Search results for: reverse topological indices
1232 Marine Phytoplankton and Zooplankton from the North-Eastern Bay of Bengal, Bangladesh
Authors: Mahmudur Rahman Khan, Saima Sharif Nilla, Kawser Ahmed, Abdul Aziz
Abstract:
The marine phyto and zooplankton of the extreme north-eastern part of the Bay of Bengal, off the coast of Bangladesh have been studied. Relative occurrence of phyto and zooplankton and their relationship with physico-chemical conditions (f.e. temperature, salinity, dissolved oxygen, carbonate, phosphate, and sulphate) of the water and Shannon-Weiber diversity indices were also studied. The phytoplankton communities represented by 25 genera with 69 species of Bacillariophyceae, 5 genera with 12 species of Dinophyceae and 6 genera with 16 species of Chlorophyceae have been found. A total of 24 genera of 25 species belonging to Protozoa, Coelenterata, Chaetognatha, Nematoda, Cladocera, Copepoda, and decapoda have been recorded. In addition, the average phytoplankton was 80% of all collections, whereas the zooplankton was 20%, Z ratio of about 4:1. The total numbers of plankton individuals per liter were generally higher during low tide than those of high one. Shannon-Weiber diversity indices were highest (3.675 for phytoplankton and 3.021 for zooplankton) in the north-east part and lowest (1.516 for phytoplankton and 1.302 for zooplankton) in the south-east part of the study area. Principal Component Analysis (PCA) showed the relationship between pH and some species of phyto and zooplankton where all diatoms and copepods have showed positive correlation and dinoflagellates showed negative correlation with pH.Keywords: plankton presence, shannon-weiber diversity index, principal component analysis, Bay of Bengal
Procedia PDF Downloads 6601231 Long-Run Relationship among Tehran Stock Exchange and the GCC Countries Financial Markets, Before and After 2007/2008 Financial Crisis
Authors: Mohammad Hossein Ranjbar, Mahdi Bagheri, B. Shivaraj
Abstract:
This study attempts to investigate the relationship between stock market of Iran and GCC countries stock exchanges. Eight markets were included: the stock market of Iran, Kuwait, Bahrain, Qatar, Saudi Arabia, Dubai, Abu Dhabi and Oman. Daily country market indices were collected from January 2005 to December 2010. The potential time-varying behaviors of long-run stock market relationship among selected markets are tested applying correlation test, Augmented Dick Fuller test (ADF), Bilateral and Multilateral Cointegration (Johansen), and the Granger Causality test. The findings suggest that stock market of Iran is negatively correlated with most of the selected markets in the whole duration. But contemporaneous correlations among the eight selected markets are increased positively in period of financial crises. Bilateral Cointegration between selected markets suggests that there is no integration between Tehran stock exchange and other selected markets. Among other markets, except the stock market of Dubai and Abu Dhabi as a one pair, are not cointegrated in whole, but in duration of financial crises integration between selected markets are increased. Finally, investigation of the casual relationship among eight financial markets suggests there are unidirectional and bidirectional causal relationship among some of stock market indices.Keywords: financial crises, Middle East, stock market integration, Granger Causality test, ARDL test
Procedia PDF Downloads 3951230 Investigating the Regulation System of the Synchronous Motor Excitation Mode Serving as a Reactive Power Source
Authors: Baghdasaryan Marinka, Ulikyan Azatuhi
Abstract:
The efficient usage of the compensation abilities of the electrical drive synchronous motors used in production processes can essentially improve the technical and economic indices of the process. Reducing the flows of the reactive electrical energy due to the compensation of reactive power allows to significantly reduce the load losses of power in the electrical networks. As a result of analyzing the scientific works devoted to the issues of regulating the excitation of the synchronous motors, the need for comprehensive investigation and estimation of the excitation mode has been substantiated. By means of the obtained transmission functions, in the Simulink environment of the software package MATLAB, the transition processes of the excitation mode have been studied. As a result of obtaining and estimating the graph of the Nyquist plot and the transient process, the necessity of developing the Proportional-Integral-Derivative (PID) regulator has been justified. The transient processes of the system of the PID regulator have been investigated, and the amplitude–phase characteristics of the system have been estimated. The analysis of the obtained results has shown that the regulation indices of the developed system have been improved. The developed system can be successfully applied for regulating the excitation voltage of different-power synchronous motors, operating with a changing load, ensuring a value of the power coefficient close to 1.Keywords: transition process, synchronous motor, excitation mode, regulator, reactive power
Procedia PDF Downloads 2351229 Exploratory Study to Obtain a Biolubricant Base from Transesterified Oils of Animal Fats (Tallow)
Authors: Carlos Alfredo Camargo Vila, Fredy Augusto Avellaneda Vargas, Debora Alcida Nabarlatz
Abstract:
Due to the current need to implement environmentally friendly technologies, the possibility of using renewable raw materials to produce bioproducts such as biofuels, or in this case, to produce biolubricant bases, from residual oils (tallow), originating has been studied of the bovine industry. Therefore, it is hypothesized that through the study and control of the operating variables involved in the reverse transesterification method, a biolubricant base with high performance is obtained on a laboratory scale using animal fats from the bovine industry as raw materials, as an alternative for material recovery and environmental benefit. To implement this process, esterification of the crude tallow oil must be carried out in the first instance, which allows the acidity index to be decreased ( > 1 mg KOH/g oil), this by means of an acid catalysis with sulfuric acid and methanol, molar ratio 7.5:1 methanol: tallow, 1.75% w/w catalyst at 60°C for 150 minutes. Once the conditioning has been completed, the biodiesel is continued to be obtained from the improved sebum, for which an experimental design for the transesterification method is implemented, thus evaluating the effects of the variables involved in the process such as the methanol molar ratio: improved sebum and catalyst percentage (KOH) over methyl ester content (% FAME). Finding that the highest percentage of FAME (92.5%) is given with a 7.5:1 methanol: improved tallow ratio and 