, which is a modern partial discharge measurement system. By analyzing the PD activity obtained for various voids/cavities, it is observed that the PD voltages show variation for cavity’s diameter, depth even for its ratios. This can be employed for scrutiny of insulation system.

Keywords: partial discharges, condition monitoring, insulation defects, degradation and corrosion, PMMA

Procedia PDF Downloads 506