Search results for: spectral decomposition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1343

Search results for: spectral decomposition

983 Cadaver Free Fatty Acid Distribution Associated with Burial in Mangrove and Oil Palm Plantation Soils under Tropical Climate

Authors: Siti Sofo Ismail, Siti Noraina Wahida Mohd Alwi, Mohamad Hafiz Ameran, Masrudin M. Yusoff

Abstract:

Locating clandestine cadaver is crucially important in forensic investigations. However, it requires a lot of man power, costly and time consuming. Therefore, the development of a new method to locate the clandestine graves is urgently needed as the cases involve burial of cadaver in different types of soils under tropical climates are still not well explored. This study focused on the burial in mangrove and oil palm plantation soils, comparing the fatty acid distributions in different soil acidities. A stimulated burial experiment was conducted using domestic pig (Sus scrofa) to substitute human tissues. Approximately 20g of pig fatty flesh was allowed to decompose in mangrove and oil palm plantation soils, mimicking burial in a shallow grave. The associated soils were collected at different designated sampling points, corresponding different decomposition stages. Modified Bligh-Dyer Extraction method was applied to extract the soil free fatty acids. Then, the obtained free fatty acids were analyzed with gas chromatography-flame ionization (GC-FID). A similar fatty acid distribution was observed for both mangrove and oil palm plantations soils. Palmitic acid (C₁₆) was the most abundance of free fatty acid, followed by stearic acid (C₁₈). However, the concentration of palmitic acid (C₁₆) higher in oil palm plantation compare to mangrove soils. Conclusion, the decomposition rate of cadaver can be affected by different type of soils.

Keywords: clandestine grave, burial, soils, free fatty acid

Procedia PDF Downloads 399
982 Seismic Microzonation Analysis for Damage Mapping of the 2006 Yogyakarta Earthquake, Indonesia

Authors: Fathul Mubin, Budi E. Nurcahya

Abstract:

In 2006, a large earthquake ever occurred in the province of Yogyakarta, which caused considerable damage. This is the basis need to investigate the seismic vulnerability index in around of the earthquake zone. This research is called microzonation of earthquake hazard. This research has been conducted at the site and surrounding of Prambanan Temple, includes homes and civil buildings. The reason this research needs to be done because in the event of an earthquake in 2006, there was damage to the temples at Prambanan temple complex and its surroundings. In this research, data collection carried out for 60 minutes using three component seismograph measurements at 165 points with spacing of 1000 meters. The data recorded in time function were analyzed using the spectral ratio method, known as the Horizontal to Vertical Spectral Ratio (HVSR). Results from this analysis are dominant frequency (Fg) and maximum amplification factor (Ag) are used to obtain seismic vulnerability index. The results of research showed the dominant frequency range from 0.5 to 30 Hz and the amplification is in interval from 0.5 to 9. Interval value for seismic vulnerability index is 0.1 to 50. Based on distribution maps of seismic vulnerability index and impact of buildings damage seemed for suitability. For further research, it needs to survey to the east (klaten) and south (Bantul, DIY) to determine a full distribution maps of seismic vulnerability index.

Keywords: amplification factor, dominant frequency, microzonation analysis, seismic vulnerability index

Procedia PDF Downloads 195
981 High Photosensitivity and Broad Spectral Response of Multi-Layered Germanium Sulfide Transistors

Authors: Rajesh Kumar Ulaganathan, Yi-Ying Lu, Chia-Jung Kuo, Srinivasa Reddy Tamalampudi, Raman Sankar, Fang Cheng Chou, Yit-Tsong Chen

Abstract:

In this paper, we report the optoelectronic properties of multi-layered GeS nanosheets (~28 nm thick)-based field-effect transistors (called GeS-FETs). The multi-layered GeS-FETs exhibit remarkably high photoresponsivity of Rλ ~ 206 AW-1 under illumination of 1.5 µW/cm2 at  = 633 nm, Vg = 0 V, and Vds = 10 V. The obtained Rλ ~ 206 AW-1 is excellent as compared with a GeS nanoribbon-based and the other family members of group IV-VI-based photodetectors in the two-dimensional (2D) realm, such as GeSe and SnS2. The gate-dependent photoresponsivity of GeS-FETs was further measured to be able to reach Rλ ~ 655 AW-1 operated at Vg = -80 V. Moreover, the multi-layered GeS photodetector holds high external quantum efficiency (EQE ~ 4.0 × 104 %) and specific detectivity (D* ~ 2.35 × 1013 Jones). The measured D* is comparable to those of the advanced commercial Si- and InGaAs-based photodiodes. The GeS photodetector also shows an excellent long-term photoswitching stability with a response time of ~7 ms over a long period of operation (>1 h). These extraordinary properties of high photocurrent generation, broad spectral range, fast response, and long-term stability make the GeS-FET photodetector a highly qualified candidate for future optoelectronic applications.

Keywords: germanium sulfide, photodetector, photoresponsivity, external quantum efficiency, specific detectivity

Procedia PDF Downloads 541
980 Gas Network Noncooperative Game

Authors: Teresa Azevedo PerdicoúLis, Paulo Lopes Dos Santos

Abstract:

The conceptualisation of the problem of network optimisation as a noncooperative game sets up a holistic interactive approach that brings together different network features (e.g., com-pressor stations, sources, and pipelines, in the gas context) where the optimisation objectives are different, and a single optimisation procedure becomes possible without having to feed results from diverse software packages into each other. A mathematical model of this type, where independent entities take action, offers the ideal modularity and subsequent problem decomposition in view to design a decentralised algorithm to optimise the operation and management of the network. In a game framework, compressor stations and sources are under-stood as players which communicate through network connectivity constraints–the pipeline model. That is, in a scheme similar to tatonnementˆ, the players appoint their best settings and then interact to check for network feasibility. The devolved degree of network unfeasibility informs the players about the ’quality’ of their settings, and this two-phase iterative scheme is repeated until a global optimum is obtained. Due to network transients, its optimisation needs to be assessed at different points of the control interval. For this reason, the proposed approach to optimisation has two stages: (i) the first stage computes along the period of optimisation in order to fulfil the requirement just mentioned; (ii) the second stage is initialised with the solution found by the problem computed at the first stage, and computes in the end of the period of optimisation to rectify the solution found at the first stage. The liability of the proposed scheme is proven correct on an abstract prototype and three example networks.