0.75% catalyst at 60°C for 120 minutes. And although the% FAME of the biodiesel produced does not make it suitable for commercialization, it does ( > 90%) for its use as a raw material in obtaining biolubricant bases. Finally, once the biodiesel is obtained, an experimental design is carried out to obtain biolubricant bases using the reverse transesterification method, which allows the study of the effects of the biodiesel: TMP (Trimethylolpropane) molar ratio and the percentage of catalyst on viscosity and yield as response variables. As a result, a biolubricant base is obtained that meets the requirements of ISO VG (Classification for industrial lubricants according to ASTM D 2422) 32 (viscosity and viscosity index) for commercial lubricant bases, using a 4:1 biodiesel molar ratio: TMP and 0.51% catalyst at 120°C, at a pressure of 50 mbar for 180 minutes. It is necessary to highlight that the product obtained consists of two phases, a liquid and a solid one, being the first object of study, and leaving the classification and possible application of the second one incognito. Therefore, it is recommended to carry out studies of the greater depth that allows characterizing both phases, as well as improving the method of obtaining by optimizing the variables involved in the process and thus achieving superior results.Keywords: biolubricant base, bovine tallow, renewable resources, reverse transesterification
Procedia PDF Downloads 1171228 Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts
Authors: Vedansh Gupta, Allyson Lutz, Ameen Razavi, Fatemeh Shirazi
Abstract:
The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry.Keywords: biological pre-treatment, innovative technology, vegetable processing, water reuse, agriculture, reverse osmosis, MNE biocatalysts
Procedia PDF Downloads 1291227 Risk Assessment of Heavy Rainfall and Development of Damage Prediction Function for Gyeonggi-Do Province
Authors: Jongsung Kim, Daegun Han, Myungjin Lee, Soojun Kim, Hung Soo Kim
Abstract:
Recently, the frequency and magnitude of natural disasters are gradually increasing due to climate change. Especially in Korea, large-scale damage caused by heavy rainfall frequently occurs due to rapid urbanization. Therefore, this study proposed a Heavy rain Damage Risk Index (HDRI) using PSR (Pressure – State - Response) structure for heavy rain risk assessment. We constructed pressure index, state index, and response index for the risk assessment of each local government in Gyeonggi-do province, and the evaluation indices were determined by principal component analysis. The indices were standardized using the Z-score method then HDRIs were obtained for 31 local governments in the province. The HDRI is categorized into three classes, say, the safest class is 1st class. As the results, the local governments of the 1st class were 15, 2nd class 7, and 3rd class 9. From the study, we were able to identify the risk class due to the heavy rainfall for each local government. It will be useful to develop the heavy rainfall prediction function by risk class, and this was performed in this issue. Also, this risk class could be used for the decision making for efficient disaster management. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2017R1A2B3005695).Keywords: natural disaster, heavy rain risk assessment, HDRI, PSR
Procedia PDF Downloads 1991226 Thin-Film Nanocomposite Membrane with Single-Walled Carbon Nanotubes Axial Positioning in Support Layer for Desalination of Water
Authors: Ahmed A. Alghamdi
Abstract:
Single-walled carbon nanotubes (SWCNTs) are an outstanding material for applications in thermoelectric power generation, nanoelectronics, electrochemical energy storage, photovoltaics, and light emission. They are ultra-lightweight and possess electrical as well as thermal conductivity, flexibility, and mechanical strength. SWCNT is applicable in water treatment, brine desalination, removal of heavy metal ions associated with pollutants, and oil-water separation. Carbon nanotube (CNT) is believed to tackle the trade-off issue between permeability, selectivity, and fouling issues in membrane filtration applications. Studying these CNT structures, as well as their interconnection in nanotechnology, assists in finding the precise position to be placed for water desalination. Reverse osmosis (RO) has been used globally for desalination, resulting in purified water. Thin film composite (TFC) membranes were utilized in the RO process for desalination. The sheet thickness increases the salt rejection and decreases the water flux when CNT is utilized as a support layer to this membrane. Thus, through a temperature-induced phase separation technique (TIPS), axially aligned SWCNT (AASWCNT) is fabricated, and its use enhances the salt rejection and water flux at short reaction times with a modified procedure. An evaluation was conducted and analogized with prior works in the literature, which exhibited that the prepared TFC membrane showed a better outcome.Keywords: single-walled carbon nanotubes, thin film composite, axially aligned swcnt, temperature induced phase separation technique, reverse osmosis
Procedia PDF Downloads 511225 Quality of Age Reporting from Tanzania 2012 Census Results: An Assessment Using Whipple’s Index, Myer’s Blended Index, and Age-Sex Accuracy Index
Authors: A. Sathiya Susuman, Hamisi F. Hamisi
Abstract:
Background: Many socio-economic and demographic data are age-sex attributed. However, a variety of irregularities and misstatement are noted with respect to age-related data and less to sex data because of its biological differences between the genders. Noting the misstatement/misreporting of age data regardless of its significance importance in demographics and epidemiological studies, this study aims at assessing the quality of 2012 Tanzania Population and Housing Census Results. Methods: Data for the analysis are downloaded from Tanzania National Bureau of Statistics. Age heaping and digit preference were measured using summary indices viz., Whipple’s index, Myers’ blended index, and Age-Sex Accuracy index. Results: The recorded Whipple’s index for both sexes was 154.43; male has the lowest index of about 152.65 while female has the highest index of about 156.07. For Myers’ blended index, the preferences were at digits ‘0’ and ‘5’ while avoidance were at digits ‘1’ and ‘3’ for both sexes. Finally, Age-sex index stood at 59.8 where sex ratio score was 5.82 and age ratio scores were 20.89 and 21.4 for males and female respectively. Conclusion: The evaluation of the 2012 PHC data using the demographic techniques has qualified the data inaccurate as the results of systematic heaping and digit preferences/avoidances. Thus, innovative methods in data collection along with measuring and minimizing errors using statistical techniques should be used to ensure accuracy of age data.Keywords: age heaping, digit preference/avoidance, summary indices, Whipple’s index, Myer’s index, age-sex accuracy index
