Search results for: temperature regulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8188

Search results for: temperature regulation

7828 Increased Nitrogen Removal in Cold Deammonification Biofilm Reactor (9-15°C) by Smooth Temperature Decreasing

Authors: Ivar Zekker, Ergo Rikmann, Anni Mandel, Markus Raudkivi, Kristel Kroon, Liis Loorits, Andrus Seiman, Hannu Fritze, Priit Vabamäe, Toomas Tenno, Taavo Tenno

Abstract:

The anaerobic ammonium oxidation (anammox) and nitritation-anammox (deammonification) processes are widely used for N-rich wastewater treatment nowadays. A deammonification moving bed biofilm reactor (MBBR) with a high maximum total nitrogen removal rate (TNRR) of 1.5 g N m-2 d-1 was started up and similarly high TNRR was sustained at low temperature of 15°C. During biofilm cultivation, temperature in MBBR was lowered by 0.5° C week-1 sustaining the high TNRR. To study the short-term effect of temperature on the TNRR, a series of batch-scale experiments performed showed sufficient TNRRs even at 9-15° C (4.3-5.4 mg N L-1 h-1, respectively). After biomass was adapted to lower temperature (15°C), the TNRR increase at lower temperature (15°C) was relatively higher (15-20%) than with biomass adapted to higher temperatures (17-18°C). Anammox qPCR showed increase of Candidatus Brocadia quantities from 5×103 to 1×107 anammox gene copies g-1 TSS despite temperature lowered to 15°C. Modeling confirmed causes of stable and unstable periods in the reactor and in batch test high Arrhenius constant of 29.7 kJ mol-1 of the process as high as at 100 mg NO2--N L-1 were determined. 

Keywords: deammonification, reject water, intermittent aeration, nitrite inhibition

Procedia PDF Downloads 388
7827 The Effect of the Calcination Temperature and SiO2 Addition on the Physical Properties’ of Sol Gel TiO2 Thin Films

Authors: Nour El Houda Arabi, Aicha Iratni, Talaighil Razika, Bruno Capoen, Mohamed Bouazaoui

Abstract:

In this paper, we report the effect of the calcination temperature and SiO2 addition on structural, optical and hydrophilicity of TiO2 films deposited by deep-coating sol-gel process. XRD investigation of the structural TiO2 films with increasing the temperature calcination, reveals that rutile phase will appear for the high temperature (>1000°C). However, the addition of SiO2 relate the densification of TiO2 films. Ellipsometric and UV-visible measure show that the refractive index grow with increasing temperature, against the film thickness decreases. On the other hand, the addition of SiO2 decreases the refractive index and increases the TiO2 film thickness. Finally, the hydrophilicity is assisted by contact angle measurement. It is found that addition of 50% of SiO2 to TiO2 is most effective for reducing the contact angle of water.

Keywords: physical properties, sol, gel, TiO2/SiO2 composite films

Procedia PDF Downloads 464
7826 Microstructure and Hot Deformation Behavior of Fe-20Cr-5Al Alloy

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

Abstract—High temperature deformation behavior of cast Fe-20Cr-5Al alloy has been investigated in this study by performing tensile and compression tests at temperatures from 1100 to 1200oC. Rectangular ingots of which the dimensions were 300×300×100 in millimeter were cast using vacuum induction melting. Phase equilibrium was calculated using the FactSage®, thermodynamic software and database. Tensile strength of cast Fe-20Cr-5Al alloy was 4 MPa at 1200oC. With temperature decreased, tensile strength increased rapidly and reached up to 13 MPa at 1100oC. Elongation also increased from 18 to 80% with temperature decreased from 1200oC to 1100oC. Microstructure observation revealed that M23C6 carbide was precipitated along the grain boundary and within the matrix.

Keywords: 20 Cr-5Al ferritic stainless, high temperature deformation, aging treatment, microstructure, mechanical properties

Procedia PDF Downloads 423
7825 Device to Alert and Fire Prevention through Temperature Monitoring and Gas Detection

Authors: Dêivisson Alves Anjos, Blenda Fonseca Aires Teles, Queitiane Castro Costa

Abstract:

Fire is one of the biggest dangers for factories, warehouses, mills, among other places, causing unimaginable damage, because besides the material damage also directly affects the lives of workers who are likely to suffer death or very serious consequences. This protection of the lives of these people should be taken seriously, always seeking safety. Thus investment in security and monitoring equipment must be high, so you can prevent or reduce the impacts of a possible fire. Our device, made in PIC micro controller monitors the temperature and the presence of gas in the environment, it sends the data via Bluetooth device to a developed in LabVIEW interface saves these data continuously and alert if the temperature exceeds the allowed or some gas is detected. Currently the device is in operation and can perform several tests, as well as use in different areas for which you need anti-fire protection.