Keywords: connectivity matrix, gas network optimisation, large-scale, noncooperative game, system decomposition

Procedia PDF Downloads 152
979 Urban Growth Analysis Using Multi-Temporal Satellite Images, Non-stationary Decomposition Methods and Stochastic Modeling

Authors: Ali Ben Abbes, ImedRiadh Farah, Vincent Barra

Abstract:

Remotely sensed data are a significant source for monitoring and updating databases for land use/cover. Nowadays, changes detection of urban area has been a subject of intensive researches. Timely and accurate data on spatio-temporal changes of urban areas are therefore required. The data extracted from multi-temporal satellite images are usually non-stationary. In fact, the changes evolve in time and space. This paper is an attempt to propose a methodology for changes detection in urban area by combining a non-stationary decomposition method and stochastic modeling. We consider as input of our methodology a sequence of satellite images I1, I2, … In at different periods (t = 1, 2, ..., n). Firstly, a preprocessing of multi-temporal satellite images is applied. (e.g. radiometric, atmospheric and geometric). The systematic study of global urban expansion in our methodology can be approached in two ways: The first considers the urban area as one same object as opposed to non-urban areas (e.g. vegetation, bare soil and water). The objective is to extract the urban mask. The second one aims to obtain a more knowledge of urban area, distinguishing different types of tissue within the urban area. In order to validate our approach, we used a database of Tres Cantos-Madrid in Spain, which is derived from Landsat for a period (from January 2004 to July 2013) by collecting two frames per year at a spatial resolution of 25 meters. The obtained results show the effectiveness of our method.

Keywords: multi-temporal satellite image, urban growth, non-stationary, stochastic model

Procedia PDF Downloads 428
978 Ammonia Cracking: Catalysts and Process Configurations for Enhanced Performance

Authors: Frea Van Steenweghen, Lander Hollevoet, Johan A. Martens

Abstract:

Compared to other hydrogen (H₂) carriers, ammonia (NH₃) is one of the most promising carriers as it contains 17.6 wt% hydrogen. It is easily liquefied at ≈ 9–10 bar pressure at ambient temperature. More importantly, NH₃ is a carbon-free hydrogen carrier with no CO₂ emission at final decomposition. Ammonia has a well-defined regulatory framework and a good track record regarding safety concerns. Furthermore, the industry already has an existing transport infrastructure consisting of pipelines, tank trucks and shipping technology, as ammonia has been manufactured and distributed around the world for over a century. While NH₃ synthesis and transportation technological solutions are at hand, a missing link in the hydrogen delivery scheme from ammonia is an energy-lean and efficient technology for cracking ammonia into H₂ and N₂. The most explored option for ammonia decomposition is thermo-catalytic cracking which is, by itself, the most energy-efficient approach compared to other technologies, such as plasma and electrolysis, as it is the most energy-lean and robust option. The decomposition reaction is favoured only at high temperatures (> 300°C) and low pressures (1 bar) as the thermocatalytic ammonia cracking process is faced with thermodynamic limitations. At 350°C, the thermodynamic equilibrium at 1 bar pressure limits the conversion to 99%. Gaining additional conversion up to e.g. 99.9% necessitates heating to ca. 530°C. However, reaching thermodynamic equilibrium is infeasible as a sufficient driving force is needed, requiring even higher temperatures. Limiting the conversion below the equilibrium composition is a more economical option. Thermocatalytic ammonia cracking is documented in scientific literature. Among the investigated metal catalysts (Ru, Co, Ni, Fe, …), ruthenium is known to be most active for ammonia decomposition with an onset of cracking activity around 350°C. For establishing > 99% conversion reaction, temperatures close to 600°C are required. Such high temperatures are likely to reduce the round-trip efficiency but also the catalyst lifetime because of the sintering of the supported metal phase. In this research, the first focus was on catalyst bed design, avoiding diffusion limitation. Experiments in our packed bed tubular reactor set-up showed that extragranular diffusion limitations occur at low concentrations of NH₃ when reaching high conversion, a phenomenon often overlooked in experimental work. A second focus was thermocatalyst development for ammonia cracking, avoiding the use of noble metals. To this aim, candidate metals and mixtures were deposited on a range of supports. Sintering resistance at high temperatures and the basicity of the support were found to be crucial catalyst properties. The catalytic activity was promoted by adding alkaline and alkaline earth metals. A third focus was studying the optimum process configuration by process simulations. A trade-off between conversion and favorable operational conditions (i.e. low pressure and high temperature) may lead to different process configurations, each with its own pros and cons. For example, high-pressure cracking would eliminate the need for post-compression but is detrimental for the thermodynamic equilibrium, leading to an optimum in cracking pressure in terms of energy cost.

Keywords: ammonia cracking, catalyst research, kinetics, process simulation, thermodynamic equilibrium

Procedia PDF Downloads 66
977 Frequency Domain Decomposition, Stochastic Subspace Identification and Continuous Wavelet Transform for Operational Modal Analysis of Three Story Steel Frame

Authors: Ardalan Sabamehr, Ashutosh Bagchi

Abstract:

Recently, Structural Health Monitoring (SHM) based on the vibration of structures has attracted the attention of researchers in different fields such as: civil, aeronautical and mechanical engineering. Operational Modal Analysis (OMA) have been developed to identify modal properties of infrastructure such as bridge, building and so on. Frequency Domain Decomposition (FDD), Stochastic Subspace Identification (SSI) and Continuous Wavelet Transform (CWT) are the three most common methods in output only modal identification. FDD, SSI, and CWT operate based on the frequency domain, time domain, and time-frequency plane respectively. So, FDD and SSI are not able to display time and frequency at the same time. By the way, FDD and SSI have some difficulties in a noisy environment and finding the closed modes. CWT technique which is currently developed works on time-frequency plane and a reasonable performance in such condition. The other advantage of wavelet transform rather than other current techniques is that it can be applied for the non-stationary signal as well. The aim of this paper is to compare three most common modal identification techniques to find modal properties (such as natural frequency, mode shape, and damping ratio) of three story steel frame which was built in Concordia University Lab by use of ambient vibration. The frame has made of Galvanized steel with 60 cm length, 27 cm width and 133 cm height with no brace along the long span and short space. Three uniaxial wired accelerations (MicroStarin with 100mv/g accuracy) have been attached to the middle of each floor and gateway receives the data and send to the PC by use of Node Commander Software. The real-time monitoring has been performed for 20 seconds with 512 Hz sampling rate. The test is repeated for 5 times in each direction by hand shaking and impact hammer. CWT is able to detect instantaneous frequency by used of ridge detection method. In this paper, partial derivative ridge detection technique has been applied to the local maxima of time-frequency plane to detect the instantaneous frequency. The extracted result from all three methods have been compared, and it demonstrated that CWT has the better performance in term of its accuracy in noisy environment. The modal parameters such as natural frequency, damping ratio and mode shapes are identified from all three methods.

