Search results for: scalable systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9575

Search results for: scalable systems

9215 Analyzing the Quality of Cloud-Based E-Learning Systems on the Perception of the Learners and the Teachers

Authors: R. W. C. Devindi, S. M. Buddika Harshanath

Abstract:

E-learning is a widely used technology for learning in the modern world. With the pandemic situation the popularity of using e-learning has been increased in a larger capacity. The e-learning educational systems require software resources as well as hardware usually but it is hard for most of the education institutions to afford those resources. Also with the massive user load e-learning has to broaden the server side resources as well. Therefore, in the present cloud computing was implemented in order to make the e – learning systems more efficient. The researcher has analyzed the quality of the e-learning systems on the perception of the learners and the teachers with the aid of hypothesis and has given the analyzed results and the discussion in this report. Therefore, the future research will be able to get some steps to increase the quality of the online learning systems furthermore. In the case of e-learning, quality assurance and cost effectiveness are essential. A complex quality assurance system is used in the stated project. There are no well-defined standard evaluation measures in this field. As a result, accurately assessing the e-learning system's overall quality is challenging. The researcher has done the analysis with the aid of standard methods and software.

Keywords: LMS–learning management system, SPSS–statistical package for social sciences (software), eigen value, hypothesis

Procedia PDF Downloads 108
9214 Operation Strategies of Residential Micro Combined Heat and Power Technologies

Authors: Omar A. Shaneb, Adell S. Amer

Abstract:

Reduction of CO2 emissions has become a priority for several countries due to increasing concerns about global warming and climate change, especially in the developed countries. Residential sector is considered one of the most important sectors for considerable reduction of CO2 emissions since it represents a significant amount of the total consumed energy in those countries. A significant CO2 reduction cannot be achieved unless some initiatives have been adopted in the policy of these countries. Introducing micro combined heat and power (µCHP) systems into residential energy systems is one of these initiatives, since such a technology offers several advantages. Moreover, µCHP technology has the opportunity to be operated not only by natural gas but it could also be operated by renewable fuels. However, this technology can be operated by different operation strategies. Each strategy has some advantages and disadvantages. This paper provides a review of different operation strategies of such a technology used for residential energy systems, especially for single dwellings. The review summarizes key points that outline the trend of previous research carried out in this field.

Keywords: energy management, µCHP systems, residential energy systems, sustainable houses, operation strategy.

Procedia PDF Downloads 430
9213 Role-Specific Target-Systems in Professional Bureaucracies: A Qualitative Analysis in the OR

Authors: Kirsten Hoeper, Maike Kriependorf

Abstract:

This paper firstly discusses the initial situation and problems. Afterward, it defines professional bureaucracies and shows their impact for the OR-work. The OR-center and its actors are shown. Finally, the paper provides the empiric design for detecting the target systems of the different work groups within the OR, the quality criteria in qualitative research and empirical results. It is shown that different groups have different targets in their daily work and that helps for a better understanding. More precisely, by detecting the target systems of these experts, we can ‘bridge’ the different points of view to create a common basis for the work in the OR. One of the aims was to find bridges to overcome separating factors. This paper describes the situation in Germany focusing the Hannover Medical School. It can be assumed that the results can be transferred to other countries using the DRG-System (Diagnosis Related Groups).

Keywords: hospital, OR, professional bureaucracies, target systems

Procedia PDF Downloads 292
9212 Prevention of Biocompounds and Amino Acid Losses in Vernonia amygdalina duringPost Harvest Treatment Using Hot Oil-Aqueous Mixture

Authors: Nneka Nkechi Uchegbu, Temitope Omolayo Fasuan

Abstract:

This study investigated how to reduce bio-compounds and amino acids in V. amygdalina leaf during processing as a functional food ingredient. Fresh V. amygdalina leaf was processed using thermal oil-aqueous mixtures (soybean oil: aqueous and palm oil: aqueous) at 1:40 and 130 (v/v), respectively. Results indicated that the hot soybean oil-aqueous mixture was the most effective in preserving the bio-compounds and amino acids with retention potentials of 80.95% of the bio-compounds at the rate of 90-100%. Hot palm oil-aqueous mixture retained 61.90% of the bio-compounds at the rate of 90-100% and hot aqueous retained 9.52% of the bio-compounds at the same rate. During the debittering process, seven new bio-compounds were formed in the leaves treated with hot soybean oil-aqueous mixture, six in palm oil-aqueous mixture, and only four in hot aqueous leaves. The bio-compounds in the treated leaves have potential functions as antitumor, antioxidants, antihistaminic, anti-ovarian cancer, anti-inflammatory, antiarthritic, hepatoprotective, antihistaminic, haemolytic 5-α reductase inhibitor, nt, immune-stimulant, diuretic, antiandrogenic, and anaemiagenic. Alkaloids and polyphenols were retained at the rate of 81.34-98.50% using oil: aqueous mixture while aqueous recorded the rate of 33.47-41.46%. Most of the essential amino acids were retained at a rate above 90% through the aid of oil. The process is scalable and could be employed for domestic and industrial applications.