Keywords: pic, bluetooth, fire, temperature, gas, LabVIEW

Procedia PDF Downloads 494
7824 The Impact of Bilateral Investment Treaties on Health-Related Intellectual Property Rights in the Agreement on Trade-Related Aspects of Intellectual Property Rights in the Kingdom of Saudi Arabia and Australia

Authors: Abdulrahman Fahim M. Alsulami

Abstract:

This paper is dedicated to a detailed investigation of the interaction between the agreement on trade-related aspects of intellectual property rights (TRIPS) and bilateral investment treaties (BITs) in the regulation of health-related intellectual property rights in Australia and the Kingdom of Saudi Arabia. The chosen research object is complex and requires a thorough examination of a set of factors influencing the problem under investigation. At the moment, to the author’s best knowledge’ there is no academic research that would conceptualize and critically compare the regulation of health-related intellectual property rights in these two countries. While there is a substantial amount of information in the literature on certain aspects of the problem, the existing knowledge about certain aspects of the health-related regulatory frameworks in Australia and Saudi Arabia barely explains in detail the specifics of the ways in which the TRIPS agreement interacts with (BITs) in the regulation of health-related intellectual property rights. Therefore, this paper will address an evident research gap by studying an intriguing yet under-researched problem. The paper comprises five subsections. The first subsection provides an overview of the investment climate in Saudi Arabia and Australia with an emphasis on the health care industry. It will cover political, economic, and social factors influencing the investment climate in these countries, the systems of intellectual property rights protection, recent patterns relevant to the investment climate’s development, and key characteristics of the investment climate in the health care industry. The second subsection analyses BITs in Saudi Arabia and Australia in light of the countries’ responsibilities under the TRIPS Agreement. The third subsection provides a critical examination of the interaction between the TRIPS Agreement and BITs in Saudi Arabia on the basis of data collected and analyzed in previous subsections. It will investigate key discrepancies concerning the regulation of health-related intellectual property rights in Saudi Arabia and Australia from the position of BITs’ interaction with the TRIPS Agreement and explore the existing procedures for clarifying priorities between them in regulating health-related intellectual property rights. The fourth subsection of the paper provides recommendations concerning the transformation of BITS into a TRIPS+ dimension in regulating health-related intellectual property rights in Saudi Arabia and Australia. The final subsection provides a summary of differences between the Australian and Saudi BITs from the perspective of the regulation of health-related intellectual property rights under the TRIPS agreement and bilateral investment treaties.

Keywords: Australia, bilateral investment treaties, IP law, public health sector, Saudi Arabia

Procedia PDF Downloads 115
7823 Temperature Distribution Enhancement in a Conical Diffuser Fitted with Helical Screw-Tape with and without Center-Rod

Authors: Ehan Sabah Shukri, Wirachman Wisnoe

Abstract:

Temperature distribution investigation in a conical diffuser fitted with helical screw-tape with and without center-rod is studied numerically. A helical screw-tape is inserted in the diffuser to create swirl flow that helps to enhance the temperature distribution rate with inlet Reynolds number 4.3 x 104. Three pitch lengths ratios (Y/L = 0.153, 0.23 and 0.307) for the helical screw-tape with and without center-rod are simulated and compared. The geometry of the conical diffuser and the inlet condition for both arrangements are kept constant. Numerical findings show that the helical screw-tape inserts without center-rod perform significantly better than the helical tape inserts with center-rod in the conical diffuser.

Keywords: diffuser, temperature distribution, CFD, pitch ratio

Procedia PDF Downloads 387
7822 Pet Care Monitoring with Arduino

Authors: Sathapath Kilaso

Abstract:

Nowadays people who live in the city tend to have a pet in order to relief the loneliness more than usual. It can be observed by the growth of the local pet industry. But the essentials of lifestyle of the urban people which is restricted by time and work might not allow the owner to take care of the pet properly. So this article will be about how to develop the prototype of pet care monitoring with Arduino Microcontroller. This prototype can be used to monitor the pet and its environment around the pet such as temperature (both pet’s temperature and outside temperature), humidity, food’s quantity, air’s quality and also be able to reduce the stress of the pet. This prototype can report the result back to the owner via online-channel such as website etc.

Keywords: pet care, Arduino Microcontroller, monitoring, prototype

Procedia PDF Downloads 335
7821 Temperature Effect on Corrosion and Erosion in Transfer Line Exchange by CFD

Authors: S. Hehni Meidani Behzad, Mokhtari Karchegani Amir, Mabodi Samad

Abstract:

There are some TLE (Transfer Line Exchanger) that their lifetime reduced to 4 years instead of 30 years and after 4 years, we saw corroded area on one part of those T.L.E. that named Oval header and this happened in condition that other parts of those TLE were safe and perfect. By using of thickness measurement devices, we find that thickness reduces unusually on that part and after research and doing computer analysis with fluent software, it was recognized that on that part, we have high temperature and when this out of range temperature adds to bad quality of water, corrosion increased with high rate on that part and after more research it became obviously that it case by more excess air in furnace that located before this T.L.E. that this more air case to consuming more fuel to reach same furnace temperature so it concluded that inner coil fluid temperature increased and after received to T.L.E, this case happened and deflector condition, creep in coil and material analysis confirmed that condition.

Keywords: Transfer Line Exchanger (TLE), CFD, corrosion, erosion, tube, oval header

Procedia PDF Downloads 388
7820 Raman and FTIR Studies of Azobenzene: Experimental and Theoretical Approach

Authors: Gomti Devi

Abstract:

Photoisomerization has been attracting to researchers due to its wide range of applications in optical switches, polymeric chains, liquid-crystalline systems and bilayer membranes etc. Azobenzene is a photochromic molecule which exhibits a reversible isomerisation process between its trans and cis isomers of different stability. An investigation has been conducted of the effects of temperature on intensity and position of Raman band of N=N, C-N stretching modes of Azobenzene (AZBN). It was found that the N=N stretching mode of Raman band shape shifts to lower frequency region with the increase in temperature. The Raman intensity was also decreased with the increase of temperature. The change in bandwidth with the increase in temperature has been studied. The FTIR spectrum of the molecule is recorded so as to complement the Raman spectra. In order to investigate the possibility of undergoing dimerization and trimerization as well as the stability of this molecule, ab initio calculation for geometry optimization and vibrational wavenumber calculation have been performed. Theoretically calculated values are found in good agreement with the experimental results.