Keywords: ambient vibration, frequency domain decomposition, stochastic subspace identification, continuous wavelet transform

Procedia PDF Downloads 296
976 Features of Normative and Pathological Realizations of Sibilant Sounds for Computer-Aided Pronunciation Evaluation in Children

Authors: Zuzanna Miodonska, Michal Krecichwost, Pawel Badura

Abstract:

Sigmatism (lisping) is a speech disorder in which sibilant consonants are mispronounced. The diagnosis of this phenomenon is usually based on the auditory assessment. However, the progress in speech analysis techniques creates a possibility of developing computer-aided sigmatism diagnosis tools. The aim of the study is to statistically verify whether specific acoustic features of sibilant sounds may be related to pronunciation correctness. Such knowledge can be of great importance while implementing classifiers and designing novel tools for automatic sibilants pronunciation evaluation. The study covers analysis of various speech signal measures, including features proposed in the literature for the description of normative sibilants realization. Amplitudes and frequencies of three fricative formants (FF) are extracted based on local spectral maxima of the friction noise. Skewness, kurtosis, four normalized spectral moments (SM) and 13 mel-frequency cepstral coefficients (MFCC) with their 1st and 2nd derivatives (13 Delta and 13 Delta-Delta MFCC) are included in the analysis as well. The resulting feature vector contains 51 measures. The experiments are performed on the speech corpus containing words with selected sibilant sounds (/ʃ, ʒ/) pronounced by 60 preschool children with proper pronunciation or with natural pathologies. In total, 224 /ʃ/ segments and 191 /ʒ/ segments are employed in the study. The Mann-Whitney U test is employed for the analysis of stigmatism and normative pronunciation. Statistically, significant differences are obtained in most of the proposed features in children divided into these two groups at p < 0.05. All spectral moments and fricative formants appear to be distinctive between pathology and proper pronunciation. These metrics describe the friction noise characteristic for sibilants, which makes them particularly promising for the use in sibilants evaluation tools. Correspondences found between phoneme feature values and an expert evaluation of the pronunciation correctness encourage to involve speech analysis tools in diagnosis and therapy of sigmatism. Proposed feature extraction methods could be used in a computer-assisted stigmatism diagnosis or therapy systems.

Keywords: computer-aided pronunciation evaluation, sigmatism diagnosis, speech signal analysis, statistical verification

Procedia PDF Downloads 301
975 Nonlinear Triad Interactions in Magnetohydrodynamic Plasma Turbulence

Authors: Yasser Rammah, Wolf-Christian Mueller

Abstract:

Nonlinear triad interactions in incompressible three-dimensional magnetohydrodynamic (3D-MHD) turbulence are studied by analyzing data from high-resolution direct numerical simulations of decaying isotropic (5123 grid points) and forced anisotropic (10242 x256 grid points) turbulence. An accurate numerical approach toward analyzing nonlinear turbulent energy transfer function and triad interactions is presented. It involves the direct numerical examination of every wavenumber triad that is associated with the nonlinear terms in the differential equations of MHD in the inertial range of turbulence. The technique allows us to compute the spectral energy transfer and energy fluxes, as well as the spectral locality property of energy transfer function. To this end, the geometrical shape of each underlying wavenumber triad that contributes to the statistical transfer density function is examined to infer the locality of the energy transfer. Results show that the total energy transfer is local via nonlocal triad interactions in decaying macroscopically isotropic MHD turbulence. In anisotropic MHD, turbulence subject to a strong mean magnetic field the nonlinear transfer is generally weaker and exhibits a moderate increase of nonlocality in both perpendicular and parallel directions compared to the isotropic case. These results support the recent mathematical findings, which also claim the locality of nonlinear energy transfer in MHD turbulence.

Keywords: magnetohydrodynamic (MHD) turbulence, transfer density function, locality function, direct numerical simulation (DNS)

Procedia PDF Downloads 385
974 Describing the Fine Electronic Structure and Predicting Properties of Materials with ATOMIC MATTERS Computation System

Authors: Rafal Michalski, Jakub Zygadlo

Abstract:

We present the concept and scientific methods and algorithms of our computation system called ATOMIC MATTERS. This is the first presentation of the new computer package, that allows its user to describe physical properties of atomic localized electron systems subject to electromagnetic interactions. Our solution applies to situations where an unclosed electron 2p/3p/3d/4d/5d/4f/5f subshell interacts with an electrostatic potential of definable symmetry and external magnetic field. Our methods are based on Crystal Electric Field (CEF) approach, which takes into consideration the electrostatic ligands field as well as the magnetic Zeeman effect. The application allowed us to predict macroscopic properties of materials such as: Magnetic, spectral and calorimetric as a result of physical properties of their fine electronic structure. We emphasize the importance of symmetry of charge surroundings of atom/ion, spin-orbit interactions (spin-orbit coupling) and the use of complex number matrices in the definition of the Hamiltonian. Calculation methods, algorithms and convention recalculation tools collected in ATOMIC MATTERS were chosen to permit the prediction of magnetic and spectral properties of materials in isostructural series.

Keywords: atomic matters, crystal electric field (CEF) spin-orbit coupling, localized states, electron subshell, fine electronic structure

Procedia PDF Downloads 320
973 Hand Gesture Recognition for Sign Language: A New Higher Order Fuzzy HMM Approach

Authors: Saad M. Darwish, Magda M. Madbouly, Murad B. Khorsheed

Abstract:

Sign Languages (SL) are the most accomplished forms of gestural communication. Therefore, their automatic analysis is a real challenge, which is interestingly implied to their lexical and syntactic organization levels. Hidden Markov models (HMM’s) have been used prominently and successfully in speech recognition and, more recently, in handwriting recognition. Consequently, they seem ideal for visual recognition of complex, structured hand gestures such as are found in sign language. In this paper, several results concerning static hand gesture recognition using an algorithm based on Type-2 Fuzzy HMM (T2FHMM) are presented. The features used as observables in the training as well as in the recognition phases are based on Singular Value Decomposition (SVD). SVD is an extension of Eigen decomposition to suit non-square matrices to reduce multi attribute hand gesture data to feature vectors. SVD optimally exposes the geometric structure of a matrix. In our approach, we replace the basic HMM arithmetic operators by some adequate Type-2 fuzzy operators that permits us to relax the additive constraint of probability measures. Therefore, T2FHMMs are able to handle both random and fuzzy uncertainties existing universally in the sequential data. Experimental results show that T2FHMMs can effectively handle noise and dialect uncertainties in hand signals besides a better classification performance than the classical HMMs. The recognition rate of the proposed system is 100% for uniform hand images and 86.21% for cluttered hand images.