Keywords: V. amygdalina leaf, bio-compounds, oil-aqueous mixture, amino acids

Procedia PDF Downloads 148
9211 Importance of Hardware Systems and Circuits in Secure Software Development Life Cycle

Authors: Mir Shahriar Emami

Abstract:

Although it is fully impossible to ensure that a software system is quite secure, developing an acceptable secure software system in a convenient platform is not unreachable. In this paper, we attempt to analyze software development life cycle (SDLC) models from the hardware systems and circuits point of view. To date, the SDLC models pay merely attention to the software security from the software perspectives. In this paper, we present new features for SDLC stages to emphasize the role of systems and circuits in developing secure software system through the software development stages, the point that has not been considered previously in the SDLC models.

Keywords: SDLC, SSDLC, software security, software process engineering, hardware systems and circuits security

Procedia PDF Downloads 261
9210 New Highly-Scalable Carbon Nanotube-Reinforced Glasses and Ceramics

Authors: Konstantinos G. Dassios, Guillaume Bonnefont, Gilbert Fantozzi, Theodore E. Matikas, Costas Galiotis

Abstract:

We report herein the development and preliminary mechanical characterization of fully-dense multi-wall carbon nanotube (MWCNT)-reinforced ceramics and glasses based on a completely new methodology termed High Shear Compaction (HSC). The tubes are introduced and bound to the matrix grains by aid of polymeric binders to form flexible green bodies which are sintered and densified by spark plasma sintering to unprecedentedly high densities of 100% of the pure-matrix value. The strategy was validated across a PyrexTM glass / MWCNT composite while no identifiable factors limit application to other types of matrices. Non-destructive evaluation, based on ultrasonics, of the dynamic mechanical properties of the materials including elastic, shear and bulk modulus as well as Poisson’s ratio showed optimum property improvement at 0.5 %wt tube loading while evidence of nanoscale-specific energy dissipative characteristics acting complementary to nanotube bridging and pull-out indicate a high potential in a wide range of reinforcing and multifunctional applications.

Keywords: ceramic matrix composites, carbon nanotubes, toughening, ultrasonics

Procedia PDF Downloads 376
9209 An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems

Authors: Malinwo Estone Ayikpa

Abstract:

With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.

Keywords: Photovoltaic system, Primal-dual interior point method, Three-phase optimal power flow, Voltage unbalance

Procedia PDF Downloads 333
9208 Human Factors Interventions for Risk and Reliability Management of Defence Systems

Authors: Chitra Rajagopal, Indra Deo Kumar, Ila Chauhan, Ruchi Joshi, Binoy Bhargavan

Abstract:

Reliability and safety are essential for the success of mission-critical and safety-critical defense systems. Humans are part of the entire life cycle of defense systems development and deployment. The majority of industrial accidents or disasters are attributed to human errors. Therefore, considerations of human performance and human reliability are critical in all complex systems, including defense systems. Defense systems are operating from the ground, naval and aerial platforms in diverse conditions impose unique physical and psychological challenges to the human operators. Some of the safety and mission-critical defense systems with human-machine interactions are fighter planes, submarines, warships, combat vehicles, aerial and naval platforms based missiles, etc. Human roles and responsibilities are also going through a transition due to the infusion of artificial intelligence and cyber technologies. Human operators, not accustomed to such challenges, are more likely to commit errors, which may lead to accidents or loss events. In such a scenario, it is imperative to understand the human factors in defense systems for better systems performance, safety, and cost-effectiveness. A case study using Task Analysis (TA) based methodology for assessment and reduction of human errors in the Air and Missile Defense System in the context of emerging technologies were presented. Action-oriented task analysis techniques such as Hierarchical Task Analysis (HTA) and Operator Action Event Tree (OAET) along with Critical Action and Decision Event Tree (CADET) for cognitive task analysis was used. Human factors assessment based on the task analysis helps in realizing safe and reliable defense systems. These techniques helped in the identification of human errors during different phases of Air and Missile Defence operations, leading to meet the requirement of a safe, reliable and cost-effective mission.

Keywords: defence systems, reliability, risk, safety

Procedia PDF Downloads 136
9207 Failure Analysis and Verification Using an Integrated Method for Automotive Electric/Electronic Systems

Authors: Lei Chen, Jian Jiao, Tingdi Zhao

Abstract:

Failures of automotive electric/electronic systems, which are universally considered to be safety-critical and software-intensive, may cause catastrophic accidents. Analysis and verification of failures in these kinds of systems is a big challenge with increasing system complexity. Model-checking is often employed to allow formal verification by ensuring that the system model conforms to specified safety properties. The system-level effects of failures are established, and the effects on system behavior are observed through the formal verification. A hazard analysis technique, called Systems-Theoretic Process Analysis, is capable of identifying design flaws which may cause potential failure hazardous, including software and system design errors and unsafe interactions among multiple system components. This paper provides a concept on how to use model-checking integrated with Systems-Theoretic Process Analysis to perform failure analysis and verification of automotive electric/electronic systems. As a result, safety requirements are optimized, and failure propagation paths are found. Finally, an automotive electric/electronic system case study is used to verify the effectiveness and practicability of the method.