Procedia PDF Downloads 4761224 A Three-Dimensional TLM Simulation Method for Thermal Effect in PV-Solar Cells
Authors: R. Hocine, A. Boudjemai, A. Amrani, K. Belkacemi
Abstract:
Temperature rising is a negative factor in almost all systems. It could cause by self heating or ambient temperature. In solar photovoltaic cells this temperature rising affects on the behavior of cells. The ability of a PV module to withstand the effects of periodic hot-spot heating that occurs when cells are operated under reverse biased conditions is closely related to the properties of the cell semi-conductor material. In addition, the thermal effect also influences the estimation of the maximum power point (MPP) and electrical parameters for the PV modules, such as maximum output power, maximum conversion efficiency, internal efficiency, reliability, and lifetime. The cells junction temperature is a critical parameter that significantly affects the electrical characteristics of PV modules. For practical applications of PV modules, it is very important to accurately estimate the junction temperature of PV modules and analyze the thermal characteristics of the PV modules. Once the temperature variation is taken into account, we can then acquire a more accurate MPP for the PV modules, and the maximum utilization efficiency of the PV modules can also be further achieved. In this paper, the three-Dimensional Transmission Line Matrix (3D-TLM) method was used to map the surface temperature distribution of solar cells while in the reverse bias mode. It was observed that some cells exhibited an inhomogeneity of the surface temperature resulting in localized heating (hot-spot). This hot-spot heating causes irreversible destruction of the solar cell structure. Hot spots can have a deleterious impact on the total solar modules if individual solar cells are heated. So, the results show clearly that the solar cells are capable of self-generating considerable amounts of heat that should be dissipated very quickly to increase PV module's lifetime.Keywords: thermal effect, conduction, heat dissipation, thermal conductivity, solar cell, PV module, nodes, 3D-TLM
Procedia PDF Downloads 3871223 Effects of the Natural Compound on SARS-CoV-2 Spike Protein-Mediated Metabolic Alteration in THP-1 Cells Explored by the ¹H-NMR-Based Metabolomics Approach
Authors: Gyaltsen Dakpa, K. J. Senthil Kumar, Nai-Wen Tsao, Sheng-Yang Wang
Abstract:
Context: Coronavirus disease 2019 (COVID-19) is a severe respiratory illness caused by the SARS-CoV-2 virus. One of the hallmarks of COVID-19 is a change in metabolism, which can lead to increased severity and mortality. The mechanism of SARS-CoV-2-mediated perturbations of metabolic pathways has yet to be fully understood. Research Aim: This study aimed to investigate the metabolic alteration caused by SARS-CoV-2 spike protein in Phorbol 12-myristate 13-acetate (PMA)-induced human monocytes (THP-1) and to examine the regulatory effect of natural compounds like Antcins A on SARS-CoV-2 spike protein-induced metabolic alteration. Methodology: The study used a combination of proton nuclear magnetic resonance (1H-NMR) and MetaboAnalyst 5.0 software. THP-1 cells were treated with SARS-CoV-2 spike protein or control, and the metabolomic profiles of the cells were compared. Antcin A was also added to the cells to assess its regulatory effect on SARS-CoV-2 spike protein-induced metabolic alteration. Findings: The study results showed that treatment with SARS-CoV-2 spike protein significantly altered the metabolomic profiles of THP-1 cells. Eight metabolites, including glycerol-phosphocholine, glycine, canadine, sarcosine, phosphoenolpyruvic acid, glutamine, glutamate, and N, N-dimethylglycine, were significantly different between control and spike-protein treatment groups. Antcin A significantly reversed the changes in these metabolites. In addition, treatment with antacid A significantly inhibited SARS-CoV-2 spike protein-mediated up-regulation of TLR-4 and ACE2 receptors. Theoretical Importance The findings of this study suggest that SARS-CoV-2 spike protein can cause significant metabolic alterations in THP-1 cells. Antcin A, a natural compound, has the potential to reverse these metabolic alterations and may be a potential candidate for developing preventive or therapeutic agents for COVID-19. Data Collection: The data for this study was collected from THP-1 cells that were treated with SARS-CoV-2 spike protein or a control. The metabolomic profiles of the cells were then compared using 1H-NMR and MetaboAnalyst 5.0 software. Analysis Procedures: The metabolomic profiles of the THP-1 cells were analyzed using 1H-NMR and MetaboAnalyst 5.0 software. The software was used to identify and quantify the cells' metabolites and compare the control and spike-protein treatment groups. Questions Addressed: The question addressed by this study was whether SARS-CoV-2 spike protein could cause metabolic alterations in THP-1 cells and whether Antcin A can reverse these alterations. Conclusion: The findings of this study suggest that SARS-CoV-2 spike protein can cause significant metabolic alterations in THP-1 cells. Antcin A, a natural compound, has the potential to reverse these metabolic alterations and may be a potential candidate for developing preventive or therapeutic agents for COVID-19.Keywords: SARS-CoV-2-spike, ¹H-NMR, metabolomics, antcin-A, taiwanofungus camphoratus
Procedia PDF Downloads 721222 Employing Remotely Sensed Soil and Vegetation Indices and Predicting by Long Short-Term Memory to Irrigation Scheduling Analysis
Authors: Elham Koohikerade, Silvio Jose Gumiere
Abstract:
In this research, irrigation is highlighted as crucial for improving both the yield and quality of potatoes due to their high sensitivity to soil moisture changes. The study presents a hybrid Long Short-Term Memory (LSTM) model aimed at optimizing irrigation scheduling in potato fields in Quebec City, Canada. This model integrates model-based and satellite-derived datasets to simulate soil moisture content, addressing the limitations of field data. Developed under the guidance of the Food and Agriculture Organization (FAO), the simulation approach compensates for the lack of direct soil sensor data, enhancing the LSTM model's predictions. The model was calibrated using indices like Surface Soil Moisture (SSM), Normalized Vegetation Difference Index (NDVI), Enhanced Vegetation Index (EVI), and Normalized Multi-band Drought Index (NMDI) to effectively forecast soil moisture reductions. Understanding soil moisture and plant development is crucial for assessing drought conditions and determining irrigation needs. This study validated the spectral characteristics of vegetation and soil using ECMWF Reanalysis