Keywords: hand gesture recognition, hand detection, type-2 fuzzy logic, hidden Markov Model

Procedia PDF Downloads 462
972 Assessing the Theoretical Suitability of Sentinel-2 and Worldview-3 Data for Hydrocarbon Mapping of Spill Events, Using Hydrocarbon Spectral Slope Model

Authors: K. Tunde Olagunju, C. Scott Allen, Freek Van Der Meer

Abstract:

Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization are only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two (2) operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the hydrocarbon spectral slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven (7) different hydrocarbon oils (crude and refined oil) taken on ten (10) different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (> 100 nm).

Keywords: hydrocarbon, oil spill, remote sensing, hyperspectral, multispectral, hydrocarbon-substrate combination, Sentinel-2, WorldView-3

Procedia PDF Downloads 216
971 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface

Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto

Abstract:

Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.

Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns

Procedia PDF Downloads 128
970 Power Iteration Clustering Based on Deflation Technique on Large Scale Graphs

Authors: Taysir Soliman

Abstract:

One of the current popular clustering techniques is Spectral Clustering (SC) because of its advantages over conventional approaches such as hierarchical clustering, k-means, etc. and other techniques as well. However, one of the disadvantages of SC is the time consuming process because it requires computing the eigenvectors. In the past to overcome this disadvantage, a number of attempts have been proposed such as the Power Iteration Clustering (PIC) technique, which is one of versions from SC; some of PIC advantages are: 1) its scalability and efficiency, 2) finding one pseudo-eigenvectors instead of computing eigenvectors, and 3) linear combination of the eigenvectors in linear time. However, its worst disadvantage is an inter-class collision problem because it used only one pseudo-eigenvectors which is not enough. Previous researchers developed Deflation-based Power Iteration Clustering (DPIC) to overcome problems of PIC technique on inter-class collision with the same efficiency of PIC. In this paper, we developed Parallel DPIC (PDPIC) to improve the time and memory complexity which is run on apache spark framework using sparse matrix. To test the performance of PDPIC, we compared it to SC, ESCG, ESCALG algorithms on four small graph benchmark datasets and nine large graph benchmark datasets, where PDPIC proved higher accuracy and better time consuming than other compared algorithms.

Keywords: spectral clustering, power iteration clustering, deflation-based power iteration clustering, Apache spark, large graph

Procedia PDF Downloads 190
969 Graphene Metamaterials Supported Tunable Terahertz Fano Resonance

Authors: Xiaoyong He

Abstract:

The manipulation of THz waves is still a challenging task due to lack of natural materials interacted with it strongly. Designed by tailoring the characters of unit cells (meta-molecules), the advance of metamaterials (MMs) may solve this problem. However, because of Ohmic and radiation losses, the performance of MMs devices is subjected to the dissipation and low quality factor (Q-factor). This dilemma may be circumvented by Fano resonance, which arises from the destructive interference between a bright continuum mode and dark discrete mode (or a narrow resonance). Different from symmetric Lorentz spectral curve, Fano resonance indicates a distinct asymmetric line-shape, ultrahigh quality factor, steep variations in spectrum curves. Fano resonance is usually realized through symmetry breaking. However, if concentric double rings (DR) are placed closely to each other, the near-field coupling between them gives rise to two hybridized modes (bright and narrowband dark modes) because of the local asymmetry, resulting into the characteristic Fano line shape. Furthermore, from the practical viewpoint, it is highly desirable requirement that to achieve the modulation of Fano spectral curves conveniently, which is an important and interesting research topics. For current Fano systems, the tunable spectral curves can be realized by adjusting the geometrical structural parameters or magnetic fields biased the ferrite-based structure. But due to limited dispersion properties of active materials, it is still a tough work to tailor Fano resonance conveniently with the fixed structural parameters. With the favorable properties of extreme confinement and high tunability, graphene is a strong candidate to achieve this goal. The DR-structure possesses the excitation of so-called “trapped modes,” with the merits of simple structure and high quality of resonances in thin structures. By depositing graphene circular DR on the SiO2/Si/ polymer substrate, the tunable Fano resonance has been theoretically investigated in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that the obvious Fano peak can be efficiently modulated because of the strong coupling between incident waves and graphene ribbons. As Fermi level increases, the peak amplitude of Fano curve increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 30% if Fermi level changes in the scope of 0.1-1.0 eV. The optimum gap distance between DR is about 8-12 μm, where the value of figure of merit shows a peak. As the graphene ribbon width increases, the Fano spectral curves become broad, and the resonant peak denotes blue shift. The results are very helpful to develop novel graphene plasmonic devices, e.g. sensors and modulators.

Keywords: graphene, metamaterials, terahertz, tunable

Procedia PDF Downloads 344
968 Methodology to Achieve Non-Cooperative Target Identification Using High Resolution Range Profiles

Authors: Olga Hernán-Vega, Patricia López-Rodríguez, David Escot-Bocanegra, Raúl Fernández-Recio, Ignacio Bravo

Abstract:

Non-Cooperative Target Identification has become a key research domain in the Defense industry since it provides the ability to recognize targets at long distance and under any weather condition. High Resolution Range Profiles, one-dimensional radar images where the reflectivity of a target is projected onto the radar line of sight, are widely used for identification of flying targets. According to that, to face this problem, an approach to Non-Cooperative Target Identification based on the exploitation of Singular Value Decomposition to a matrix of range profiles is presented. Target Identification based on one-dimensional radar images compares a collection of profiles of a given target, namely test set, with the profiles included in a pre-loaded database, namely training set. The classification is improved by using Singular Value Decomposition since it allows to model each aircraft as a subspace and to accomplish recognition in a transformed domain where the main features are easier to extract hence, reducing unwanted information such as noise. Singular Value Decomposition permits to define a signal subspace which contain the highest percentage of the energy, and a noise subspace which will be discarded. This way, only the valuable information of each target is used in the recognition process. The identification algorithm is based on finding the target that minimizes the angle between subspaces and takes place in a transformed domain. Two metrics, F1 and F2, based on Singular Value Decomposition are accomplished in the identification process. In the case of F2, the angle is weighted, since the top vectors set the importance in the contribution to the formation of a target signal, on the contrary F1 simply shows the evolution of the unweighted angle. In order to have a wide database or radar signatures and evaluate the performance, range profiles are obtained through numerical simulation of seven civil aircraft at defined trajectories taken from an actual measurement. Taking into account the nature of the datasets, the main drawback of using simulated profiles instead of actual measured profiles is that the former implies an ideal identification scenario, since measured profiles suffer from noise, clutter and other unwanted information and simulated profiles don't. In this case, the test and training samples have similar nature and usually a similar high signal-to-noise ratio, so as to assess the feasibility of the approach, the addition of noise has been considered before the creation of the test set. The identification results applying the unweighted and weighted metrics are analysed for demonstrating which algorithm provides the best robustness against noise in an actual possible scenario. So as to confirm the validity of the methodology, identification experiments of profiles coming from electromagnetic simulations are conducted, revealing promising results. Considering the dissimilarities between the test and training sets when noise is added, the recognition performance has been improved when weighting is applied. Future experiments with larger sets are expected to be conducted with the aim of finally using actual profiles as test sets in a real hostile situation.

Keywords: HRRP, NCTI, simulated/synthetic database, SVD

Procedia PDF Downloads 354
967 The Impact of Trait and Mathematical Anxiety on Oscillatory Brain Activity during Lexical and Numerical Error-Recognition Tasks

Authors: Alexander N. Savostyanov, Tatyana A. Dolgorukova, Elena A. Esipenko, Mikhail S. Zaleshin, Margherita Malanchini, Anna V. Budakova, Alexander E. Saprygin, Yulia V. Kovas

Abstract:

The present study compared spectral-power indexes and cortical topography of brain activity in a sample characterized by different levels of trait and mathematical anxiety. 52 healthy Russian-speakers (age 17-32; 30 males) participated in the study. Participants solved an error recognition task under 3 conditions: A lexical condition (simple sentences in Russian), and two numerical conditions (simple arithmetic and complicated algebraic problems). Trait and mathematical anxiety were measured using self-repot questionnaires. EEG activity was recorded simultaneously during task execution. Event-related spectral perturbations (ERSP) were used to analyze spectral-power changes in brain activity. Additionally, sLORETA was applied in order to localize the sources of brain activity. When exploring EEG activity recorded after tasks onset during lexical conditions, sLORETA revealed increased activation in frontal and left temporal cortical areas, mainly in the alpha/beta frequency ranges. When examining the EEG activity recorded after task onset during arithmetic and algebraic conditions, additional activation in delta/theta band in the right parietal cortex was observed. The ERSP plots reveled alpha/beta desynchronizations within a 500-3000 ms interval after task onset and slow-wave synchronization within an interval of 150-350 ms. Amplitudes of these intervals reflected the accuracy of error recognition, and were differently associated with the three (lexical, arithmetic and algebraic) conditions. The level of trait anxiety was positively correlated with the amplitude of alpha/beta desynchronization. The level of mathematical anxiety was negatively correlated with the amplitude of theta synchronization and of alpha/beta desynchronization. Overall, trait anxiety was related with an increase in brain activation during task execution, whereas mathematical anxiety was associated with increased inhibitory-related activity. We gratefully acknowledge the support from the №11.G34.31.0043 grant from the Government of the Russian Federation.

Keywords: anxiety, EEG, lexical and numerical error-recognition tasks, alpha/beta desynchronization

Procedia PDF Downloads 525
966 Land Use/Land Cover Mapping Using Landsat 8 and Sentinel-2 in a Mediterranean Landscape

Authors: Moschos Vogiatzis, K. Perakis

Abstract:

Spatial-explicit and up-to-date land use/land cover information is fundamental for spatial planning, land management, sustainable development, and sound decision-making. In the last decade, many satellite-derived land cover products at different spatial, spectral, and temporal resolutions have been developed, such as the European Copernicus Land Cover product. However, more efficient and detailed information for land use/land cover is required at the regional or local scale. A typical Mediterranean basin with a complex landscape comprised of various forest types, crops, artificial surfaces, and wetlands was selected to test and develop our approach. In this study, we investigate the improvement of Copernicus Land Cover product (CLC2018) using Landsat 8 and Sentinel-2 pixel-based classification based on all available existing geospatial data (Forest Maps, LPIS, Natura2000 habitats, cadastral parcels, etc.). We examined and compared the performance of the Random Forest classifier for land use/land cover mapping. In total, 10 land use/land cover categories were recognized in Landsat 8 and 11 in Sentinel-2A. A comparison of the overall classification accuracies for 2018 shows that Landsat 8 classification accuracy was slightly higher than Sentinel-2A (82,99% vs. 80,30%). We concluded that the main land use/land cover types of CLC2018, even within a heterogeneous area, can be successfully mapped and updated according to CLC nomenclature. Future research should be oriented toward integrating spatiotemporal information from seasonal bands and spectral indexes in the classification process.

Keywords: classification, land use/land cover, mapping, random forest

Procedia PDF Downloads 126
965 Raman Spectral Fingerprints of Healthy and Cancerous Human Colorectal Tissues

Authors: Maria Karnachoriti, Ellas Spyratou, Dimitrios Lykidis, Maria Lambropoulou, Yiannis S. Raptis, Ioannis Seimenis, Efstathios P. Efstathopoulos, Athanassios G. Kontos

Abstract:

Colorectal cancer is the third most common cancer diagnosed in Europe, according to the latest incidence data provided by the World Health Organization (WHO), and early diagnosis has proved to be the key in reducing cancer-related mortality. In cases where surgical interventions are required for cancer treatment, the accurate discrimination between healthy and cancerous tissues is critical for the postoperative care of the patient. The current study focuses on the ex vivo handling of surgically excised colorectal specimens and the acquisition of their spectral fingerprints using Raman spectroscopy. Acquired data were analyzed in an effort to discriminate, in microscopic scale, between healthy and malignant margins. Raman spectroscopy is a spectroscopic technique with high detection sensitivity and spatial resolution of few micrometers. The spectral fingerprint which is produced during laser-tissue interaction is unique and characterizes the biostructure and its inflammatory or cancer state. Numerous published studies have demonstrated the potential of the technique as a tool for the discrimination between healthy and malignant tissues/cells either ex vivo or in vivo. However, the handling of the excised human specimens and the Raman measurement conditions remain challenging, unavoidably affecting measurement reliability and repeatability, as well as the technique’s overall accuracy and sensitivity. Therefore, tissue handling has to be optimized and standardized to ensure preservation of cell integrity and hydration level. Various strategies have been implemented in the past, including the use of balanced salt solutions, small humidifiers or pump-reservoir-pipette systems. In the current study, human colorectal specimens of 10X5 mm were collected from 5 patients up to now who underwent open surgery for colorectal cancer. A novel, non-toxic zinc-based fixative (Z7) was used for tissue preservation. Z7 demonstrates excellent protein preservation and protection against tissue autolysis. Micro-Raman spectra were recorded with a Renishaw Invia spectrometer from successive random 2 micrometers spots upon excitation at 785 nm to decrease fluorescent background and secure avoidance of tissue photodegradation. A temperature-controlled approach was adopted to stabilize the tissue at 2 °C, thus minimizing dehydration effects and consequent focus drift during measurement. A broad spectral range, 500-3200 cm-1,was covered with five consecutive full scans that lasted for 20 minutes in total. The average spectra were used for least square fitting analysis of the Raman modes.Subtle Raman differences were observed between normal and cancerous colorectal tissues mainly in the intensities of the 1556 cm-1 and 1628 cm-1 Raman modes which correspond to v(C=C) vibrations in porphyrins, as well as in the range of 2800-3000 cm-1 due to CH2 stretching of lipids and CH3 stretching of proteins. Raman spectra evaluation was supported by histological findings from twin specimens. This study demonstrates that Raman spectroscopy may constitute a promising tool for real-time verification of clear margins in colorectal cancer open surgery.

Keywords: colorectal cancer, Raman spectroscopy, malignant margins, spectral fingerprints

Procedia PDF Downloads 91
964 Mapping Man-Induced Soil Degradation in Armenia's High Mountain Pastures through Remote Sensing Methods: A Case Study

Authors: A. Saghatelyan, Sh. Asmaryan, G. Tepanosyan, V. Muradyan

Abstract:

One of major concern to Armenia has been soil degradation emerged as a result of unsustainable management and use of grasslands, this in turn largely impacting environment, agriculture and finally human health. Hence, assessment of soil degradation is an essential and urgent objective set out to measure its possible consequences and develop a potential management strategy. Since recently, an essential tool for assessing pasture degradation has been remote sensing (RS) technologies. This research was done with an intention to measure preciseness of Linear spectral unmixing (LSU) and NDVI-SMA methods to estimate soil surface components related to degradation (fractional vegetation cover-FVC, bare soils fractions, surface rock cover) and determine appropriateness of these methods for mapping man-induced soil degradation in high mountain pastures. Taking into consideration a spatially complex and heterogeneous biogeophysical structure of the studied site, we used high resolution multispectral QuickBird imagery of a pasture site in one of Armenia’s rural communities - Nerkin Sasoonashen. The accuracy assessment was done by comparing between the land cover abundance data derived through RS methods and the ground truth land cover abundance data. A significant regression was established between ground truth FVC estimate and both NDVI-LSU and LSU - produced vegetation abundance data (R2=0.636, R2=0.625, respectively). For bare soil fractions linear regression produced a general coefficient of determination R2=0.708. Because of poor spectral resolution of the QuickBird imagery LSU failed with assessment of surface rock abundance (R2=0.015). It has been well documented by this particular research, that reduction in vegetation cover runs in parallel with increase in man-induced soil degradation, whereas in the absence of man-induced soil degradation a bare soil fraction does not exceed a certain level. The outcomes show that the proposed method of man-induced soil degradation assessment through FVC, bare soil fractions and field data adequately reflects the current status of soil degradation throughout the studied pasture site and may be employed as an alternate of more complicated models for soil degradation assessment.

Keywords: Armenia, linear spectral unmixing, remote sensing, soil degradation

Procedia PDF Downloads 328
963 Effect of Noise Reduction Algorithms on Temporal Splitting of Speech Signal to Improve Speech Perception for Binaural Hearing Aids

Authors: Rajani S. Pujar, Pandurangarao N. Kulkarni

Abstract:

Increased temporal masking affects the speech perception in persons with sensorineural hearing impairment especially under adverse listening conditions. This paper presents a cascaded scheme, which employs a noise reduction algorithm as well as temporal splitting of the speech signal. Earlier investigations have shown that by splitting the speech temporally and presenting alternate segments to the two ears help in reducing the effect of temporal masking. In this technique, the speech signal is processed by two fading functions, complementary to each other, and presented to left and right ears for binaural dichotic presentation. In the present study, half cosine signal is used as a fading function with crossover gain of 6 dB for the perceptual balance of loudness. Temporal splitting is combined with noise reduction algorithm to improve speech perception in the background noise. Two noise reduction schemes, namely spectral subtraction and Wiener filter are used. Listening tests were conducted on six normal-hearing subjects, with sensorineural loss simulated by adding broadband noise to the speech signal at different signal-to-noise ratios (∞, 3, 0, and -3 dB). Objective evaluation using PESQ was also carried out. The MOS score for VCV syllable /asha/ for SNR values of ∞, 3, 0, and -3 dB were 5, 4.46, 4.4 and 4.05 respectively, while the corresponding MOS scores for unprocessed speech were 5, 1.2, 0.9 and 0.65, indicating significant improvement in the perceived speech quality for the proposed scheme compared to the unprocessed speech.

