Search results for: the image of God
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2767

Search results for: the image of God

2407 A Robust Hybrid Blind Digital Image Watermarking System Using Discrete Wavelet Transform and Contourlet Transform

Authors: Nidal F. Shilbayeh, Belal AbuHaija, Zainab N. Al-Qudsy

Abstract:

In this paper, a hybrid blind digital watermarking system using Discrete Wavelet Transform (DWT) and Contourlet Transform (CT) has been implemented and tested. The implemented combined digital watermarking system has been tested against five common types of image attacks. The performance evaluation shows improved results in terms of imperceptibility, robustness, and high tolerance against these attacks; accordingly, the system is very effective and applicable.

Keywords: discrete wavelet transform (DWT), contourlet transform (CT), digital image watermarking, copyright protection, geometric attack

Procedia PDF Downloads 394
2406 TACTICAL: Ram Image Retrieval in Linux Using Protected Mode Architecture’s Paging Technique

Authors: Sedat Aktas, Egemen Ulusoy, Remzi Yildirim

Abstract:

This article explains how to get a ram image from a computer with a Linux operating system and what steps should be followed while getting it. What we mean by taking a ram image is the process of dumping the physical memory instantly and writing it to a file. This process can be likened to taking a picture of everything in the computer’s memory at that moment. This process is very important for tools that analyze ram images. Volatility can be given as an example because before these tools can analyze ram, images must be taken. These tools are used extensively in the forensic world. Forensic, on the other hand, is a set of processes for digitally examining the information on any computer or server on behalf of official authorities. In this article, the protected mode architecture in the Linux operating system is examined, and the way to save the image sample of the kernel driver and system memory to disk is followed. Tables and access methods to be used in the operating system are examined based on the basic architecture of the operating system, and the most appropriate methods and application methods are transferred to the article. Since there is no article directly related to this study on Linux in the literature, it is aimed to contribute to the literature with this study on obtaining ram images. LIME can be mentioned as a similar tool, but there is no explanation about the memory dumping method of this tool. Considering the frequency of use of these tools, the contribution of the study in the field of forensic medicine has been the main motivation of the study due to the intense studies on ram image in the field of forensics.

Keywords: linux, paging, addressing, ram-image, memory dumping, kernel modules, forensic

Procedia PDF Downloads 117
2405 The Relationship of the Marketing Mix, Brand Image and Consumer Behavior of the Low-Cost Airline Service

Authors: Bundit Pungnirund

Abstract:

This research aimed to investigate the relationship between attitude towards marketing mix, brand image and consumer behavior of the passengers of low-cost airlines service. This study employed by quantitative research and the questionnaire was used to collect the data from 400 sampled of the passengers who have ever used the low-cost airline services based in Bangkok, Thailand. The descriptive statistics and Pearson’s correlation analysis were used to analyze data. The research results revealed that the attitude of the marketing mix of the low-cost airline services including product, price, place, promotion and process had related to the consumer behavior on the aspects of duration of service and frequency of service. While, the brand image of the low cost airline including the characteristics of organization, service quality and company identity had related to the consumer behavior on duration of service, frequency of service and cost of service at the significant statistically acceptable levels.

Keywords: brand image, consumer behavior, low-cost airline, marketing mix

Procedia PDF Downloads 315
2404 Secure Image Encryption via Enhanced Fractional Order Chaotic Map

Authors: Ismail Haddad, Djamel Herbadji, Aissa Belmeguenai, Selma Boumerdassi

Abstract:

in this paper, we provide a novel approach for image encryption that employs the Fibonacci matrix and an enhanced fractional order chaotic map. The enhanced map overcomes the drawbacks of the classical map, especially the limited chaotic range and non-uniform distribution of chaotic sequences, resulting in a larger encryption key space. As a result, this strategy improves the encryption system's security. Our experimental results demonstrate that our proposed algorithm effectively encrypts grayscale images with exceptional efficiency. Furthermore, our technique is resistant to a wide range of potential attacks, including statistical and entropy attacks.