Keywords: failure analysis and verification, model checking, system-theoretic process analysis, automotive electric/electronic system

Procedia PDF Downloads 122
9206 A Modeling Approach for Blockchain-Oriented Information Systems Design

Authors: Jiaqi Yan, Yani Shi

Abstract:

The blockchain technology is regarded as the most promising technology that has the potential to trigger a technological revolution. However, besides the bitcoin industry, we have not yet seen a large-scale application of blockchain in those domains that are supposed to be impacted, such as supply chain, financial network, and intelligent manufacturing. The reasons not only lie in the difficulties of blockchain implementation, but are also root in the challenges of blockchain-oriented information systems design. As the blockchain members are self-interest actors that belong to organizations with different existing information systems. As they expect different information inputs and outputs of the blockchain application, a common language protocol is needed to facilitate communications between blockchain members. Second, considering the decentralization of blockchain organization, there is not any central authority to organize and coordinate the business processes. Thus, the information systems built on blockchain should support more adaptive business process. This paper aims to address these difficulties by providing a modeling approach for blockchain-oriented information systems design. We will investigate the information structure of distributed-ledger data with conceptual modeling techniques and ontology theories, and build an effective ontology mapping method for the inter-organization information flow and blockchain information records. Further, we will study the distributed-ledger-ontology based business process modeling to support adaptive enterprise on blockchain.

Keywords: blockchain, ontology, information systems modeling, business process

Procedia PDF Downloads 451
9205 Long-Term Resilience Performance Assessment of Dual and Singular Water Distribution Infrastructures Using a Complex Systems Approach

Authors: Kambiz Rasoulkhani, Jeanne Cole, Sybil Sharvelle, Ali Mostafavi

Abstract:

Dual water distribution systems have been proposed as solutions to enhance the sustainability and resilience of urban water systems by improving performance and decreasing energy consumption. The objective of this study was to evaluate the long-term resilience and robustness of dual water distribution systems versus singular water distribution systems under various stressors such as demand fluctuation, aging infrastructure, and funding constraints. To this end, the long-term dynamics of these infrastructure systems was captured using a simulation model that integrates institutional agency decision-making processes with physical infrastructure degradation to evaluate the long-term transformation of water infrastructure. A set of model parameters that varies for dual and singular distribution infrastructure based on the system attributes, such as pipes length and material, energy intensity, water demand, water price, average pressure and flow rate, as well as operational expenditures, were considered and input in the simulation model. Accordingly, the model was used to simulate various scenarios of demand changes, funding levels, water price growth, and renewal strategies. The long-term resilience and robustness of each distribution infrastructure were evaluated based on various performance measures including network average condition, break frequency, network leakage, and energy use. An ecologically-based resilience approach was used to examine regime shifts and tipping points in the long-term performance of the systems under different stressors. Also, Classification and Regression Tree analysis was adopted to assess the robustness of each system under various scenarios. Using data from the City of Fort Collins, the long-term resilience and robustness of the dual and singular water distribution systems were evaluated over a 100-year analysis horizon for various scenarios. The results of the analysis enabled: (i) comparison between dual and singular water distribution systems in terms of long-term performance, resilience, and robustness; (ii) identification of renewal strategies and decision factors that enhance the long-term resiliency and robustness of dual and singular water distribution systems under different stressors.

Keywords: complex systems, dual water distribution systems, long-term resilience performance, multi-agent modeling, sustainable and resilient water systems

Procedia PDF Downloads 292
9204 H∞ Takagi-Sugeno Fuzzy State-Derivative Feedback Control Design for Nonlinear Dynamic Systems

Authors: N. Kaewpraek, W. Assawinchaichote

Abstract:

This paper considers an H TS fuzzy state-derivative feedback controller for a class of nonlinear dynamical systems. A Takagi-Sugeno (TS) fuzzy model is used to approximate a class of nonlinear dynamical systems. Then, based on a linear matrix inequality (LMI) approach, we design an HTS fuzzy state-derivative feedback control law which guarantees L2-gain of the mapping from the exogenous input noise to the regulated output to be less or equal to a prescribed value. We derive a sufficient condition such that the system with the fuzzy controller is asymptotically stable and H performance is satisfied. Finally, we provide and simulate a numerical example is provided to illustrate the stability and the effectiveness of the proposed controller.