Keywords: azobenzene, temperature, ab-initio, frequency

Procedia PDF Downloads 313
7819 From Self-Regulation to Self-Efficacy: Student Empowerment in Translator Training

Authors: Paulina Pietrzak

Abstract:

The understanding of the role of the contemporary translator is fraught with contradictions and idealistic visions of individuals who, by definition, should be fully competent and versatile. In spite of the fact that lots of translation researchers have probed into the identification and exploration of the concept of translator competence, little study has been devoted to its metacognitive aspects. Due to the dynamic nature of the translator’s occupation, it is difficult to predict what specific skills will prove useful for novice translators in their professional career. Thus, it is crucial that the translator is self-regulated enough to adapt to changing job demands and effectively function in the contemporary, highly dynamic, translation market. The objective of the presentation is to investigate the role and nature of the translator’s self-regulation. It will also demonstrate the results of a pilot study into translation trainees’ self-regulatory skills and explore implications of these findings for translator training in relation to theories of student empowerment.

Keywords: cognitive translation research, translator competence, self-regulatory skills, translator training

Procedia PDF Downloads 183
7818 Influence of Temperature on the Development and Feeding Activity of Southern Green Stink Bug Nezara viridula (Heteroptera: Pentatomidae)

Authors: Pavitra Sharma, A. K. Singh

Abstract:

The establishment of pest population in a habitat is greatly influenced by abiotic factors, such as temperature, photoperiod, and humidity. These factors influence the biology and behavior of insects and their pest status. Nezara viridula (Heteroptera: Pentatomidae), commonly known as southern green stink bug, is economically important pest of legumes. Both nymphs and adult suck the sap from different part of the plant and deteriorate the standing crop. Present study involves effects of temperature on incubation, hatching success and nymphal duration of N. viridula. The results indicated that the development of eggs requires optimal temperature range. Temperature conditions above and below the optimum range affect the incubation period as well as the percent hatchability of eggs. At 19°C, the egg incubation period was longest whereas it was shortest at 27°C. The change in temperature from the optimum condition also affected the hatchability of eggs in N. viridula. Decrease in the hatchability was observed with the decrease in temperature. However, the results were not statistically significant. Decrease in temperature from the optimum temperature to 19°C, also resulted in an increase in nymphal duration of N. viridula. However, no such effect of temperature within the studied range was observed on the morphology of nymphs or adults. Variation in temperature also had no adverse effects on the survival of laboratory bred population of Nezara nymphs. The feeding activity of the bug in relation to photoperiod was assessed by counting the number of punctures on the food surface. The results indicated that day-night regime did not affect the feeding activity of the bug significantly. The present study enhances our knowledge about the effect of environmental factors on the biology of insects and developing the strategy for ‘Integrated Pest Management’ of hemipteran insects by management of the physical factors.

Keywords: development, feeding, hatchability, Nezara viridula

Procedia PDF Downloads 155
7817 Impact of Elevated Temperature on Spot Blotch Development in Wheat and Induction of Resistance by Plant Growth Promoting Rhizobacteria

Authors: Jayanwita Sarkar, Usha Chakraborty, Bishwanath Chakraborty

Abstract:

Plants are constantly interacting with various abiotic and biotic stresses. In changing climate scenario plants are continuously modifying physiological processes to adapt to changing environmental conditions which profoundly affect plant-pathogen interactions. Spot blotch in wheat is a fast-rising disease in the warmer plains of South Asia where the rise in minimum average temperature over most of the year already affecting wheat production. Hence, the study was undertaken to explore the role of elevated temperature in spot blotch disease development and modulation of antioxidative responses by plant growth promoting rhizobacteria (PGPR) for biocontrol of spot blotch at high temperature. Elevated temperature significantly increases the susceptibility of wheat plants to spot blotch causing pathogen Bipolaris sorokiniana. Two PGPR Bacillus safensis (W10) and Ochrobactrum pseudogrignonense (IP8) isolated from wheat (Triticum aestivum L.) and blady grass (Imperata cylindrical L.) rhizophere respectively, showing in vitro antagonistic activity against Bipolaris sorokiniana were tested for growth promotion and induction of resistance against spot blotch in wheat. GC-MS analysis showed that Bacillus safensis (W10) and Ochrobactrum pseudogrignonense (IP8) produced antifungal and antimicrobial compounds in culture. Seed priming with these two bacteria significantly increase growth, modulate antioxidative signaling and induce resistance and eventually reduce disease incidence in wheat plants at optimum as well as elevated temperature which was further confirmed by indirect immunofluorescence assay using polyclonal antibody raised against Bipolaris sorokiniana. Application of the PGPR led to enhancement in activities of plant defense enzymes- phenylalanine ammonia lyase, peroxidase, chitinase and β-1,3 glucanase in infected leaves. Immunolocalization of chitinase and β-1,3 glucanase in PGPR primed and pathogen inoculated leaf tissue was further confirmed by transmission electron microscopy using PAb of chitinase, β-1,3 glucanase and gold labelled conjugates. Activity of ascorbate-glutathione redox cycle related enzymes such as ascorbate peroxidase, superoxide dismutase and glutathione reductase along with antioxidants such as carotenoids, glutathione and ascorbate and osmolytes like proline and glycine betain accumulation were also increased during disease development in PGPR primed plant in comparison to unprimed plants at high temperature. Real-time PCR analysis revealed enhanced expression of defense genes- chalcone synthase and phenyl alanineammonia lyase. Over expression of heat shock proteins like HSP 70, small HSP 26.3 and heat shock factor HsfA3 in PGPR primed plants effectively protect plants against spot blotch infection at elevated temperature as compared with control plants. Our results revealed dynamic biochemical cross talk between elevated temperature and spot blotch disease development and furthermore highlight PGPR mediated array of antioxidative and molecular alterations responsible for induction of resistance against spot blotch disease at elevated temperature which seems to be associated with up-regulation of defense genes, heat shock proteins and heat shock factors, less ROS production, membrane damage, increased expression of redox enzymes and accumulation of osmolytes and antioxidants.