Keywords: MOS, PESQ, spectral subtraction, temporal splitting, wiener filter

Procedia PDF Downloads 327
962 External Noise Distillation in Quantum Holography with Undetected Light

Authors: Sebastian Töpfer, Jorge Fuenzalida, Marta Gilaberte Basset, Juan P. Torres, Markus Gräfe

Abstract:

This work presents an experimental and theoretical study about the noise resilience of quantum holography with undetected photons. Quantum imaging has become an important research topic in the recent years after its first publication in 2014. Following this research, advances towards different spectral ranges in detection and different optical geometries have been made. Especially an interest in the field of near infrared to mid infrared measurements has developed, because of the unique characteristic, that allows to sample a probe with photons in a different wavelength than the photons arriving at the detector. This promising effect can be used for medical applications, to measure in the so-called molecule fingerprint region, while using broadly available detectors for the visible spectral range. Further advance the development of quantum imaging methods have been made by new measurement and detection schemes. One of which is quantum holography with undetected light. It combines digital phase shifting holography with quantum imaging to extent the obtainable sample information, by measuring not only the object transmission, but also its influence on the phase shift experienced by the transmitted light. This work will present extended research for the quantum holography with undetected light scheme regarding the influence of external noise. It is shown experimentally and theoretically that the samples information can still be at noise levels of 250 times higher than the signal level, because of its information being transmitted by the interferometric pattern. A detailed theoretic explanation is also provided.

Keywords: distillation, quantum holography, quantum imaging, quantum metrology

Procedia PDF Downloads 76
961 On Paranorm Zweier I-Convergent Sequence Spaces

Authors: Nazneen Khan, Vakeel A. Khan

Abstract:

In this article we introduce the Paranorm Zweier I-convergent sequence spaces, for a sequence of positive real numbers. We study some topological properties, prove the decomposition theorem and study some inclusion relations on these spaces.

Keywords: ideal, filter, I-convergence, I-nullity, paranorm

Procedia PDF Downloads 481
960 Determinants of Child Nutritional Inequalities in Pakistan: Regression-Based Decomposition Analysis

Authors: Nilam Bano, Uzma Iram

Abstract:

Globally, the dilemma of undernutrition has become a notable concern for the researchers, academicians, and policymakers because of its severe consequences for many centuries. The nutritional deficiencies create hurdles for the people to achieve goals related to live a better lifestyle. Not only at micro level but also at the macro level, the consequences of undernutrition affect the economic progress of the country. The initial five years of a child’s life are considered critical for the physical growth and brain development. In this regard, children require special care and good quality food (nutrient intake) to fulfill their nutritional demand of the growing body. Having the sensitive stature and health, children specially under the age of 5 years are more vulnerable to the poor economic, housing, environmental and other social conditions. Beside confronting economic challenges and political upheavals, Pakistan is also going through from a rough patch in the context of social development. Majority of the children are facing serious health problems in the absence of required nutrition. The complexity of this issue is getting severe day by day and specially children are left behind with different type of immune problems and vitamins and mineral deficiencies. It is noted that children from the well-off background are less likely affected by the undernutrition. In order to underline this issue, the present study aims to highlight the existing nutritional inequalities among the children of under five years in Pakistan. Moreover, this study strives to decompose those factors that severely affect the existing nutritional inequality and standing in the queue to capture the consideration of concerned authorities. Pakistan Demographic and Health Survey 2012-13 was employed to assess the relevant indicators of undernutrition such as stunting, wasting, underweight and associated socioeconomic factors. The objectives were executed through the utilization of the relevant empirical techniques. Concentration indices were constructed to measure the nutritional inequalities by utilizing three measures of undernutrition; stunting, wasting and underweight. In addition to it, the decomposition analysis following the logistic regression was made to unfold the determinants that severely affect the nutritional inequalities. The negative values of concentration indices illustrate that children from the marginalized background are affected by the undernutrition more than their counterparts who belong from rich households. Furthermore, the result of decomposition analysis indicates that child age, size of a child at birth, wealth index, household size, parents’ education, mother’s health and place of residence are the most contributing factors in the prevalence of existing nutritional inequalities. Considering the result of the study, it is suggested to the policymakers to design policies in a way so that the health sector of Pakistan can stimulate in a productive manner. Increasing the number of effective health awareness programs for mothers would create a notable difference. Moreover, the education of the parents must be concerned by the policymakers as it has a significant association with the present research in terms of eradicating the nutritional inequalities among children.

Keywords: concentration index, decomposition analysis, inequalities, undernutrition, Pakistan

Procedia PDF Downloads 132
959 Catalytic Dehydrogenation of Formic Acid into H2/CO2 Gas: A Novel Approach

Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy

Abstract:

Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of biomass platform, comprising a potential pool of hydrogen energy that stands as a new energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need of in-situ H2 production, which plays a key role in the hydrogenation reactions of biomass into higher value components. It is reported elsewhere in literature that catalytic decomposition of FA is usually performed in poorly designed setup using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. it work suggests an approach that integrates designing a novel catalyst featuring magnetic property with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H2 gas from FA. Using ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under inert medium. Through a novel approach, FA is charged into the reactor via high-pressure positive displacement pump at steady state conditions. The produced gas (H2+CO2) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The novelty of this work lies in designing a very responsive catalyst, pumping consistent amount of FA into a sealed reactor running at steady state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at lower temperature range (35-50°C) yielded more gas while the catalyst loading and Pd doping wt.% were found to be the most significant factors with a P-values 0.026 & 0.031, respectively.

Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles

Procedia PDF Downloads 52
958 Treatment of Isopropyl Alcohol in Aqueous Solutions by VUV-Based AOPs within a Laminar-Falling-Film-Slurry Type Photoreactor

Authors: Y. S. Shen, B. H. Liao

Abstract:

This study aimed to develop the design equation of a laminar-falling-film-slurry (LFFS) type photoreactor for the treatment of organic wastewaters containing isopropyl alcohol (IPA) by VUV-based advanced oxidation processes (AOPs). The photoreactor design equations were established by combining with the chemical kinetics of the photocatalytic system, light absorption model within the photoreactor, and was used to predict the decomposition of IPA in aqueous solutions in the photoreactors of different geometries at various operating conditions (volumetric flow rate, oxidants, catalysts, solution pH values, UV light intensities, and initial concentration of pollutants) to verify its rationality and feasibility. By the treatment of the LFFS-VUV only process, it was found that the decomposition rates of IPA in aqueous solutions increased with the increase of volumetric flow rate, VUV light intensity, dosages of TiO2 and H2O2. The removal efficiencies of IPA by photooxidation processes were in the order: VUV/H2O2>VUV/TiO2/H2O2>VUV/TiO2>VUV only. In VUV, VUV/H2O2, VUV/TiO2/H2O2 processes, integrating with the reaction kinetic equations of IPA, the mass conservation equation and the linear light source model, the photoreactor design equation can reasonably to predict reaction behaviors of IPA at various operating conditions and to describe the concentration distribution profiles of IPA within photoreactors.The results of this research can be useful basis for the future application of the homogeneous and heterogeneous VUV-based advanced oxidation processes.