Keywords: h-infinity fuzzy control, an LMI approach, Takagi-Sugano (TS) fuzzy system, the photovoltaic systems

Procedia PDF Downloads 385
9203 Brief Guide to Cloud-Based AI Prototyping: Key Insights from Selected Case Studies Using Google Cloud Platform

Authors: Kamellia Reshadi, Pranav Ragji, Theodoros Soldatos

Abstract:

Recent advancements in cloud computing and storage, along with rapid progress in artificial intelligence (AI), have transformed approaches to developing efficient, scalable applications. However, integrating AI with cloud computing poses challenges as these fields are often disjointed, and many advancements remain difficult to access, obscured in complex documentation or scattered across research reports. For this reason, we share experiences from prototype projects combining these technologies. Specifically, we focus on Google Cloud Platform (GCP) functionalities and describe vision and speech activities applied to labeling, subtitling, and urban traffic flow tasks. We describe challenges, pricing, architecture, and other key features, considering the goal of real-time performance. We hope our demonstrations provide not only essential guidelines for using these functionalities but also enable more similar approaches.

Keywords: artificial intelligence, cloud computing, real-time applications, case studies, knowledge management, research and development, text labeling, video annotation, urban traffic analysis, public safety, prototyping, Google Cloud Platform

Procedia PDF Downloads 23
9202 Integrating Data Mining within a Strategic Knowledge Management Framework: A Platform for Sustainable Competitive Advantage within the Australian Minerals and Metals Mining Sector

Authors: Sanaz Moayer, Fang Huang, Scott Gardner

Abstract:

In the highly leveraged business world of today, an organisation’s success depends on how it can manage and organize its traditional and intangible assets. In the knowledge-based economy, knowledge as a valuable asset gives enduring capability to firms competing in rapidly shifting global markets. It can be argued that ability to create unique knowledge assets by configuring ICT and human capabilities, will be a defining factor for international competitive advantage in the mid-21st century. The concept of KM is recognized in the strategy literature, and increasingly by senior decision-makers (particularly in large firms which can achieve scalable benefits), as an important vehicle for stimulating innovation and organisational performance in the knowledge economy. This thinking has been evident in professional services and other knowledge intensive industries for over a decade. It highlights the importance of social capital and the value of the intellectual capital embedded in social and professional networks, complementing the traditional focus on creation of intellectual property assets. Despite the growing interest in KM within professional services there has been limited discussion in relation to multinational resource based industries such as mining and petroleum where the focus has been principally on global portfolio optimization with economies of scale, process efficiencies and cost reduction. The Australian minerals and metals mining industry, although traditionally viewed as capital intensive, employs a significant number of knowledge workers notably- engineers, geologists, highly skilled technicians, legal, finance, accounting, ICT and contracts specialists working in projects or functions, representing potential knowledge silos within the organisation. This silo effect arguably inhibits knowledge sharing and retention by disaggregating corporate memory, with increased operational and project continuity risk. It also may limit the potential for process, product, and service innovation. In this paper the strategic application of knowledge management incorporating contemporary ICT platforms and data mining practices is explored as an important enabler for knowledge discovery, reduction of risk, and retention of corporate knowledge in resource based industries. With reference to the relevant strategy, management, and information systems literature, this paper highlights possible connections (currently undergoing empirical testing), between an Strategic Knowledge Management (SKM) framework incorporating supportive Data Mining (DM) practices and competitive advantage for multinational firms operating within the Australian resource sector. We also propose based on a review of the relevant literature that more effective management of soft and hard systems knowledge is crucial for major Australian firms in all sectors seeking to improve organisational performance through the human and technological capability captured in organisational networks.

Keywords: competitive advantage, data mining, mining organisation, strategic knowledge management

Procedia PDF Downloads 416
9201 Mechanical Properties of Palm Oil-Based Resin Containing Unsaturated Polyester

Authors: Alireza Fakhari, Abdul Razak Rahmat

Abstract:

In this study, new palm oil-based polymer systems have been produced by blending unsaturated polyester (UPE) and maleinated, acrylated epoxidized palm oil (MAEPO). The MAEPO/UPE ratio was varied between 10/90 and 40/60 wt%. The influences of various loadings of MAEPO (10, 20, 30, and 40 wt%) on tensile, flexural and impact properties of resulting polymer systems were investigated. The results revealed that, these bio-based polymer systems exhibit mechanical properties comparable to those of petroleum-based polymers.

Keywords: palm oil, bio-based resin, renewable resources, unsaturated polyester resin

Procedia PDF Downloads 350
9200 Through Integrated Project Management and Systems Engineering to Support System Design Development: A Project Management-based Systems Engineering Approach

Authors: Xiaojing Gao, James Njuguna

Abstract:

This paper emphasizes the importance of integrating project management and systems engineering for innovative system design and production development. The research highlights the need for a flexible approach that unifies these disciplines, as their isolation often leads to communication challenges and complexity within multidisciplinary teams. The paper aims to elucidate the intricate relationship between project management and systems engineering, recommending the consolidation of engineering disciplines into a single lifecycle for improved support of the design and development process. The research identifies a synergy between these disciplines, focusing on streamlining information communication during product design and development. The insights gained from this process can lead to product design optimization. Additionally, the paper introduces a proposed Project Management-Based Systems Engineering (PMBSE) framework, emphasizing effective communication, efficient processes, and advanced tools to enhance product development outcomes within the product lifecycle.