Keywords: antioxidative enzymes, defense enzymes, elevated temperature, heat shock proteins, PGPR, Real-Time PCR, spot blotch, wheat

Procedia PDF Downloads 142
7816 Energy Management System Based on Voltage Fluctuations Minimization for Droop-Controlled Islanded Microgrid

Authors: Zahra Majd, Mohsen Kalantar

Abstract:

Power management and voltage regulation is one of the most important issues in microgrid (MG) control and scheduling. This paper proposes a multiobjective scheduling formulation that consists of active power costs, voltage fluctuations summation, and technical constraints of MG. Furthermore, load flow and reserve constraints are considered to achieve proper voltage regulation. A modified Jacobian matrix is presented for calculating voltage variations and Mont Carlo simulation is used for generating and reducing scenarios. To convert the problem to a mixed integer linear program, a linearization procedure for nonlinear equations is presented. The proposed model is applied to a typical low-voltage MG and two different cases are investigated. The results show the effectiveness of the proposed model.

Keywords: microgrid, energy management system, voltage fluctuations, modified Jacobian matrix

Procedia PDF Downloads 64
7815 Analyzing the Prospects and Challenges in Implementing the Legal Framework for Competition Regulation in Nigeria

Authors: Oluchukwu P. Obioma, Amarachi R. Dike

Abstract:

Competition law promotes market competition by regulating anti-competitive conduct by undertakings. There is a need for a third party to regulate the market for efficiency and supervision, since, if the market is left unchecked, it may be skewed against the consumers and the economy. Competition law is geared towards the protection of consumers from economic exploitation. It is the duty of every rational government to optimally manage its economic system by employing the best regulatory practices over the market to ensure it functions effectively and efficiently. The Nigerian government has done this by enacting the Federal Competition and Consumer Protection Act, 2018 (FCCPA). This is a comprehensive legal framework with the objective of governing competition issues in Nigeria. Prior to its enactment, the competition law regime in Nigeria was grossly inadequate despite Nigeria being the biggest economy in Africa. This latest legislation has become a bold step in the right direction. This study will use the doctrinal methodology in analyzing the FCCPA, 2018 in order to discover the extent to which the Act will guard against anti-competitive practices and promote competitive markets for the benefit of the Nigerian economy and consumers. The study finds that although the FCCPA, 2018 provides for the regulation of competition in Nigeria, there is a need to effectively tackle the challenges to the implementation of the Act and the development of anti-trust jurisprudence in Nigeria. This study concludes that incisive implementation of competition law in Nigeria will help protect consumers and create a conducive environment for economic growth, development, and protection of consumers from obnoxious competition practices.

Keywords: anti-competitive practices, competition law, competition regulation, consumer protection.

Procedia PDF Downloads 146
7814 Development of High Temperature Mo-Si-B Based In-situ Composites

Authors: Erhan Ayas, Buse Katipoğlu, Eda Metin, Rifat Yılmaz

Abstract:

The search for new materials has begun to be used even higher than the service temperature (~1150ᵒC) where nickel-based superalloys are currently used. This search should also meet the increasing demands for energy efficiency improvements. The materials studied for aerospace applications are expected to have good oxidation resistance. Mo-Si-B alloys, which have higher operating temperatures than nickel-based superalloys, are candidates for ultra-high temperature materials used in gas turbine and jet engines. Because the Moss and Mo₅SiB₂ (T2) phases exhibit high melting temperature, excellent high-temperature creep strength and oxidation resistance properties, however, low fracture toughness value at room temperature is a disadvantage for these materials, but this feature can be improved with optimum Moss phase and microstructure control. High-density value is also a problem for structural parts. For example, in turbine rotors, the higher the weight, the higher the centrifugal force, which reduces the creep life of the material. The density value of the nickel-based superalloys and the T2 phase, which is the Mo-Si-B alloy phase, is in the range of 8.6 - 9.2 g/cm³. But under these conditions, T2 phase Moss (density value 10.2 g/cm³), this value is above the density value of nickel-based superalloys. So, with some ceramic-based contributions, this value is enhanced by optimum values.