v5 (ERA5) and Moderate Resolution Imaging Spectrometer (MODIS) data from 2019 to 2023, collected from agricultural areas in Dolbeau and Peribonka, Quebec. Parameters such as surface volumetric soil moisture (0-7 cm), NDVI, EVI, and NMDI were extracted from these images. A regional four-year dataset of soil and vegetation moisture was developed using a machine learning approach combining model-based and satellite-based datasets. The LSTM model predicts soil moisture dynamics hourly across different locations and times, with its accuracy verified through cross-validation and comparison with existing soil moisture datasets. The model effectively captures temporal dynamics, making it valuable for applications requiring soil moisture monitoring over time, such as anomaly detection and memory analysis. By identifying typical peak soil moisture values and observing distribution shapes, irrigation can be scheduled to maintain soil moisture within Volumetric Soil Moisture (VSM) values of 0.25 to 0.30 m²/m², avoiding under and over-watering. The strong correlations between parcels suggest that a uniform irrigation strategy might be effective across multiple parcels, with adjustments based on specific parcel characteristics and historical data trends. The application of the LSTM model to predict soil moisture and vegetation indices yielded mixed results. While the model effectively captures the central tendency and temporal dynamics of soil moisture, it struggles with accurately predicting EVI, NDVI, and NMDI.Keywords: irrigation scheduling, LSTM neural network, remotely sensed indices, soil and vegetation monitoring
Procedia PDF Downloads 421221 Measuring Development through Extreme Observations: An Archetypal Analysis Approach to Index Construction
Authors: Claudeline D. Cellan
Abstract:
Development is multifaceted, and efforts to hasten growth in all these facets have been gaining traction in recent years. Thus, producing a composite index that is reflective of these multidimensional impacts captures the interests of policymakers. The problem lies in going through a mixture of theoretical, methodological and empirical decisions and complexities which, when done carelessly, can lead to inconsistent and unreliable results. This study looks into index computation from a different and less complex perspective. Borrowing the idea of archetypes or ‘pure types’, archetypal analysis looks for points in the convex hull of the multivariate data set that captures as much information in the data as possible. The archetypes or 'pure types' are estimated such that they are convex combinations of all the observations, which in turn are convex combinations of the archetypes. This ensures that the archetypes are realistically observable, therefore achievable. In the sense of composite indices, we look for the best among these archetypes and use this as a benchmark for index computation. Its straightforward and simplistic approach does away with aggregation and substitutability problems which are commonly encountered in index computation. As an example of the application of archetypal analysis in index construction, the country data for the Human Development Index (HDI 2017) of the United Nations Development Programme (UNDP) is used. The goal of this exercise is not to replicate the result of the UNDP-computed HDI, but to illustrate the usability of archetypal analysis in index construction. Here best is defined in the context of life, education and gross national income sub-indices. Results show that the HDI from the archetypal analysis has a linear relationship with the UNDP-computed HDI.Keywords: archetypes, composite index, convex combination, development
Procedia PDF Downloads 1281220 Geochemical Characteristics and Chemical Toxicity: Appraisal of Groundwater Uranium With Other Geogenic Contaminants in Various Districts of Punjab, India
Authors: Tanu Sharma, Bikramjit Singh Bajwa, Inderpreet Kaur
Abstract:
Monitoring of groundwater in Tarn-Taran, Bathinda, Faridkot and Mansa districts of Punjab state, India is essential where this freshwater resource is being over-exploited causing quality deterioration, groundwater depletion and posing serious threats to residents. The present integrated study was done to appraise quality and suitability of groundwater for drinking/irrigation purposes, hydro-geochemical characteristics, source identification and associated health risks. In the present study, groundwater of various districts of Punjab state was found to be heavily contaminated with As followed by U, thus posing high cancerous risks to local residents via ingestion, along with minor contamination of Fe, Mn, Pb and F−. Most health concerns in the study region were due to the elevated concentrations of arsenic in groundwater with average values of 130 µg L-1, 176 µg L-1, 272 µg L-1 and 651 µg L-1 in Tarn-Taran, Bathinda, Faridkot and Mansa districts, respectively, which is quite high as compared to the safe limit as recommended by BIS i.e. 10 µg L-1. In Tarn-Taran, Bathinda, Faridkot and Mansa districts, average uranium contents were found to be 37 µg L-1, 88 µg L-1, 61 µg L-1 and 104 µg L-1, with 51 %, 74 %, 61 % and 71 % samples, respectively, being above the WHO limit of 30 µg L-1 in groundwater. Further, the quality indices showed that groundwater of study region is suited for irrigation but not appropriate for drinking purposes. Hydro-geochemical studies revealed that most of the collected groundwater samples belonged to Ca2+ - Mg2+ - HCO3- type showing dominance of MgCO3 type which indicates the presence of temporary hardness in groundwater. Rock-water reactions and reverse ion exchange were the predominant factors for controlling hydro-geochemistry in the study region. Dissolution of silicate minerals caused the dominance of Na+ ions in the aquifers of study region. Multivariate statistics revealed that along with geogenic sources, contribution of anthropogenic activities such as injudicious application of agrochemicals and domestic waste discharge was also very significant. The results obtained abolished the myth that uranium is only root cause for large number of cancer patients in study region as arsenic and mercury were also present in groundwater at levels that were of health concern to groundwater.Keywords: uranium, trace elements, multivariate data analysis, risk assessment
Procedia PDF Downloads 721219 Analysis of the Development of Mining Companies Social Corporate Responsibility Based on the Rating Score
Authors: Tatiana Ponomarenko, Oksana Marinina, Marina Nevskaya
Abstract:
Modern corporate social responsibility (CSR) is a sphere of multilevel responsibility of a company toward society represented by various stakeholders. The relevance of CSR management grows due to the active development of socially responsible investing (principles for responsible investment) taking into account factors of environmental, social and corporate governance (ESG), growing attention of the investment community in general to the long-term stability of companies and the quality of control of nonfinancial risks. The modern approach to CSR strategic management is aimed at the creation of trustful relationships with stakeholders, on the basis of which a contribution to the sustainable development of companies, regions, and national economics is insured. However, the practical concepts of social responsibility in mining companies are different, which leads to various degrees of application of CSR. A number of companies implement CSR using a traditional (limited) understanding of responsibility toward employees and counteragents, the others understand CSR much wider and try to use leverages of efficient cooperation. As in large mining companies the scope of CSR measures is diverse and characterized by different indices, the study was aimed at evaluating CSR efficiency on the basis of a proprietary methodology and determining the level of development of CSR management in terms of anti-crisis, reactive and proactive development. The methodology of the research includes analysis of integrated global reporting initiative (GRI) reports of large mining companies; choice of most representative sectoral agents by a criterion of the regularity of issuance and publication of reports; calculation of indices of evaluation of CSR level of the selected companies in dynamics. The methodology of evaluation of CSR level is based on a rating score of changes in standard indices of GRI reports by economic, environmental, and social directions. Result. By the results of the analysis, companies of fuel and energy and metallurgic complexes, in overwhelming majority, reflecting three indices out of a wide range of possible indicators of SDGs (Sustainable Development Goals), were selected for the study. The evaluation of the scopes of CSR of the companies Gazprom, LUKOIL, Metalloinvest, Nornikel, Rosneft, Severstal, SIBUR, SUEK corresponds to the reactive type of development according to a scale of CSR strategic management, which is the average value out of the possible values. The chief drawback is that companies, in the process of analyzing global goals, often choose the goals which relate to their own activities, paying insufficient attention to the interests of the stakeholders inside the country. This fact evidences the necessity of searching for more effective mechanisms of CSR control. Acknowledgment: This article is prepared within grant support of the RFBR, project 19-510-44013 'Development of the concept of mineral resources value formation in the context of sustainable development in resource-oriented economies'.Keywords: sustainable development, corporate social responsibility, development strategies, efficiency assessment
Procedia PDF Downloads 1341218 Adoption and Adoption Gap of Selected BRRI-Released Boro Rice Varieties in Bangladesh
Authors: Mohammad Abdul Momin, Sekender Ali, Mahbubul Alam, Rafiquel Islam, Mohammad Mizanul Haque Kazal
Abstract:
Improved high-yielding modern rice varieties can reduce hunger and food insecurity in Bangladesh. However, lower adoption and higher adoption gap of modern rice varieties are the main concerns of rice researchers, extension specialists, and legislators. This study attempts to determine the adoption status and adoption gap of 10 selected BRRI-released Boro rice varieties to assess some selected socio-economic characteristics of the rice farmers and to explore the contribution of the selected socio-economic characteristics of farmers to their adoption gap of selected BRRI-released Boro varieties. Necessary data were collected from 03 September to 31 December 2021 using a well-structured pre-tested interview schedule from 371 randomly selected farmers covering 12 agricultural blocks of four Upazilas under Cumilla, Mymensingh, Tangail, and Bogura districts. The study revealed that most (73.05%) of the rice farmers had high adoption and low adoption gap; 23.72% had moderate adoption and adoption gap; and the rest 3.23% of respondents’ farmers had low adoption and high adoption gap of BRRI-released Boro rice varieties. Overall adoption and adoption gap of BRRI-released Bororice varieties were 77.02% and 22.98%, respectively. Based on the descending order of the Adoption Index, BRRI dhan29 ranked 1st, followed by BRRI dhan28. The adoption indices of these two top-ranked varieties were 38.84 and 30.43, respectively, which were much higher than others. Third to ninth ranked varieties were BRRI dhan58, BRRI dhan89, BRRI dhan88, BRRI dhan50, BRRI dhan74, BRRI dhan81, and BRRI dhan63. Reverse-ranked orders were observed based on the descending order of the Adoption Gap Index (AGI). Stepwise multiple regression analysis indicated that ‘knowledge on BRRI-released Boro rice varieties’, ‘extension contacts’, ‘rice farming profitability’, ‘rice farming experience’, and ‘satisfaction on BRRI-releasedBoro rice varieties’ of the farmers had a significant negative contribution to their adoption gap, i.e., positive contribution to their adoption of BRRI-released Boro rice varieties. The study concluded that policy interventions should be taken to improve farmers’ knowledge of BRRI-releasedBoro rice varieties by increasing extension contact to all the lower and higher experienced farmers to make them profitable and satisfied to increase adoption and decrease the adoption gap of BRRI-released Boro rice varieties. These issues also urge policy interventions for the rethinking of current dissemination tactics to ensure the widespread adoption of newly released modern Boro rice varieties at the farm level.Keywords: adoption, adoption gap, Boro, rice, BRRI, Bangladesh
Procedia PDF Downloads 111217 A Quantitative Study of the Evolution of Open Source Software Communities
Authors: M. R. Martinez-Torres, S. L. Toral, M. Olmedilla
Abstract:
Typically, virtual communities exhibit the well-known phenomenon of participation inequality, which means that only a small percentage of users is responsible of the majority of contributions. However, the sustainability of the community requires that the group of active users must be continuously nurtured with new users that gain expertise through a participation process. This paper analyzes the time evolution of Open Source Software (OSS) communities, considering users that join/abandon the community over time and several topological properties of the network when modeled as a social network. More specifically, the paper analyzes the role of those users rejoining the community and their influence in the global characteristics of the network.Keywords: open source communities, social network Analysis, time series, virtual communities
Procedia PDF Downloads 5231216 Effect of Organophilic Clay on the Stability and Rheological Behavior of Oil-Based Drilling Muds