Keywords: system engineering, product design and development, project management, cross-disciplinary

Procedia PDF Downloads 80
9199 Emotion Classification Using Recurrent Neural Network and Scalable Pattern Mining

Authors: Jaishree Ranganathan, MuthuPriya Shanmugakani Velsamy, Shamika Kulkarni, Angelina Tzacheva

Abstract:

Emotions play an important role in everyday life. An-alyzing these emotions or feelings from social media platforms like Twitter, Facebook, blogs, and forums based on user comments and reviews plays an important role in various factors. Some of them include brand monitoring, marketing strategies, reputation, and competitor analysis. The opinions or sentiments mined from such data helps understand the current state of the user. It does not directly provide intuitive insights on what actions to be taken to benefit the end user or business. Actionable Pattern Mining method provides suggestions or actionable recommendations on what changes or actions need to be taken in order to benefit the end user. In this paper, we propose automatic classification of emotions in Twitter data using Recurrent Neural Network - Gated Recurrent Unit. We achieve training accuracy of 87.58% and validation accuracy of 86.16%. Also, we extract action rules with respect to the user emotion that helps to provide actionable suggestion.

Keywords: emotion mining, twitter, recurrent neural network, gated recurrent unit, actionable pattern mining

Procedia PDF Downloads 168
9198 3D Human Body Reconstruction Based on Multiple Viewpoints

Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo

Abstract:

The aim of this study was to improve the effects of human body 3D reconstruction. The MvP algorithm was adopted to obtain key point information from multiple perspectives. This algorithm allowed the capture of human posture and joint positions from multiple angles, providing more comprehensive and accurate data. The study also incorporated the SMPL-X model, which has been widely used for human body modeling, to achieve more accurate 3D reconstruction results. The use of the MvP algorithm made it possible to observe the reconstructed object from multiple angles, thus reducing the problems of blind spots and missing information. This algorithm was able to effectively capture key point information, including the position and rotation angle of limbs, providing key data for subsequent 3D reconstruction. Compared with traditional single-view methods, the method of multi-view fusion significantly improved the accuracy and stability of reconstruction. By combining the MvP algorithm with the SMPL-X model, we successfully achieved better human body 3D reconstruction effects. The SMPL-X model is highly scalable and can generate highly realistic 3D human body models, thus providing more detail and shape information.

Keywords: 3D human reconstruction, multi-view, joint point, SMPL-X

Procedia PDF Downloads 70
9197 Optimized Integration Of Bidirectional Charging Capacities As Mobile Energy Storages

Authors: Luzie Krings, Sven Liebehentze, Maximilian Gehring, Uwe Rüppel

Abstract:

The integration of renewable energy into the energy grid is essential for decarbonization, and leveraging electrified vehicles (EVs) as mobile storage units offers a pathway to address grid challenges. The decentralized nature of EVs and the intermittency of renewable energy sources, such as photovoltaic (PV) and wind power, complicate grid stability. Vehicle-to-Grid (V2G) technology presents a promising solution, enabling EVs to support grid stability through services like redispatch, congestion mitigation, and enhanced renewable energy utilization. Freight transport, contributing 38% of transport emissions, holds significant potential as its aggregated energy storage capacity can stabilize the grid and optimize renewable energy integration. This study introduces a risk-averse optimization model for marketing EV flexibilities in Germany’s energy markets, with a strong focus on improving grid stability and maximizing renewable energy potential. Using a linear optimization framework, the model incorporates technical, regulatory, and operational constraints to simulate EV fleets as scalable energy storage solutions. The integration of proprietary PV and wind energy systems is also modeled to evaluate benefits. Benchmarks compare bidirectional charging with unidirectional charging under dynamic tariffs. The methodology employs the Python-based energypilot tool to optimize participation in Day-Ahead, Intraday, and Redispatch markets, accounting for trading conditions and temporal offsets. Results demonstrate that redispatch utilization substantially supports grid stability, while bidirectional charging increased renewable energy integration by 15% and economic benefits by 20%. Longer charging cycles offered greater financial returns compared to fragmented cycles, emphasizing the potential of fleets with extended idle periods for storing renewable energy. This research highlights the critical role of EVs in stabilizing the grid and utilizing renewable energy effectively by expanding storage capacity. The optimization framework addresses key challenges in energy trading, offering a transferable methodology for broader energy storage applications. This supports the transition to a sustainable energy system by improving environmental outcomes and economic incentives.