Keywords: image encryption, logistic map, fibonacci matrix, grayscale images

Procedia PDF Downloads 318
2403 Automatic Music Score Recognition System Using Digital Image Processing

Authors: Yuan-Hsiang Chang, Zhong-Xian Peng, Li-Der Jeng

Abstract:

Music has always been an integral part of human’s daily lives. But, for the most people, reading musical score and turning it into melody is not easy. This study aims to develop an Automatic music score recognition system using digital image processing, which can be used to read and analyze musical score images automatically. The technical approaches included: (1) staff region segmentation; (2) image preprocessing; (3) note recognition; and (4) accidental and rest recognition. Digital image processing techniques (e.g., horizontal /vertical projections, connected component labeling, morphological processing, template matching, etc.) were applied according to musical notes, accidents, and rests in staff notations. Preliminary results showed that our system could achieve detection and recognition rates of 96.3% and 91.7%, respectively. In conclusion, we presented an effective automated musical score recognition system that could be integrated in a system with a media player to play music/songs given input images of musical score. Ultimately, this system could also be incorporated in applications for mobile devices as a learning tool, such that a music player could learn to play music/songs.

Keywords: connected component labeling, image processing, morphological processing, optical musical recognition

Procedia PDF Downloads 419
2402 GPU Based High Speed Error Protection for Watermarked Medical Image Transmission

Authors: Md Shohidul Islam, Jongmyon Kim, Ui-pil Chong

Abstract:

Medical image is an integral part of e-health care and e-diagnosis system. Medical image watermarking is widely used to protect patients’ information from malicious alteration and manipulation. The watermarked medical images are transmitted over the internet among patients, primary and referred physicians. The images are highly prone to corruption in the wireless transmission medium due to various noises, deflection, and refractions. Distortion in the received images leads to faulty watermark detection and inappropriate disease diagnosis. To address the issue, this paper utilizes error correction code (ECC) with (8, 4) Hamming code in an existing watermarking system. In addition, we implement the high complex ECC on a graphics processing units (GPU) to accelerate and support real-time requirement. Experimental results show that GPU achieves considerable speedup over the sequential CPU implementation, while maintaining 100% ECC efficiency.

Keywords: medical image watermarking, e-health system, error correction, Hamming code, GPU

Procedia PDF Downloads 290
2401 Determining Water Quantity from Sprayer Nozzle Using Particle Image Velocimetry (PIV) and Image Processing Techniques

Authors: M. Nadeem, Y. K. Chang, C. Diallo, U. Venkatadri, P. Havard, T. Nguyen-Quang

Abstract:

Uniform distribution of agro-chemicals is highly important because there is a significant loss of agro-chemicals, for example from pesticide, during spraying due to non-uniformity of droplet and off-target drift. Improving the efficiency of spray pattern for different cropping systems would reduce energy, costs and to minimize environmental pollution. In this paper, we examine the water jet patterns in order to study the performance and uniformity of water distribution during the spraying process. We present a method to quantify the water amount from a sprayer jet by using the Particle Image Velocimetry (PIV) system. The results of the study will be used to optimize sprayer or nozzles design for chemical application. For this study, ten sets of images were acquired by using the following PIV system settings: double frame mode, trigger rate is 4 Hz, and time between pulsed signals is 500 µs. Each set of images contained different numbers of double-framed images: 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 at eight different pressures 25, 50, 75, 100, 125, 150, 175 and 200 kPa. The PIV images obtained were analysed using custom-made image processing software for droplets and volume calculations. The results showed good agreement of both manual and PIV measurements and suggested that the PIV technique coupled with image processing can be used for a precise quantification of flow through nozzles. The results also revealed that the method of measuring fluid flow through PIV is reliable and accurate for sprayer patterns.