Keywords: molybdenum, composites, in-situ, mmc

Procedia PDF Downloads 45
7813 Pattern and Risk Factors of Menstrual Regulation Service Use among Ever-married Women in Bangladesh: Evidence from a Nationally Representative Cross-sectional Study

Authors: Md. Rashed Aalm, Md. Nuruzzaman Khan, Yothin Sawangdee

Abstract:

Background: Around 47% of the total pregnancies are unintended in Bangladesh, which lead to several adverse consequences, including maternal and child mortality. Use of menstrual regulation (MR) can help women to reduce unintended pregnancy related adverse consequences. We explored the prevalence and determinants of MR services among ever-married women in Bangladesh. Methods: Total of 14,346 ever-married women data were analysed from the 2017 Bangladesh Demographic and Health Survey. Our study variable was use or non-use of MR services. Individual, household, and community level factors were the explanatory factors. Multilevel mixed-effect Poisson regression model was used to determine the factors associated with MR services in Bangladesh. Results: Nearly 7% of the total women in Bangladesh use MR services. Use of MR services was found higher among women who were aged 20-30 ages (IRR 1.60, 95% CI: 1.17–2.17), who were overweight (IRR 1.43, 95% CI: 1.13–1.81), had at least 1 child (IRR 2.97, 95% CI: 2.34– 3.77) or > 2 children (IRR 3.22, 95% CI: 2.45–4.20), and the birth preceding birth interval was(2 – 4) years (IRR 1.56, 95% CI: 1.13–2.15). Around 1.39 times (95% CI: 1.11–1.73) higher likelihood of MR was found among women whose husbands were engage with business. At the community level, MR service was found lower among the women who resided in the community with higherilliteracy (IRR 0.67, 95% CI: 0.42–0.96) and the Mymensingh division (IRR 0.39, 95% CI: 0.31–0.91). Conclusion: Use of MR service is comparatively low, which indicate a significant proportion of unintended pregnancy continued toward life-birth. This could be responsible for higher adverse maternal and child health outcomes in Bangladesh. Initiatives should be taken to ensure MR services is available when women need this service.

Keywords: menstrual regulation, pattern, risk, maternal health, Bangladesh

Procedia PDF Downloads 134
7812 Temperature Effects on CO₂ Intake of MIL-101 and ZIF-301

Authors: M. Ba-Shammakh

Abstract:

Metal-organic frameworks (MOFs) are promising materials for CO₂ capture and they have high adsorption capacity towards CO₂. In this study, two different metal organic frameworks (i.e. MIL-101 and ZIF-301) were tested for different flue gases that have different CO₂ fractions. In addition, the effect of temperature was investigated for MIL-101 and ZIF-301. The results show that MIL-101 performs well for pure CO₂ stream while its intake decreases dramatically for other flue gases that have variable CO₂ fraction ranging from 5 to 15 %. The second material (ZIF-301) showed a better result in all flue gases and higher CO₂ intake compared to MIL-101 even at high temperature.

Keywords: CO₂ capture, Metal Organic Frameworks (MOFs), MIL-101, ZIF-301

Procedia PDF Downloads 166
7811 Effect of Post Treatment Temperature on Ni-20Cr Wire Arc Spray Coating to Thermal Resistance

Authors: Ken Ninez Nurpramesti Prinindya, Yuli Setiyorini

Abstract:

Crown enclosure high temperature flares damaged and reduced dimensions crown. Generally crown on EHTF could have a life time up to twenty years. Therefore, this study aims to increase the value of thermal resistance with the effect post treatment on NiCr coated arc spray method. The variation of post treatment temperature, was at 650°C, 750°C, and 850°C. Morphology on the surface and the adhesion strength was analyzed by SEM-EDX, Surface Roughness and Pull - off test. XRD testing was conducted to determine the contained in NiCr coated. Thermal stability of NiCr coated was tested by DSC-TGA. The most optimal results was owned by NiCr coating with post treated at 850°C. It has good thermal stability until 1000°C because of Cr2O3 formation in coated specimen. The higher temperature of post treatment coating was showed better result on porosity and roughness surface value.

Keywords: Arc spray process, NiCr wire, post-treatment coating, high temperature-corrosion resistance

Procedia PDF Downloads 429
7810 Study on Developmental and Pathogenesis Related Genes Expression Deregulation in Brassica compestris Infected with 16Sr-IX Associated Phytoplasma

Authors: Samina Jam Nazeer Ahmad, Samia Yasin, Ijaz Ahmad, Muhammad Tahir, Jam Nazeer Ahmad

Abstract:

Phytoplasmas are phloem-inhibited plant pathogenic bacteria that are transferred by insect vectors. Among biotic factors, Phytoplasma infection induces abnormality influencing the physiology as well as morphology of plants. In 16Sr-IX group phytoplasma-infected brassica compestris, flower abnormalities have been associated with changes in the expression of floral development genes. To determine whether methylation was involved in down-regulation of flower development, the process of DNA methylation and Demethylation was investigated as a possible mechanism for regulation of floral gene expression in phytoplasma infected Brassica transmitted by Orosious orientalis vector by using RT-PCR, MSRE-PCR, Southern blotting, Bisulfite Sequencing, etc. Transcriptional expression of methylated genes was found to be globally down-regulated in plants infected with phytoplasma, but not severely in those infested by insect vectors and variation in expression was found in genes involved in methylation. These results also showed that genes particularly orthologous to Arabidopsis APETALA3 involved in petal formation and flower development was down-regulated severely in phytoplasma-infected brassica and with the fact that phytoplasma and insect induce variation in developmental gene expression. The DNA methylation status of flower developmental gene in phytoplasma infected plants with 5-azacytidine restored gene expression strongly suggesting that DNA methylation was involved in down-regulation of floral development genes in phytoplasma infected brassica.