Keywords: Electric Vehicles, Energy Grid, Energy Storages, Redispatch

Procedia PDF Downloads 11
9196 Performance Analysis in 5th Generation Massive Multiple-Input-Multiple-Output Systems

Authors: Jihad S. Daba, Jean-Pierre Dubois, Georges El Soury

Abstract:

Fifth generation wireless networks guarantee significant capacity enhancement to suit more clients and services at higher information rates with better reliability while consuming less power. The deployment of massive multiple-input-multiple-output technology guarantees broadband wireless networks with the use of base station antenna arrays to serve a large number of users on the same frequency and time-slot channels. In this work, we evaluate the performance of massive multiple-input-multiple-output systems (MIMO) systems in 5th generation cellular networks in terms of capacity and bit error rate. Several cases were considered and analyzed to compare the performance of massive MIMO systems while varying the number of antennas at both transmitting and receiving ends. We found that, unlike classical MIMO systems, reducing the number of transmit antennas while increasing the number of antennas at the receiver end provides a better solution to performance enhancement. In addition, enhanced orthogonal frequency division multiplexing and beam division multiple access schemes further improve the performance of massive MIMO systems and make them more reliable.

Keywords: beam division multiple access, D2D communication, enhanced OFDM, fifth generation broadband, massive MIMO

Procedia PDF Downloads 259
9195 Mid-Temperature Methane-Based Chemical Looping Reforming for Hydrogen Production via Iron-Based Oxygen Carrier Particles

Authors: Yang Li, Mingkai Liu, Qiong Rao, Zhongrui Gai, Ying Pan, Hongguang Jin

Abstract:

Hydrogen is an ideal and potential energy carrier due to its high energy efficiency and low pollution. An alternative and promising approach to hydrogen generation is the chemical looping steam reforming of methane (CL-SRM) over iron-based oxygen carriers. However, the process faces challenges such as high reaction temperature (>850 ℃) and low methane conversion. We demonstrate that Ni-mixed Fe-based oxygen carrier particles have significantly improved the methane conversion and hydrogen production rate in the range of 450-600 ℃ under atmospheric pressure. The effect on the reaction reactivity of oxygen carrier particles mixed with different Ni-based particle mass ratios has been determined in the continuous unit. More than 85% of methane conversion has been achieved at 600 ℃, and hydrogen can be produced in both reduction and oxidation steps. Moreover, the iron-based oxygen carrier particles exhibited good cyclic performance during 150 consecutive redox cycles at 600 ℃. The mid-temperature iron-based oxygen carrier particles, integrated with a moving-bed chemical looping system, might provide a powerful approach toward more efficient and scalable hydrogen production.

Keywords: chemical looping, hydrogen production, mid-temperature, oxygen carrier particles

Procedia PDF Downloads 145
9194 Deep Learning Approaches for Accurate Detection of Epileptic Seizures from Electroencephalogram Data

Authors: Ramzi Rihane, Yassine Benayed

Abstract:

Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked seizures resulting from abnormal electrical activity in the brain. Timely and accurate detection of these seizures is essential for improving patient care. In this study, we leverage the UK Bonn University open-source EEG dataset and employ advanced deep-learning techniques to automate the detection of epileptic seizures. By extracting key features from both time and frequency domains, as well as Spectrogram features, we enhance the performance of various deep learning models. Our investigation includes architectures such as Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), 1D Convolutional Neural Networks (1D-CNN), and hybrid CNN-LSTM and CNN-BiLSTM models. The models achieved impressive accuracies: LSTM (98.52%), Bi-LSTM (98.61%), CNN-LSTM (98.91%), CNN-BiLSTM (98.83%), and CNN (98.73%). Additionally, we utilized a data augmentation technique called SMOTE, which yielded the following results: CNN (97.36%), LSTM (97.01%), Bi-LSTM (97.23%), CNN-LSTM (97.45%), and CNN-BiLSTM (97.34%). These findings demonstrate the effectiveness of deep learning in capturing complex patterns in EEG signals, providing a reliable and scalable solution for real-time seizure detection in clinical environments.

Keywords: electroencephalogram, epileptic seizure, deep learning, LSTM, CNN, BI-LSTM, seizure detection

Procedia PDF Downloads 15
9193 Status and Proposed Models of Backhauling System in Thailand

Authors: Tarathorn Podcharathitikull, Jirarat Teeravaraprug

Abstract:

Transportation cost is the highest cost in logistics cost of Thailand, and truck transportation is counted as about 90% of the overall transportation cost. The main problem of truck transportation is backhauling. Backhauling has become an attractive cost-saving approach in logistics. To explore such opportunities, this paper investigated the current backhauling systems in Thailand. It was found that the backhauling problem is attracted to both governmental agencies and private sector. They gave attempts to build backhauling systems. This paper investigated two systems built by governmental agencies and one by private sector. Moreover, based on the interviews with the system representatives and users, pros and cons of the systems were found. The obstacles and challenges were obtained. This paper finally proposed a conceptual model of to-be backhauling system in Thailand.