Keywords: image processing, PIV, quantifying the water volume from nozzle, spraying pattern

Procedia PDF Downloads 237
2400 A Comparison between Underwater Image Enhancement Techniques

Authors: Ouafa Benaida, Abdelhamid Loukil, Adda Ali Pacha

Abstract:

In recent years, the growing interest of scientists in the field of image processing and analysis of underwater images and videos has been strengthened following the emergence of new underwater exploration techniques, such as the emergence of autonomous underwater vehicles and the use of underwater image sensors facilitating the exploration of underwater mineral resources as well as the search for new species of aquatic life by biologists. Indeed, underwater images and videos have several defects and must be preprocessed before their analysis. Underwater landscapes are usually darkened due to the interaction of light with the marine environment: light is absorbed as it travels through deep waters depending on its wavelength. Additionally, light does not follow a linear direction but is scattered due to its interaction with microparticles in water, resulting in low contrast, low brightness, color distortion, and restricted visibility. The improvement of the underwater image is, therefore, more than necessary in order to facilitate its analysis. The research presented in this paper aims to implement and evaluate a set of classical techniques used in the field of improving the quality of underwater images in several color representation spaces. These methods have the particularity of being simple to implement and do not require prior knowledge of the physical model at the origin of the degradation.

Keywords: underwater image enhancement, histogram normalization, histogram equalization, contrast limited adaptive histogram equalization, single-scale retinex

Procedia PDF Downloads 89
2399 Accuracy of Autonomy Navigation of Unmanned Aircraft Systems through Imagery

Authors: Sidney A. Lima, Hermann J. H. Kux, Elcio H. Shiguemori

Abstract:

The Unmanned Aircraft Systems (UAS) usually navigate through the Global Navigation Satellite System (GNSS) associated with an Inertial Navigation System (INS). However, GNSS can have its accuracy degraded at any time or even turn off the signal of GNSS. In addition, there is the possibility of malicious interferences, known as jamming. Therefore, the image navigation system can solve the autonomy problem, because if the GNSS is disabled or degraded, the image navigation system would continue to provide coordinate information for the INS, allowing the autonomy of the system. This work aims to evaluate the accuracy of the positioning though photogrammetry concepts. The methodology uses orthophotos and Digital Surface Models (DSM) as a reference to represent the object space and photograph obtained during the flight to represent the image space. For the calculation of the coordinates of the perspective center and camera attitudes, it is necessary to know the coordinates of homologous points in the object space (orthophoto coordinates and DSM altitude) and image space (column and line of the photograph). So if it is possible to automatically identify in real time the homologous points the coordinates and attitudes can be calculated whit their respective accuracies. With the methodology applied in this work, it is possible to verify maximum errors in the order of 0.5 m in the positioning and 0.6º in the attitude of the camera, so the navigation through the image can reach values equal to or higher than the GNSS receivers without differential correction. Therefore, navigating through the image is a good alternative to enable autonomous navigation.

Keywords: autonomy, navigation, security, photogrammetry, remote sensing, spatial resection, UAS

Procedia PDF Downloads 191
2398 Open-Source YOLO CV For Detection of Dust on Solar PV Surface

Authors: Jeewan Rai, Kinzang, Yeshi Jigme Choden

Abstract:

Accumulation of dust on solar panels impacts the overall efficiency and the amount of energy they produce. While various techniques exist for detecting dust to schedule cleaning, many of these methods use MATLAB image processing tools and other licensed software, which can be financially burdensome. This study will investigate the efficiency of a free open-source computer vision library using the YOLO algorithm. The proposed approach has been tested on images of solar panels with varying dust levels through an experiment setup. The experimental findings illustrated the effectiveness of using the YOLO-based image classification method and the overall dust detection approach with an accuracy of 90% in distinguishing between clean and dusty panels. This open-source solution provides a cost effective and accessible alternative to commercial image processing tools, offering solutions for optimizing solar panel maintenance and enhancing energy production.

Keywords: YOLO, openCV, dust detection, solar panels, computer vision, image processing

Procedia PDF Downloads 32
2397 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network

Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao

Abstract:

The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.

Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations

Procedia PDF Downloads 154
2396 Foggy Image Restoration Using Neural Network

Authors: Khader S. Al-Aidmat, Venus W. Samawi

Abstract:

Blurred vision in the misty atmosphere is essential problem which needs to be resolved. To solve this problem, we developed a technique to restore foggy degraded image from its original version using Back-propagation neural network (BP-NN). The suggested technique is based on mapping between foggy scene and its corresponding original scene. Seven different approaches are suggested based on type of features used in image restoration. Features are extracted from spatial and spatial-frequency domain (using DCT). Each of these approaches comes with its own BP-NN architecture depending on type and number of used features. The weight matrix resulted from training each BP-NN represents a fog filter. The performance of these filters are evaluated empirically (using PSNR), and perceptually. By comparing the performance of these filters, the effective features that suits BP-NN technique for restoring foggy images is recognized. This system proved its effectiveness and success in restoring moderate foggy images.

Keywords: artificial neural network, discrete cosine transform, feed forward neural network, foggy image restoration

Procedia PDF Downloads 382
2395 Visual Intelligence: Perception, Image and Manipulation in Visual Communication

Authors: Poojitha Vemula

Abstract:

Understanding how we use image manipulation to communicate through an audience’s perceptions and conceive visual intelligence. With the use of many software and high-end skills, designers have developed a third eye to combine two different visuals and create the desired image by using photoshop and other software skills. The purpose of visual intelligence is to convey a message to the targeted audience. For instance, the images of models are retouched on their skin to make it more convincing and draw attention from the audience. There are many ways of manipulating an image, such as double exposure, retouching photography inks or paint airbrushing and piecing photos together, or enhancing the brightness and contrast. To understand visual intelligence, a questionnaire survey as well as research was conducted on how image manipulation is used by both the audience and the designers. This depends on the message that needs to be conveyed by the brands. For instance, Fair & Lovely, a brightening cream for ladies use a lot of retouching and effects to show the dramatic change the cream takes effect on dark or dusky faces. Thus the designer’s role is to use their third eye to incorporate the message into visuals. The research and questionnaire survey concludes the perceptions and manipulations used in visual communication. However this is all to make an effortless communication between the designer and the audience by using the skills of the designer and the features provided by the software. The objective of visual intelligence is to covet the message of the brands that advertise their products or services by using visuals through softwares. Conveying a message through visual intelligence requires an audiences perceptions and understanding from the visuals created by the artists or designers. Visual intelligence determines how we use our technical skills to retouch and manipulate an image for a better understanding to convey the message to the targeted audience. This also bridges the communication between the brand and the audience.

Keywords: graphic design, visual communication, convey messages, photoshop, image manipulation

Procedia PDF Downloads 218
2394 A Note on the Fractal Dimension of Mandelbrot Set and Julia Sets in Misiurewicz Points

Authors: O. Boussoufi, K. Lamrini Uahabi, M. Atounti

Abstract:

The main purpose of this paper is to calculate the fractal dimension of some Julia Sets and Mandelbrot Set in the Misiurewicz Points. Using Matlab to generate the Julia Sets images that match the Misiurewicz points and using a Fractal software, we were able to find different measures that characterize those fractals in textures and other features. We are actually focusing on fractal dimension and the error calculated by the software. When executing the given equation of regression or the log-log slope of image a Box Counting method is applied to the entire image, and chosen settings are available in a FracLAc Program. Finally, a comparison is done for each image corresponding to the area (boundary) where Misiurewicz Point is located.