Keywords: genes expression, phytoplasma, DNA methylation, flower development

Procedia PDF Downloads 342
7809 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis

Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model

Procedia PDF Downloads 338
7808 Dielectric, Energy Storage and Impedance Spectroscopic Studies of Tin Doped Ba₀.₉₈Ca₀.₀₂TiO₃ Lead-Free Ceramics

Authors: Ramovatar, Neeraj Panwar

Abstract:

Lead free Ba₀.₉₈Ca₀.₀₂SnxTi₁₋ₓO₃ (x = 0.01 and 0.05 mole %) ferroelectric ceramics have been synthesized by the solid-state reaction method with sintering at 1400 °C for 2 h. The room temperature x-ray diffraction (XRD) patterns identified the tetragonal phase for x = 0.01 composition whereas co-existence of tetragonal and orthorhombic phases for x =0.05 composition. Raman spectroscopy results corroborated with the XRD results at room temperature. The maximum dielectric properties (ɛm ~ 8591, tanδ ~ 0.018) were obtained for the compound with x = 0.01 at 5 kHz. Further, the tetragonal to cubic (TC) transition temperature was observed at 122 °C and 102 °C for the ceramics with x =0.01 and x = 0.05, respectively. The temperature dependent P-E loops also revealed the existence of TC at these particular temperature values. The energy storage density (Ed) of both compounds was calculated from room temperature P – E loops at an applied electric field of 20 kV/cm. The maximum Ed ~ 224 kJ/m³ was achieved for the sample with x = 0.01 as compared to 164 kJ/m³ for the x =0.05 composition. The value of Ed is comparable to other BaTiO₃ based lead free ferroelectric systems. Impedance spectroscopy analysis exhibited the bulk and grain boundary contributions above 300 °C under the frequency range 100 Hz to 1 MHz. The above properties make these ceramics suitable for energy storage devices.

Keywords: dielectric properties, energy storage properties, impedance spectroscopy, lead free ceramics

Procedia PDF Downloads 122
7807 Structural, Magnetic, Electrical and Dielectric Properties of Pr0.8Na0.2MnO3 Manganite

Authors: H. Ben Khlifa, W. Cheikhrouhou, R. M'nassri

Abstract:

The Orthorhombic Pr0.8Na0.2MnO3 ceramic was prepared in Polycrystalline form by a Pechini sol–gel method and its structural, magnetic, electrical, and dielectric properties were investigated experimentally. A structural study confirms that the sample is a single phase. Magnetic measurements show that the sample is a charge ordered Manganite. The sample undergoes two successive magnetic phase transitions with the variation of temperature: a charge ordering transition occurred at TCO = 212 K followed by a Paramagnetic (PM) to ferromagnetic (FM) transition around TC = 115 K. From an electrical point of view, a saturation region was marked in the conductivity as a function of Temperature s(T) curves at a specific temperature. The dc-conductivity (sdc) reaches a maximum value at 240 K. The obtained results are in good agreement with the temperature dependence of the average normalized change (ANC). We found that the conduction mechanism was governed by small polaron hopping (SPH) in the high-temperature region and by variable range hopping (VRH) in the low-temperature region. Complex impedance analysis indicates the presence of a non-Debye relaxation phenomenon in the system. Also, the compound was modeled by an electrical equivalent circuit. Then, the contribution of the grain boundary in the transport properties was confirmed.

Keywords: manganites, preparation methods, magnetization, magnetocaloric effect, electrical and dielectric

Procedia PDF Downloads 135
7806 Application of Fuzzy Logic in Voltage Regulation of Radial Feeder with Distributed Generators

Authors: Anubhav Shrivastava, Lakshya Bhat, Shivarudraswamy

Abstract:

Distributed Generation is the need of the hour. With current advancements in the DG technology, there are some major issues that need to be tackled in order to make this method of generation of energy more efficient and feasible. Among other problems, the control in voltage is the major issue that needs to be addressed. This paper focuses on control of voltage using reactive power control of DGs with the help of fuzzy logic. The membership functions have been defined accordingly and the control of the system is achieved. Finally, with the help of simulation results in Matlab, the control of voltage within the tolerance limit set (+/- 5%) is achieved. The voltage waveform graphs for the IEEE 14 bus system are obtained by using simple algorithm with MATLAB and then with fuzzy logic for 14 bus system. The goal of this project was to control the voltage within limits by controlling the reactive power of the DG using fuzzy logic.