Keywords: backhauling system, backhauls, interview, Thailand

Procedia PDF Downloads 286
9192 Key Parameters Analysis of the Stirring Systems in the Optmization Procedures

Authors: T. Gomes, J. Manzi

Abstract:

The inclusion of stirring systems in the calculation and optimization procedures has been undergone a significant lack of attention, what it can reflect in the results because such systems provide an additional energy to the process, besides promote a better distribution of mass and energy. This is meaningful for the reactive systems, particularly for the Continuous Stirred Tank Reactor (CSTR), for which the key variables and parameters, as well as the operating conditions of stirring systems, can play a pivotal role and it has been showed in the literature that neglect these factors can lead to sub-optimal results. It is also well known that the sole use of the First Law of Thermodynamics as an optimization tool cannot yield satisfactory results, since the joint use of the First and Second Laws condensed into a procedure so-called entropy generation minimization (EGM) has shown itself able to drive the system towards better results. Therefore, the main objective of this paper is to determine the effects of key parameters of the stirring system in the optimization procedures by means of EGM applied to the reactive systems. Such considerations have been possible by dimensional analysis according to Rayleigh and Buckingham's method, which takes into account the physical and geometric parameters and the variables of the reactive system. For the simulation purpose based on the production of propylene glycol, the results have shown a significant increase in the conversion rate from 36% (not-optimized system) to 95% (optimized system) with a consequent reduction of by-products. In addition, it has been possible to establish the influence of the work of the stirrer in the optimization procedure, in which can be described as a function of the fluid viscosity and consequently of the temperature. The conclusions to be drawn also indicate that the use of the entropic analysis as optimization tool has been proved to be simple, easy to apply and requiring low computational effort.

Keywords: stirring systems, entropy, reactive system, optimization

Procedia PDF Downloads 246
9191 Transparency Obligations under the AI Act Proposal: A Critical Legal Analysis

Authors: Michael Lognoul

Abstract:

In April 2021, the European Commission released its AI Act Proposal, which is the first policy proposal at the European Union level to target AI systems comprehensively, in a horizontal manner. This Proposal notably aims to achieve an ecosystem of trust in the European Union, based on the respect of fundamental rights, regarding AI. Among many other requirements, the AI Act Proposal aims to impose several generic transparency obligationson all AI systems to the benefit of natural persons facing those systems (e.g. information on the AI nature of systems, in case of an interaction with a human). The Proposal also provides for more stringent transparency obligations, specific to AI systems that qualify as high-risk, to the benefit of their users, notably on the characteristics, capabilities, and limitations of the AI systems they use. Against that background, this research firstly presents all such transparency requirements in turn, as well as related obligations, such asthe proposed obligations on record keeping. Secondly, it focuses on a legal analysis of their scope of application, of the content of the obligations, and on their practical implications. On the scope of transparency obligations tailored for high-risk AI systems, the research notably notes that it seems relatively narrow, given the proposed legal definition of the notion of users of AI systems. Hence, where end-users do not qualify as users, they may only receive very limited information. This element might potentially raise concern regarding the objective of the Proposal. On the content of the transparency obligations, the research highlights that the information that should benefit users of high-risk AI systems is both very broad and specific, from a technical perspective. Therefore, the information required under those obligations seems to create, prima facie, an adequate framework to ensure trust for users of high-risk AI systems. However, on the practical implications of these transparency obligations, the research notes that concern arises due to potential illiteracy of high-risk AI systems users. They might not benefit from sufficient technical expertise to fully understand the information provided to them, despite the wording of the Proposal, which requires that information should be comprehensible to its recipients (i.e. users).On this matter, the research points that there could be, more broadly, an important divergence between the level of detail of the information required by the Proposal and the level of expertise of users of high-risk AI systems. As a conclusion, the research provides policy recommendations to tackle (part of) the issues highlighted. It notably recommends to broaden the scope of transparency requirements for high-risk AI systems to encompass end-users. It also suggests that principles of explanation, as they were put forward in the Guidelines for Trustworthy AI of the High Level Expert Group, should be included in the Proposal in addition to transparency obligations.

Keywords: aI act proposal, explainability of aI, high-risk aI systems, transparency requirements

Procedia PDF Downloads 326
9190 Digital Forensics Compute Cluster: A High Speed Distributed Computing Capability for Digital Forensics

Authors: Daniel Gonzales, Zev Winkelman, Trung Tran, Ricardo Sanchez, Dulani Woods, John Hollywood

Abstract:

We have developed a distributed computing capability, Digital Forensics Compute Cluster (DFORC2) to speed up the ingestion and processing of digital evidence that is resident on computer hard drives. DFORC2 parallelizes evidence ingestion and file processing steps. It can be run on a standalone computer cluster or in the Amazon Web Services (AWS) cloud. When running in a virtualized computing environment, its cluster resources can be dynamically scaled up or down using Kubernetes. DFORC2 is an open source project that uses Autopsy, Apache Spark and Kafka, and other open source software packages. It extends the proven open source digital forensics capabilities of Autopsy to compute clusters and cloud architectures, so digital forensics tasks can be accomplished efficiently by a scalable array of cluster compute nodes. In this paper, we describe DFORC2 and compare it with a standalone version of Autopsy when both are used to process evidence from hard drives of different sizes.