Keywords: box counting, FracLac, fractal dimension, Julia Sets, Mandelbrot Set, Misiurewicz Points

Procedia PDF Downloads 216
2393 Effect of Threshold Configuration on Accuracy in Upper Airway Analysis Using Cone Beam Computed Tomography

Authors: Saba Fahham, Supak Ngamsom, Suchaya Damrongsri

Abstract:

Objective: The objective is to determine the optimal threshold of Romexis software for the airway volume and minimum cross-section area (MCA) analysis using Image J as a gold standard. Materials and Methods: A total of ten cone-beam computed tomography (CBCT) images were collected. The airway volume and MCA of each patient were analyzed using the automatic airway segmentation function in the CBCT DICOM viewer (Romexis). Airway volume and MCA measurements were conducted on each CBCT sagittal view with fifteen different threshold values from the Romexis software, Ranging from 300 to 1000. Duplicate DICOM files, in axial view, were imported into Image J for concurrent airway volume and MCA analysis as the gold standard. The airway volume and MCA measured from Romexis and Image J were compared using a t-test with Bonferroni correction, and statistical significance was set at p<0.003. Results: Concerning airway volume, thresholds of 600 to 850 as well as 1000, exhibited results that were not significantly distinct from those obtained through Image J. Regarding MCA, employing thresholds from 400 to 850 within Romexis Viewer showed no variance from Image J. Notably, within the threshold range of 600 to 850, there were no statistically significant differences observed in both airway volume and MCA analyses, in comparison to Image J. Conclusion: This study demonstrated that the utilization of Planmeca Romexis Viewer 6.4.3.3 within threshold range of 600 to 850 yields airway volume and MCA measurements that exhibit no statistically significant variance in comparison to measurements obtained through Image J. This outcome holds implications for diagnosing upper airway obstructions and post-orthodontic surgical monitoring.

Keywords: airway analysis, airway segmentation, cone beam computed tomography, threshold

Procedia PDF Downloads 44
2392 A Gradient Orientation Based Efficient Linear Interpolation Method

Authors: S. Khan, A. Khan, Abdul R. Soomrani, Raja F. Zafar, A. Waqas, G. Akbar

Abstract:

This paper proposes a low-complexity image interpolation method. Image interpolation is used to convert a low dimension video/image to high dimension video/image. The objective of a good interpolation method is to upscale an image in such a way that it provides better edge preservation at the cost of very low complexity so that real-time processing of video frames can be made possible. However, low complexity methods tend to provide real-time interpolation at the cost of blurring, jagging and other artifacts due to errors in slope calculation. Non-linear methods, on the other hand, provide better edge preservation, but at the cost of high complexity and hence they can be considered very far from having real-time interpolation. The proposed method is a linear method that uses gradient orientation for slope calculation, unlike conventional linear methods that uses the contrast of nearby pixels. Prewitt edge detection is applied to separate uniform regions and edges. Simple line averaging is applied to unknown uniform regions, whereas unknown edge pixels are interpolated after calculation of slopes using gradient orientations of neighboring known edge pixels. As a post-processing step, bilateral filter is applied to interpolated edge regions in order to enhance the interpolated edges.

Keywords: edge detection, gradient orientation, image upscaling, linear interpolation, slope tracing

Procedia PDF Downloads 260
2391 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain

Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA

Abstract:

In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.

Keywords: BER, DWT, extreme leaning machine (ELM), PSNR

Procedia PDF Downloads 311
2390 Sparse Representation Based Spatiotemporal Fusion Employing Additional Image Pairs to Improve Dictionary Training

Authors: Dacheng Li, Bo Huang, Qinjin Han, Ming Li

Abstract:

Remotely sensed imagery with the high spatial and temporal characteristics, which it is hard to acquire under the current land observation satellites, has been considered as a key factor for monitoring environmental changes over both global and local scales. On a basis of the limited high spatial-resolution observations, challenged studies called spatiotemporal fusion have been developed for generating high spatiotemporal images through employing other auxiliary low spatial-resolution data while with high-frequency observations. However, a majority of spatiotemporal fusion approaches yield to satisfactory assumption, empirical but unstable parameters, low accuracy or inefficient performance. Although the spatiotemporal fusion methodology via sparse representation theory has advantage in capturing reflectance changes, stability and execution efficiency (even more efficient when overcomplete dictionaries have been pre-trained), the retrieval of high-accuracy dictionary and its response to fusion results are still pending issues. In this paper, we employ additional image pairs (here each image-pair includes a Landsat Operational Land Imager and a Moderate Resolution Imaging Spectroradiometer acquisitions covering the partial area of Baotou, China) only into the coupled dictionary training process based on K-SVD (K-means Singular Value Decomposition) algorithm, and attempt to improve the fusion results of two existing sparse representation based fusion models (respectively utilizing one and two available image-pair). The results show that more eligible image pairs are probably related to a more accurate overcomplete dictionary, which generally indicates a better image representation, and is then contribute to an effective fusion performance in case that the added image-pair has similar seasonal aspects and image spatial structure features to the original image-pair. It is, therefore, reasonable to construct multi-dictionary training pattern for generating a series of high spatial resolution images based on limited acquisitions.

Keywords: spatiotemporal fusion, sparse representation, K-SVD algorithm, dictionary learning

Procedia PDF Downloads 261
2389 Classification of Hyperspectral Image Using Mathematical Morphological Operator-Based Distance Metric

Authors: Geetika Barman, B. S. Daya Sagar

Abstract:

In this article, we proposed a pixel-wise classification of hyperspectral images using a mathematical morphology operator-based distance metric called “dilation distance” and “erosion distance”. This method involves measuring the spatial distance between the spectral features of a hyperspectral image across the bands. The key concept of the proposed approach is that the “dilation distance” is the maximum distance a pixel can be moved without changing its classification, whereas the “erosion distance” is the maximum distance that a pixel can be moved before changing its classification. The spectral signature of the hyperspectral image carries unique class information and shape for each class. This article demonstrates how easily the dilation and erosion distance can measure spatial distance compared to other approaches. This property is used to calculate the spatial distance between hyperspectral image feature vectors across the bands. The dissimilarity matrix is then constructed using both measures extracted from the feature spaces. The measured distance metric is used to distinguish between the spectral features of various classes and precisely distinguish between each class. This is illustrated using both toy data and real datasets. Furthermore, we investigated the role of flat vs. non-flat structuring elements in capturing the spatial features of each class in the hyperspectral image. In order to validate, we compared the proposed approach to other existing methods and demonstrated empirically that mathematical operator-based distance metric classification provided competitive results and outperformed some of them.

Keywords: dilation distance, erosion distance, hyperspectral image classification, mathematical morphology

Procedia PDF Downloads 87
2388 Multiple Images Stitching Based on Gradually Changing Matrix

Authors: Shangdong Zhu, Yunzhou Zhang, Jie Zhang, Hang Hu, Yazhou Zhang

Abstract:

Image stitching is a very important branch in the field of computer vision, especially for panoramic map. In order to eliminate shape distortion, a novel stitching method is proposed based on gradually changing matrix when images are horizontal. For images captured horizontally, this paper assumes that there is only translational operation in image stitching. By analyzing each parameter of the homography matrix, the global homography matrix is gradually transferred to translation matrix so as to eliminate the effects of scaling, rotation, etc. in the image transformation. This paper adopts matrix approximation to get the minimum value of the energy function so that the shape distortion at those regions corresponding to the homography can be minimized. The proposed method can avoid multiple horizontal images stitching failure caused by accumulated shape distortion. At the same time, it can be combined with As-Projective-As-Possible algorithm to ensure precise alignment of overlapping area.

Keywords: image stitching, gradually changing matrix, horizontal direction, matrix approximation, homography matrix

Procedia PDF Downloads 319
2387 Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots

Authors: Anderson Rocha, Pedro Miguel de Figueiredo Dinis Oliveira Gaspar

Abstract:

Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.