Authors: Hammadi Larbi
Abstract:
The major problem with oil-based drilling muds (reverse emulsions) is their thermodynamic instability and their high tendency to coalescence over time, irreversibly leading to destabilization. Water/Oil reverse emulsion drilling Muds are highly recommended when significant depths are reached. This study aimed to contribute experimentally to the knowledge of the structure (stability) and rheological behavior of drilling mud systems based on water/crude oil inverse emulsions through the investigation of the effect of organophilic clay. The chemical composition of organophilic clay such as VG69 shows a strong presence of silicon oxide (SiO2), followed by aluminum oxide (Al2O3), so these two elements are considered to be the main constituents of organophilic clays. The study also shows that the SiO2/Al2O3 ratio is equal to 3.52, which can be explained by the high content of free silica contained in the organophile clay used. The particle size analysis of the organophilic clays showed that the size of the of the particles analysed is in the range of 30 to 80 μm, this result ensures the correct particle size quality of organophilic clays and allows these powders to be used in Drilling mud systems.The experimental data of steady-state flow measurements are analyzed in the classic way by the Herschel-Bulkley model. Microscopic observation shows that the addition of quantities of organophilic clay type VG69 less than or equal to 3 g leading to the stability of the water/oil inverse emulsions, on the other hand, for quantities greater than 3 g, the emulsions are destabilized. The results obtained also showed that adding 3 g of organophilic clay to the crude oil drilling mud improves their stability by 70%.Keywords: drilling muds, inverse emulsions, rheological behavior, yield stress, stability, organophilic clay
Procedia PDF Downloads 141215 Accuracy of Trauma on Scene Triage Screen Tool (Shock Index, Reverse Shock Index Glasgow Coma Scale, and National Early Warning Score) to Predict the Severity of Emergency Department Triage
Authors: Chaiyaporn Yuksen, Tapanawat Chaiwan
Abstract:
Introduction: Emergency medical service (EMS) care for trauma patients must be provided on-scene assessment and essential treatment and have appropriate transporting to the trauma center. The shock index (SI), reverse shock index Glasgow Coma Scale (rSIG), and National Early Warning Score (NEWS) triage tools are easy to use in a prehospital setting. There is no standardized on-scene triage protocol in prehospital care. The primary objective was to determine the accuracy of SI, rSIG, and NEWS to predict the severity of trauma patients in the emergency department (ED). Methods: This was a retrospective cross-sectional and diagnostic research conducted on trauma patients transported by EMS to the ED of Ramathibodi Hospital, a university-affiliated super tertiary care hospital in Bangkok, Thailand, from January 2015 to September 2022. We included the injured patients receiving prehospital care and transport to the ED of Ramathibodi Hospital by the EMS team from January 2015 to September 2022. We compared the on-scene parameter (SI, rSIG, and NEWS) and ED (Emergency Severity Index) with the area under ROC. Results: 218 patients were traumatic patients transported by EMS to the ED. 161 was ESI level 1-2, and 57 was level 3-5. NEWS was a more accurate triage tool to discriminate the severity of trauma patients than rSIG and SI. The area under the ROC was 0.743 (95%CI 0.70-0.79), 0.649 (95%CI 0.59-0.70), and 0.582 (95%CI 0.52-0.65), respectively (P-value <0.001). The cut point of NEWS to discriminate was 6 points. Conclusions: The NEWs was the most accurate triage tool in prehospital seeing in trauma patients.Keywords: on-scene triage, trauma patient, ED triage, accuracy, NEWS
Procedia PDF Downloads 1261214 Intestine Characteristics and Blood Profile of Broiler Chickens Treated with Garlic
Authors: Mary Anthony Oguike, Ilouno, Amaduruonye
Abstract:
A completely randomized design experiment with 3 treatments was conducted to study the effects of garlic on intestine characteristics, haematology and serum biochemistry of Marshal broilers. Thirty three (33) broiler chicks were randomly allotted to each treatment designated T1, T2 and T3. The birds in each treatment were replicated 3 times with 11 broilers per replicate. They were fed diets supplemented with garlic at 0, 1.5 and 2.5 % /kg feed for t1, T2 and T3, respectively with T1 as control. Data were collected on intestine parameters, serum biochemical parameters and haematological indices. The results showed significant (P>0.05) dose-dependent decrease in intestine weight and caeca microbial load of the broilers. The intestine of broilers in the treatments showed normal histological architecture in all the treatments. The red blood cell (RBC), white blood cell (WBC), haemoglobin (Hb) and other haematological indices showed no significant differences (P<0.05) among the treatments. Cholesterol, globulin, glucose and alanin aminotransferase (ALT) were significantly different (P<0.05) among the treatment groups. Serum biochemical parameters such as, total protein albumin, bilirubin and others were not significant among the treatments. All the blood parameters studied fall within the normal range for broilers. Garlic supplementation in the diets of broilers did not have any detrimental effects on the treated birds since their serum biochemistry and haematology fall within the normal range for broilers birds. The microbial examination of intestine and caeca, as well as the histopathological studies of the intestine confirmed antimicrobial properties of garlic.Keywords: broiler, biochemistry and haematology, garlic, intestine
Procedia PDF Downloads 971213 From Sampling to Sustainable Phosphate Recovery from Mine Waste Rock Piles
Authors: Hicham Amar, Mustapha El Ghorfi, Yassine Taha, Abdellatif Elghali, Rachid Hakkou, Mostafa Benzaazoua
Abstract:
Phosphate mine waste rock (PMWR) generated during ore extraction is continuously increasing, resulting in a significant environmental footprint. The main objectives of this study consist of i) elaboration of the sampling strategy of PMWR piles, ii) a mineralogical and chemical characterization of PMWR piles, and iii) 3D block model creation to evaluate the potential valorization of the existing PMWR. Destructive drilling using reverse circulation from 13 drills was used to collect samples for chemical (X-ray fluorescence analysis) and mineralogical assays. The 3D block model was created based on the data set, including chemical data of the realized drills using Datamine RM software. The optical microscopy observations showed that the sandy phosphate from drills in the PMWR piles is characterized by the abundance of carbonate fluorapatite with the presence of calcite, dolomite, and quartz. The mean grade of composite samples was around 19.5±2.7% for P₂O₅. The mean grade of P₂O₅ exhibited an increasing tendency by depth profile from bottom to top of PMWR piles. 3D block model generated with chemical data confirmed the tendency of the mean grades’ variation and may allow a potential selective extraction according to %P₂O₅. The 3D block model of P₂O₅ grade is an efficient sampling approach that confirmed the variation of P₂O₅ grade. This integrated approach for PMWR management will be a helpful tool for decision-making to recover the residual phosphate, adopting the circular economy and sustainability in the phosphate mining industry.Keywords: 3D modelling, reverse circulation drilling, circular economy, phosphate mine waste rock, sampling