Keywords: digital forensics, cloud computing, cyber security, spark, Kubernetes, Kafka

Procedia PDF Downloads 394
9189 Inverted Umbrella-type Chiral Non-coplanar Ferrimagnetic Structure in Co(NO₃)₂

Authors: O. Maximova, I. L. Danilovich, E. B. Deeva, K. Y. Bukhteev, A. A. Vorobyova, I. V. Morozov, O. S. Volkova, E. A. Zvereva, I. V. Solovyev, S. A. Nikolaev, D. Phuyal, M. Abdel-Hafiez, Y. C. Wang, J. Y. Lin, J. M. Chen, D. I. Gorbunov, K. Puzniak, B. Lake, A. N. Vasiliev

Abstract:

The low-dimensional magnetic systems tend to reveal exotic spin liquid ground states or form peculiar types of long-range order. Among systems of vivid interest are those characterized by the triangular motif in two dimensions. The realization of either ordered or disordered ground state in a triangular, honeycomb, or kagome lattices is are dictated by the competition of exchange interactions, also being sensitive to anisotropy and the spin value of magnetic ions. While the low-spin Heisenberg systems may arrive at a spin liquid long-range entangled quantum state with emergent gauge structures, the high-spin Ising systems may establish the rigid non-collinear structures. This study presents the case of chiral non-coplanar inverted umbrella-type ferrimagnet formed in cobalt nitrate Co(NO₃)₂ below T

Keywords: chiral magnetic structures, low dimensional magnetic systems, umbrella-type ferrimagnets, chiral non-coplanar magnetic structures

Procedia PDF Downloads 125
9188 Incorporating Moving Authority Limits Into Driving Advice

Authors: Peng Zhou, Peter Pudney

Abstract:

Driver advice systems are used by many rail operators to help train drivers to improve timekeeping while minimising energy use. These systems typically operate independently of the safeworking system, because information on how far the train is allowed to travel -the “limit of authority"- is usually not available as real-time data that can be used when generating driving advice. This is not an issue when there is sufficient separation between trains. But on systems with low headways, driving advice could conflict with safeworking requirements. We describe a method for generating driving advice that takes into account a moving limit of authority that is communicated to the train in real-time. We illustrate the method with four simulated examples using data from the Zhengzhou Metro. The method will allow driver advice systems to be used more effectively on railways with low headways.

Keywords: railway transportation, energy efficient train operation, optimal train control, safe separation

Procedia PDF Downloads 15
9187 Reliable Consensus Problem for Multi-Agent Systems with Sampled-Data

Authors: S. H. Lee, M. J. Park, O. M. Kwon

Abstract:

In this paper, reliable consensus of multi-agent systems with sampled-data is investigated. By using a suitable Lyapunov-Krasovskii functional and some techniques such as Wirtinger Inequality, Schur Complement and Kronecker Product, the results of this systems are obtained by solving a set of Linear Matrix Inequalities(LMIs). One numerical example is included to show the effectiveness of the proposed criteria.

Keywords: multi-agent, linear matrix inequalities (LMIs), kronecker product, sampled-data, Lyapunov method

Procedia PDF Downloads 528
9186 The Cloud Systems Used in Education: Properties and Overview

Authors: Agah Tuğrul Korucu, Handan Atun

Abstract:

Diversity and usefulness of information that used in education are have increased due to development of technology. Web technologies have made enormous contributions to the distance learning system especially. Mobile systems, one of the most widely used technology in distance education, made much easier to access web technologies. Not bounding by space and time, individuals have had the opportunity to access the information on web. In addition to this, the storage of educational information and resources and accessing these information and resources is crucial for both students and teachers. Because of this importance, development and dissemination of web technologies supply ease of access to information and resources are provided by web technologies. Dynamic web technologies introduced as new technologies that enable sharing and reuse of information, resource or applications via the Internet and bring websites into expandable platforms are commonly known as Web 2.0 technologies. Cloud systems are one of the dynamic web technologies that defined as a model provides approaching the demanded information independent from time and space in appropriate circumstances and developed by NIST. One of the most important advantages of cloud systems is meeting the requirements of users directly on the web regardless of hardware, software, and dealing with install. Hence, this study aims at using cloud services in education and investigating the services provided by the cloud computing. Survey method has been used as research method. In the findings of this research the fact that cloud systems are used such studies as resource sharing, collaborative work, assignment submission and feedback, developing project in the field of education, and also, it is revealed that cloud systems have plenty of significant advantages in terms of facilitating teaching activities and the interaction between teacher, student and environment.

Keywords: cloud systems, cloud systems in education, online learning environment, integration of information technologies, e-learning, distance learning

Procedia PDF Downloads 349