Keywords: agricultural mobile robot, image processing, path recognition, hough transform

Procedia PDF Downloads 146
2386 Video Stabilization Using Feature Point Matching

Authors: Shamsundar Kulkarni

Abstract:

Video capturing by non-professionals will lead to unanticipated effects. Such as image distortion, image blurring etc. Hence, many researchers study such drawbacks to enhance the quality of videos. In this paper, an algorithm is proposed to stabilize jittery videos .A stable output video will be attained without the effect of jitter which is caused due to shaking of handheld camera during video recording. Firstly, salient points from each frame from the input video are identified and processed followed by optimizing and stabilize the video. Optimization includes the quality of the video stabilization. This method has shown good result in terms of stabilization and it discarded distortion from the output videos recorded in different circumstances.

Keywords: video stabilization, point feature matching, salient points, image quality measurement

Procedia PDF Downloads 313
2385 Experimental Characterization of Composite Material with Non Contacting Methods

Authors: Nikolaos Papadakis, Constantinos Condaxakis, Konstantinos Savvakis

Abstract:

The aim of this paper is to determine the elastic properties (elastic modulus and Poisson ratio) of a composite material based on noncontacting imaging methods. More specifically, the significantly reduced cost of digital cameras has given the opportunity of the high reliability of low-cost strain measurement. The open source platform Ncorr is used in this paper which utilizes the method of digital image correlation (DIC). The use of digital image correlation in measuring strain uses random speckle preparation on the surface of the gauge area, image acquisition, and postprocessing the image correlation to obtain displacement and strain field on surface under study. This study discusses technical issues relating to the quality of results to be obtained are discussed. [0]8 fabric glass/epoxy composites specimens were prepared and tested at different orientations 0[o], 30[o], 45[o], 60[o], 90[o]. Each test was recorded with the camera at a constant frame rate and constant lighting conditions. The recorded images were processed through the use of the image processing software. The parameters of the test are reported. The strain map output which is obtained through strain measurement using Ncorr is validated by a) comparing the elastic properties with expected values from Classical laminate theory, b) through finite element analysis.

Keywords: composites, Ncorr, strain map, videoextensometry

Procedia PDF Downloads 144
2384 Large Neural Networks Learning From Scratch With Very Few Data and Without Explicit Regularization

Authors: Christoph Linse, Thomas Martinetz

Abstract:

Recent findings have shown that Neural Networks generalize also in over-parametrized regimes with zero training error. This is surprising, since it is completely against traditional machine learning wisdom. In our empirical study we fortify these findings in the domain of fine-grained image classification. We show that very large Convolutional Neural Networks with millions of weights do learn with only a handful of training samples and without image augmentation, explicit regularization or pretraining. We train the architectures ResNet018, ResNet101 and VGG19 on subsets of the difficult benchmark datasets Caltech101, CUB_200_2011, FGVCAircraft, Flowers102 and StanfordCars with 100 classes and more, perform a comprehensive comparative study and draw implications for the practical application of CNNs. Finally, we show that VGG19 with 140 million weights learns to distinguish airplanes and motorbikes with up to 95% accuracy using only 20 training samples per class.

Keywords: convolutional neural networks, fine-grained image classification, generalization, image recognition, over-parameterized, small data sets

Procedia PDF Downloads 88
2383 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer

Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved

Abstract:

Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.

Keywords: computer-aided system, detection, image segmentation, morphology

Procedia PDF Downloads 150
2382 Prosperous Digital Image Watermarking Approach by Using DCT-DWT

Authors: Prabhakar C. Dhavale, Meenakshi M. Pawar

Abstract:

In this paper, everyday tons of data is embedded on digital media or distributed over the internet. The data is so distributed that it can easily be replicated without error, putting the rights of their owners at risk. Even when encrypted for distribution, data can easily be decrypted and copied. One way to discourage illegal duplication is to insert information known as watermark, into potentially valuable data in such a way that it is impossible to separate the watermark from the data. These challenges motivated researchers to carry out intense research in the field of watermarking. A watermark is a form, image or text that is impressed onto paper, which provides evidence of its authenticity. Digital watermarking is an extension of the same concept. There are two types of watermarks visible watermark and invisible watermark. In this project, we have concentrated on implementing watermark in image. The main consideration for any watermarking scheme is its robustness to various attacks