Keywords: distributed generation, fuzzy logic, matlab, newton raphson, IEEE 14 bus, voltage regulation, radial network

Procedia PDF Downloads 604
7805 Parametric Study on Water-Cooling Plates to Improve Cooling Performance on 18650 Li-Ion Battery

Authors: Raksit Nanthatanti, Jarruwat Charoensuk, S. Hirai, Manop Masomtop

Abstract:

In this study, the effect of channel geometry and operating circumstances on a liquid cooling plate for Lithium-ion Battery modules has been investigated Inlet temperature, water velocity, and channel count were the main factors. According to the passage, enhancing the number of cooling channels[2,3,4,6channelperbases] will affect water flow distribution caused by varying the velocity inlet inside the cooling block[0.5,1.0,1.5,2.0 m/sec] and intake temperatures[25,30,35,40oC], The findings indicate that the battery’s temperature drops as the number of channels increases. The maximum battery's operating temperature [45 oC] rises, but ∆t is needed to be less than 5 oC [v≤1m/sec]. Maximum temperature and local temperature difference of the battery change significantly with the change of the velocity inlet in the cooling channel and its thermal conductivity. The results of the simulation will help to increase cooling efficiency on the cooling system for Li-ion Battery based on a Mini channel in a liquid-cooling configuration

Keywords: cooling efficiency, channel count, lithium-ion battery, operating

Procedia PDF Downloads 63
7804 Surface Temperature of Asphalt Pavements with Colored Cement-Based Grouting Materials Containing Ceramic Waste Powder and Zeolite

Authors: H. Higashiyama, M. Sano, F. Nakanishi, M. Sugiyama, M. Kawanishi, S. Tsukuma

Abstract:

The heat island phenomenon and extremely hot summer climate are becoming environmental problems in Japan. Cool pavements reduce the surface temperature compared to conventional asphalt pavements in the hot summer climate and improve the thermal environment in the urban area. The authors have studied cement–based grouting materials poured into voids in porous asphalt pavements to reduce the road surface temperature. For the cement–based grouting material, cement, ceramic waste powder, and natural zeolite were used. This cement–based grouting material developed reduced the road surface temperature by 20 °C or more in the hot summer season. Considering the urban landscape, this study investigates the effect of surface temperature reduction of colored cement–based grouting materials containing pigments poured into voids in porous asphalt pavements by measuring the surface temperature of asphalt pavements outdoors. The yellow color performed the same as the original cement–based grouting material containing no pigment and was thermally better performance than the other color. However, all the tested cement–based grouting materials performed well for reducing the surface temperature and for creating the urban landscape.

Keywords: ceramic waste powder, natural zeolite, road surface temperature, asphalt pavement, urban landscape

Procedia PDF Downloads 291
7803 The Effect of Health Program on the Fitness Ability of Abnormal BMI University Students

Authors: Hui-Fang Lee, Meng-Chu Liu, Wen-Chi Lu, Hsuan-Jung Hsieh

Abstract:

The purpose of the study was to examine the effect of health program on the fitness ability of abnormal BMI students of Ching-Yun University of Science and Technology. In order to achieve this purpose, self-regulation theory and dietary education were applied, and the effect of 10-week sports activities and three-day diet records on pre-test and post-test of fitness activities was analyzed. There were 40 original participants. Then, nine people who were with normal BMI, low attendance or unfinished fitness test were eliminated from this research. The valid samples were 31 (77.5%) participants. The fitness activities included sit-bending, one minute sit-up, standing long jump, and three-minute stage boarding. The averages of three-day diet records were compared, and differences of pre-test and post-test of the four fitness activities were analyzed with paired-samples t test. The results showed that there was a significant difference between pre-test and post of male students’ BMI and one minute sit-up. Females’ sit-bending and one minute sit-up had the same effect. Females had high fat intake in three-day diet records. The research showed that the use of self-regulation theory and dietary education, the implementation of sports activities and three-day diet records could significantly enhance the physical fitness indicators or effects. While in the course of sports, we should guide students to think about the gap between self-behavior and ideal behavior, then realize the main reasons and improving methods, and finally go towards the goal and improve the effect of physical fitness.

Keywords: self-regulation theory, dietary education, three-day diet records, physical fitness

Procedia PDF Downloads 288
7802 Effect of Built in Polarization on Thermal Properties of InGaN/GaN Heterostructures

Authors: Bijay Kumar Sahoo

Abstract:

An important feature of InₓGa₁-ₓN/GaN heterostructures is strong built-in polarization (BIP) electric field at the hetero-interface due to spontaneous (sp) and piezoelectric (pz) polarizations. The intensity of this electric field reaches several MV/cm. This field has profound impact on optical, electrical and thermal properties. In this work, the effect of BIP field on thermal conductivity of InₓGa₁-ₓN/GaN heterostructure has been investigated theoretically. The interaction between the elastic strain and built in electric field induces additional electric polarization. This additional polarization contributes to the elastic constant of InₓGa₁-ₓN alloy. This in turn modifies material parameters of InₓGa₁-ₓN. The BIP mechanism enhances elastic constant, phonon velocity and Debye temperature and their bowing constants in InₓGa₁-ₓN alloy. These enhanced thermal parameters increase phonon mean free path which boost thermal conduction process. The thermal conductivity (k) of InxGa1-xN alloy has been estimated for x=0, 0.1, 0.3 and 0.9. Computation finds that irrespective of In content, the room temperature k of InₓGa₁-ₓN/GaN heterostructure is enhanced by BIP mechanism. Our analysis shows that at a certain temperature both k with and without BIP show crossover. Below this temperature k with BIP field is lower than k without BIP; however, above this temperature k with BIP field is significantly contributed by BIP mechanism leading to k with BIP field become higher than k without BIP field. The crossover temperature is primary pyroelectric transition temperature. The pyroelectric transition temperature of InₓGa₁-ₓN alloy has been predicted for different x. This signature of pyroelectric nature suggests that thermal conductivity can reveal pyroelectricity in InₓGa₁-ₓN alloy. The composition dependent room temperature k for x=0.1 and 0.3 are in line with prior experimental studies. The result can be used to minimize the self-heating effect in InₓGa₁-ₓN/GaN heterostructures.