Keywords: isopropyl alcohol, photoreactor design, VUV, AOPs

Procedia PDF Downloads 377
957 Insight into the Binding Theme of CA-074Me to Cathepsin B: Molecular Dynamics Simulations and Scaffold Hopping to Identify Potential Analogues as Anti-Neurodegenerative Diseases

Authors: Tivani Phosa Mashamba-Thompson, Mahmoud E. S. Soliman

Abstract:

To date, the cause of neurodegeneration is not well understood and diseases that stem from neurodegeneration currently have no known cures. Cathepsin B (CB) enzyme is known to be involved in the production of peptide neurotransmitters and toxic peptides in neurodegenerative diseases (NDs). CA-074Me is a membrane-permeable irreversible selective cathepsin B (CB) inhibitor as confirmed by in vivo studies. Due to the lack of the crystal structure, the binding mode of CA-074Me with the human CB at molecular level has not been previously reported. The main aim of this study is to gain an insight into the binding mode of CB CA-074Me to human CB using various computational tools. Herein, molecular dynamics simulations, binding free energy calculations and per-residue energy decomposition analysis were employed to accomplish the aim of the study. Another objective was to identify novel CB inhibitors based on the structure of CA-074Me using fragment based drug design using scaffold hoping drug design approach. Results showed that two of the designed ligands (hit 1 and hit 2) were found to have better binding affinities than the prototype inhibitor, CA-074Me, by ~2-3 kcal/mol. Per-residue energy decomposition showed that amino acid residues Cys29, Gly196, His197 and Val174 contributed the most towards the binding. The Van der Waals binding forces were found to be the major component of the binding interactions. The findings of this study should assist medicinal chemist towards the design of potential irreversible CB inhibitors.

Keywords: cathepsin B, scaffold hopping, docking, molecular dynamics, binding-free energy, neurodegerative diseases

Procedia PDF Downloads 377
956 Model Predictive Control Applied to Thermal Regulation of Thermoforming Process Based on the Armax Linear Model and a Quadratic Criterion Formulation

Authors: Moaine Jebara, Lionel Boillereaux, Sofiane Belhabib, Michel Havet, Alain Sarda, Pierre Mousseau, Rémi Deterre

Abstract:

Energy consumption efficiency is a major concern for the material processing industry such as thermoforming process and molding. Indeed, these systems should deliver the right amount of energy at the right time to the processed material. Recent technical development, as well as the particularities of the heating system dynamics, made the Model Predictive Control (MPC) one of the best candidates for thermal control of several production processes like molding and composite thermoforming to name a few. The main principle of this technique is to use a dynamic model of the process inside the controller in real time in order to anticipate the future behavior of the process which allows the current timeslot to be optimized while taking future timeslots into account. This study presents a procedure based on a predictive control that brings balance between optimality, simplicity, and flexibility of its implementation. The development of this approach is progressive starting from the case of a single zone before its extension to the multizone and/or multisource case, taking thus into account the thermal couplings between the adjacent zones. After a quadratic formulation of the MPC criterion to ensure the thermal control, the linear expression is retained in order to reduce calculation time thanks to the use of the ARMAX linear decomposition methods. The effectiveness of this approach is illustrated by experiment and simulation.

Keywords: energy efficiency, linear decomposition methods, model predictive control, mold heating systems

Procedia PDF Downloads 272
955 Influence of Photophysical Parameters of Photoactive Materials on Exciton Diffusion Length and Diffusion Coefficient in Bulk Heterojunction Organic Solar Cells

Authors: Douglas Yeboah, Jai Singh

Abstract:

It has been experimentally demonstrated that exciton diffusion length in organic solids can be improved by fine-tuning the material parameters that govern exciton transfer. Here, a theoretical study is carried out to support this finding. We have therefore derived expressions for the exciton diffusion length and diffusion coefficient of singlet and triplet excitons using Förster resonance energy transfer and Dexter carrier transfer mechanisms and are plotted as a function of photoluminescence (PL) quantum yield, spectral overlap integral, refractive index and dipole moment of the photoactive material. We found that singlet exciton diffusion length increases with PL quantum yield and spectral overlap integral, and decreases with increase in refractive index. Likewise, the triplet exciton diffusion length increases when PL quantum yield increases and dipole moment decreases. The calculated diffusion lengths in different organic materials are compared with existing experimental values and found to be in reasonable agreement. The results are expected to provide insight in developing new organic materials for fabricating bulk heterojunction (BHJ) organic solar cells (OSCs) with better photoconversion efficiency.

Keywords: Dexter carrier transfer, diffusion coefficient, exciton diffusion length, Föster resonance energy transfer, photoactive materials, photophysical parameters

Procedia PDF Downloads 333
954 Microwave Heating and Catalytic Activity of Iron/Carbon Materials for H₂ Production from the Decomposition of Plastic Wastes

Authors: Peng Zhang, Cai Liang

Abstract:

The non-biodegradable plastic wastes have posed severe environmental and ecological contaminations. Numerous technologies, such as pyrolysis, incineration, and landfilling, have already been employed for the treatment of plastic waste. Compared with conventional methods, microwave has displayed unique advantages in the rapid production of hydrogen from plastic wastes. Understanding the interaction between microwave radiation and materials would promote the optimization of several parameters for the microwave reaction system. In this work, various carbon materials have been investigated to reveal microwave heating performance and the ensuing catalytic activity. Results showed that the diversity in the heating characteristic was mainly due to the dielectric properties and the individual microstructures. Furthermore, the gaps and steps among the surface of carbon materials would lead to the distortion of the electromagnetic field, which correspondingly induced plasma discharging. The intensity and location of local plasma were also studied. For high-yield H₂ production, iron nanoparticles were selected as the active sites, and a series of iron/carbon bifunctional catalysts were synthesized. Apart from the high catalytic activity, the iron particles in nano-size close to the microwave skin depth would transfer microwave irradiation to the heat, intensifying the decomposition of plastics. Under microwave radiation, iron is supported on activated carbon material with 10wt.% loading exhibited the best catalytic activity for H₂ production. Specifically, the plastics were rapidly heated up and subsequently converted into H₂ with a hydrogen efficiency of 85%. This work demonstrated a deep understanding of microwave reaction systems and provided the optimization for plastic treatment.

Keywords: plastic waste, recycling, hydrogen, microwave

Procedia PDF Downloads 71