Keywords: watermarking, digital, DCT-DWT, security

Procedia PDF Downloads 422
2381 PET Image Resolution Enhancement

Authors: Krzysztof Malczewski

Abstract:

PET is widely applied scanning procedure in medical imaging based research. It delivers measurements of functioning in distinct areas of the human brain while the patient is comfortable, conscious and alert. This article presents the new compression sensing based super-resolution algorithm for improving the image resolution in clinical Positron Emission Tomography (PET) scanners. The issue of motion artifacts is well known in Positron Emission Tomography (PET) studies as its side effect. The PET images are being acquired over a limited period of time. As the patients cannot hold breath during the PET data gathering, spatial blurring and motion artefacts are the usual result. These may lead to wrong diagnosis. It is shown that the presented approach improves PET spatial resolution in cases when Compressed Sensing (CS) sequences are used. Compressed Sensing (CS) aims at signal and images reconstructing from significantly fewer measurements than were traditionally thought necessary. The application of CS to PET has the potential for significant scan time reductions, with visible benefits for patients and health care economics. In this study the goal is to combine super-resolution image enhancement algorithm with CS framework to achieve high resolution PET output. Both methods emphasize on maximizing image sparsity on known sparse transform domain and minimizing fidelity.

Keywords: PET, super-resolution, image reconstruction, pattern recognition

Procedia PDF Downloads 371
2380 Image Segmentation Using Active Contours Based on Anisotropic Diffusion

Authors: Shafiullah Soomro

Abstract:

Active contour is one of the image segmentation techniques and its goal is to capture required object boundaries within an image. In this paper, we propose a novel image segmentation method by using an active contour method based on anisotropic diffusion feature enhancement technique. The traditional active contour methods use only pixel information to perform segmentation, which produces inaccurate results when an image has some noise or complex background. We use Perona and Malik diffusion scheme for feature enhancement, which sharpens the object boundaries and blurs the background variations. Our main contribution is the formulation of a new SPF (signed pressure force) function, which uses global intensity information across the regions. By minimizing an energy function using partial differential framework the proposed method captures semantically meaningful boundaries instead of catching uninterested regions. Finally, we use a Gaussian kernel which eliminates the problem of reinitialization in level set function. We use several synthetic and real images from different modalities to validate the performance of the proposed method. In the experimental section, we have found the proposed method performance is better qualitatively and quantitatively and yield results with higher accuracy compared to other state-of-the-art methods.

Keywords: active contours, anisotropic diffusion, level-set, partial differential equations

Procedia PDF Downloads 161
2379 Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm

Authors: Dipti Patra, Guguloth Uma, Smita Pradhan

Abstract:

Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy.

Keywords: image registration, genetic algorithm, particle swarm optimization, hybrid PSO-GA algorithm and mutual information

Procedia PDF Downloads 408
2378 Robust Medical Image Watermarking Using Frequency Domain and Least Significant Bits Algorithms

Authors: Volkan Kaya, Ersin Elbasi

Abstract:

Watermarking and stenography are getting importance recently because of copyright protection and authentication. In watermarking we embed stamp, logo, noise or image to multimedia elements such as image, video, audio, animation and text. There are several works have been done in watermarking for different purposes. In this research work, we used watermarking techniques to embed patient information into the medical magnetic resonance (MR) images. There are two methods have been used; frequency domain (Digital Wavelet Transform-DWT, Digital Cosine Transform-DCT, and Digital Fourier Transform-DFT) and spatial domain (Least Significant Bits-LSB) domain. Experimental results show that embedding in frequency domains resist against one type of attacks, and embedding in spatial domain is resist against another group of attacks. Peak Signal Noise Ratio (PSNR) and Similarity Ratio (SR) values are two measurement values for testing. These two values give very promising result for information hiding in medical MR images.

Keywords: watermarking, medical image, frequency domain, least significant bits, security

Procedia PDF Downloads 288