Keywords: built-in polarization, phonon relaxation time, thermal properties of InₓGa₁-ₓN /GaN heterostructure, self-heating

Procedia PDF Downloads 384
7801 The Effect of Substrate Temperature on the Structural, Optical, and Electrical of Nano-Crystalline Tin Doped-Cadmium Telluride Thin Films for Photovoltaic Applications

Authors: Eman A. Alghamdi, A. M. Aldhafiri

Abstract:

It was found that the induce an isolated dopant close to the middle of the bandgap by occupying the Cd position in the CdTe lattice structure is an efficient factor in reducing the nonradiative recombination rate and increasing the solar efficiency. According to our laboratory results, this work has been carried out to obtain the effect of substrate temperature on the CdTe0.6Sn0.4 prepared by thermal evaporation technique for photovoltaic application. Various substrate temperature (25°C, 100°C, 150°C, 200°C, 250°C and 300°C) was applied. Sn-doped CdTe thin films on a glass substrate at a different substrate temperature were made using CdTe and SnTe powders by the thermal evaporation technique. The structural properties of the prepared samples were determined using Raman, x-Ray Diffraction. Spectroscopic ellipsometry and spectrophotometric measurements were conducted to extract the optical constants as a function of substrate temperature. The structural properties of the grown films show hexagonal and cubic mixed structures and phase change has been reported. Scanning electron microscopy (SEM) reviled that a homogenous with a bigger grain size was obtained at 250°C substrate temperature. The conductivity measurements were recorded as a function of substrate temperatures. The open-circuit voltage was improved by controlling the substrate temperature due to the improvement of the fundamental material issues such as recombination and low carrier concentration. All the result was explained and discussed on the biases of the influences of the Sn dopant and the substrate temperature on the structural, optical and photovoltaic characteristics.

Keywords: CdTe, conductivity, photovoltaic, ellipsometry

Procedia PDF Downloads 99
7800 Hydrogen Storage in Carbonized Coconut Meat (Kernel)

Authors: Viney Dixit, Rohit R. Shahi, Ashish Bhatnagar, P. Jain, T. P. Yadav, O. N. Srivastava

Abstract:

Carbons are being widely investigated as hydrogen storage material owing to their light weight, fast hydrogen absorption kinetics and low cost. However, these materials suffer from low hydrogen storage capacity at room temperature. The aim of the present study is to synthesize carbon based material which shows moderate hydrogen storage at room temperature. For this purpose, hydrogenation characteristics of natural precursor coconut kernel is studied in this work. The hydrogen storage measurement reveals that the as-synthesized materials have good hydrogen adsorption and desorption capacity with fast kinetics. The synthesized material absorbs 8 wt.% of hydrogen at liquid nitrogen temperature and 2.3 wt.% at room temperature. This could be due to the presence of certain elements (KCl, Mg, Ca) which are confirmed by TEM.

Keywords: coconut kernel, carbonization, hydrogenation, KCl, Mg, Ca

Procedia PDF Downloads 388
7799 Psychological Predictors in Performance: An Exploratory Study of a Virtual Ultra-Marathon

Authors: Michael McTighe

Abstract:

Background: The COVID-19 pandemic caused the cancellation of many large-scale in-person sporting events, which led to an increase in the availability of virtual ultra-marathons. This study intended to assess how participation in virtual long distances races relates to levels of physical activity for an extended period of time. Moreover, traditional ultra-marathons are known for being not only physically demanding, but also mentally and emotionally challenging. A second component of this study was to assess how psychological contructs related to emotion regulation and mental toughness predict overall performance in the sport. Method: 83 virtual runners participating in a four-month 1000-kilometer race with the option to exceed 1000 kilometers completed a questionnaire exploring demographics, their performance, and experience in the virtual race. Participants also completed the Difficulties in Emotions Regulation Scale (DERS) and the Sports Mental Toughness Questionnaire (SMTQ). Logistics regressions assessed these constructs’ utility in predicting completion of the 1000-kilometer distance in the time allotted. Multiple regression was employed to predict the total distance traversed during the fourmonth race beyond 1000-kilometers. Result: Neither mental toughness nor emotional regulation was a significant predictor of completing the virtual race’s basic 1000-kilometer finish. However, both variables included together were marginally significant predictors of total miles traversed over the entire event beyond 1000 K (p = .051). Additionally, participation in the event promoted an increase in healthy activity with participants running and walking significantly more in the four months during the event than the four months leading up to it. Discussion: This research intended to explore how psychological constructs relate to performance in a virtual type of endurance event, and how involvement in these types of events related to levels of activity. Higher levels of mental toughness and lower levels in difficulties in emotion regulation were associated with greater performance, and participation in the event promoted an increase in athletic involvement. Future psychological skill training aimed at improving emotion regulation and mental toughness may be used to enhance athletic performance in these sports, and future investigations into these events could explore how general participation may influence these constructs over time. Finally, these results suggest that participation in this logistically accessible, and affordable type of sport can promote greater involvement in healthy activities related to running and walking.

Keywords: virtual races, emotion regulation, mental toughness, ultra-marathon, predictors in performance

Procedia PDF Downloads 69