Procedia PDF Downloads 781212 Psychometric Properties of the Secondary School Stressor Questionnaire among Adolescents at Five Secondary Schools
Authors: Muhamad Saiful Bahri Yusoff
Abstract:
This study aimed to evaluate the construct, convergent, and discriminant validity of the Secondary School Stressor Questionnaire (3SQ) as well as to evaluate its internal consistency among adolescents in Malaysian secondary schools. A cross-sectional study was conducted on 700 secondary school students in five secondary schools. Stratified random sampling was used to select schools and participants. The confirmatory factor analysis was performed by AMOS to examine construct, convergent, and discriminant validity. The reliability analysis was performed by SPSS to determine internal consistency. The results showed that the original six-factor model with 44 items failed to achieve acceptable values of the goodness of fit indices, suggesting poor model fit. The new five-factor model of 3SQ with 22 items demonstrated acceptable level of goodness of fit indices to signify a model fit. The overall Cronbach’s alpha value for the new version 3SQ was 0.93, while the five constructs ranged from 0.68 to 0.94. The composite reliability values of each construct ranged between 0.68 and 0.93, indicating satisfactory to high level of convergent validity. Our study did not support the construct validity of the original version of 3SQ. We found the new version 3SQ showed more convincing evidence of validity and reliability to measure stressors of adolescents. Continued research is needed to verify and maximize the psychometric credentials of 3SQ across countries.Keywords: stressors, adolescents, secondary school students, 3SQ, psychometric properties
Procedia PDF Downloads 4031211 Multi-Temporal Mapping of Built-up Areas Using Daytime and Nighttime Satellite Images Based on Google Earth Engine Platform
Authors: S. Hutasavi, D. Chen
Abstract:
The built-up area is a significant proxy to measure regional economic growth and reflects the Gross Provincial Product (GPP). However, an up-to-date and reliable database of built-up areas is not always available, especially in developing countries. The cloud-based geospatial analysis platform such as Google Earth Engine (GEE) provides an opportunity with accessibility and computational power for those countries to generate the built-up data. Therefore, this study aims to extract the built-up areas in Eastern Economic Corridor (EEC), Thailand using day and nighttime satellite imagery based on GEE facilities. The normalized indices were generated from Landsat 8 surface reflectance dataset, including Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Modified Built-up Index (MBUI). These indices were applied to identify built-up areas in EEC. The result shows that MBUI performs better than BUI and NDBI, with the highest accuracy of 0.85 and Kappa of 0.82. Moreover, the overall accuracy of classification was improved from 79% to 90%, and error of total built-up area was decreased from 29% to 0.7%, after night-time light data from the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB). The results suggest that MBUI with night-time light imagery is appropriate for built-up area extraction and be utilize for further study of socioeconomic impacts of regional development policy over the EEC region.Keywords: built-up area extraction, google earth engine, adaptive thresholding method, rapid mapping
Procedia PDF Downloads 1261210 An Indispensable Parameter in Lipid Ratios to Discriminate between Morbid Obesity and Metabolic Syndrome in Children: High Density Lipoprotein Cholesterol
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Obesity is a low-grade inflammatory disease and may lead to health problems such as hypertension, dyslipidemia, diabetes. It is also associated with important risk factors for cardiovascular diseases. This requires the detailed evaluation of obesity, particularly in children. The aim of this study is to enlighten the potential associations between lipid ratios and obesity indices and to introduce those with discriminating features among children with obesity and metabolic syndrome (MetS). A total of 408 children (aged between six and eighteen years) participated in the scope of the study. Informed consent forms were taken from the participants and their parents. Ethical Committee approval was obtained. Anthropometric measurements such as weight, height as well as waist, hip, head, neck circumferences and body fat mass were taken. Systolic and diastolic blood pressure values were recorded. Body mass index (BMI), diagnostic obesity notation model assessment index-II (D2 index), waist-to-hip, head-to-neck ratios were calculated. Total cholesterol, triglycerides, high-density lipoprotein cholesterol (HDLChol), low-density lipoprotein cholesterol (LDLChol) analyses were performed in blood samples drawn from 110 children with normal body weight, 164 morbid obese (MO) children and 134 children with MetS. Age- and sex-adjusted BMI percentiles tabulated by World Health Organization were used to classify groups; normal body weight, MO and MetS. 15th-to-85th percentiles were used to define normal body weight children. Children, whose values were above the 99th percentile, were described as MO. MetS criteria were defined. Data were evaluated statistically by SPSS Version 20. The degree of statistical significance was accepted as p≤0.05. Mean±standard deviation values of BMI for normal body weight children, MO children and those with MetS were 15.7±1.1, 27.1±3.8 and 29.1±5.3 kg/m2, respectively. Corresponding values for the D2 index were calculated as 3.4±0.9, 14.3±4.9 and 16.4±6.7. Both BMI and D2 index were capable of discriminating the groups from one another (p≤0.01). As far as other obesity indices were considered, waist-to hip and head-to-neck ratios did not exhibit any statistically significant difference between MO and MetS groups (p≥0.05). Diagnostic obesity notation model assessment index-II was correlated with the triglycerides-to-HDL-C ratio in normal body weight and MO (r=0.413, p≤0.01 and r=0.261, (p≤0.05, respectively). Total cholesterol-to-HDL-C and LDL-C-to-HDL-C showed statistically significant differences between normal body weight and MO as well as MO and MetS (p≤0.05). The only group in which these two ratios were significantly correlated with waist-to-hip ratio was MetS group (r=0.332 and r=0.334, p≤0.01, respectively). Lack of correlation between the D2 index and the triglycerides-to-HDL-C ratio was another important finding in MetS group. In this study, parameters and ratios, whose associations were defined previously with increased cardiovascular risk or cardiac death have been evaluated along with obesity indices in children with morbid obesity and MetS. Their profiles during childhood have been investigated. Aside from the nature of the correlation between the D2 index and triglycerides-to-HDL-C ratio, total cholesterol-to-HDL-C as well as LDL-C-to- HDL-C ratios along with their correlations with waist-to-hip ratio showed that the combination of obesity-related parameters predicts better than one parameter and appears to be helpful for discriminating MO children from MetS group.Keywords: children, lipid ratios, metabolic syndrome, obesity indices
Procedia PDF Downloads 1591209 Modeling and Monitoring of Agricultural Influences on Harmful Algal Blooms in Western Lake Erie
Authors: Xiaofang Wei
Abstract:
Harmful Algal Blooms are a recurrent disturbing occurrence in Lake Erie that has caused significant negative impacts on water quality and aquatic ecosystem around Great Lakes areas in the United States. Targeting the recent HAB events in western Lake Erie, this paper utilizes satellite imagery and hydrological modeling to monitor HAB cyanobacteria blooms and analyze the impacts of agricultural activities from Maumee watershed, the biggest watershed of Lake Erie and agriculture dominant.SWAT (Soil & Water Assessment Tool) Model for Maumee watershed was established with DEM, land use data, crop data layer, soil data, and weather data, and calibrated with Maumee River gauge stations data for streamflow and nutrients. Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) was applied to remove atmospheric attenuation and cyanobacteria Indices were calculated from Landsat OLI imagery to study the intensity of HAB events in the years 2015, 2017, and 2019. The agricultural practice and nutrients management within the Maumee watershed was studied and correlated with HAB cyanobacteria indices to study the relationship between HAB intensity and nutrient loadings. This study demonstrates that hydrological models and satellite imagery are effective tools in HAB monitoring and modeling in rivers and lakes.Keywords: harmful algal bloom, landsat OLI imagery, SWAT, HAB cyanobacteria
Procedia PDF Downloads 1761208 Unlocking the Future of Grocery Shopping: Graph Neural Network-Based Cold Start Item Recommendations with Reverse Next Item Period Recommendation (RNPR)
Authors: Tesfaye Fenta Boka, Niu Zhendong
Abstract:
Recommender systems play a crucial role in connecting individuals with the items they require, as is particularly evident in the rapid growth of online grocery shopping platforms. These systems predominantly rely on user-centered recommendations, where items are suggested based on individual preferences, garnering considerable attention and adoption. However, our focus lies on the item-centered recommendation task within the grocery shopping context. In the reverse next item period recommendation (RNPR) task, we are presented with a specific item and challenged to identify potential users who are likely to consume it in the upcoming period. Despite the ever-expanding inventory of products on online grocery platforms, the cold start item problem persists, posing a substantial hurdle in delivering personalized and accurate recommendations for new or niche grocery items. To address this challenge, we propose a Graph Neural Network (GNN)-based approach. By capitalizing on the inherent relationships among grocery items and leveraging users' historical interactions, our model aims to provide reliable and context-aware recommendations for cold-start items. This integration of GNN technology holds the promise of enhancing recommendation accuracy and catering to users' individual preferences. This research contributes to the advancement of personalized recommendations in the online grocery shopping domain. By harnessing the potential of GNNs and exploring item-centered recommendation strategies, we aim to improve the overall shopping experience and satisfaction of users on these platforms.Keywords: recommender systems, cold start item recommendations, online grocery shopping platforms, graph neural networks
Procedia PDF Downloads 911207 Factors Influencing Soil Organic Carbon Storage Estimation in Agricultural Soils: A Machine Learning Approach Using Remote Sensing Data Integration
Authors: O. Sunantha, S. Zhenfeng, S. Phattraporn, A. Zeeshan
Abstract:
The decline of soil organic carbon (SOC) in global agriculture is a critical issue requiring rapid and accurate estimation for informed policymaking. While it is recognized that SOC predictors vary significantly when derived from remote sensing data and environmental variables, identifying the specific parameters most suitable for accurately estimating SOC in diverse agricultural areas remains a challenge. This study utilizes remote sensing data to precisely estimate SOC and identify influential factors in diverse agricultural areas, such as paddy, corn, sugarcane, cassava, and perennial crops. Extreme gradient boosting (XGBoost), random forest (RF), and support vector regression (SVR) models are employed to analyze these factors' impact on SOC estimation. The results show key factors influencing SOC estimation include slope, vegetation indices (EVI), spectral reflectance indices (red index, red edge2), temperature, land use, and surface soil moisture, as indicated by their averaged importance scores across XGBoost, RF, and SVR models. Therefore, using different machine learning algorithms for SOC estimation reveals varying influential factors from remote sensing data and environmental variables. This approach emphasizes feature selection, as different machine learning algorithms identify various key factors from remote sensing data and environmental variables for accurate SOC estimation.Keywords: factors influencing SOC estimation, remote sensing data, environmental variables, machine learning
Procedia PDF Downloads 351206 A Wearable Device to Overcome Post–Stroke Learned Non-Use; The Rehabilitation Gaming System for wearables: Methodology, Design and Usability
Authors: Javier De La Torre Costa, Belen Rubio Ballester, Martina Maier, Paul F. M. J. Verschure
Abstract:
After a stroke, a great number of patients experience persistent motor impairments such as hemiparesis or weakness in one entire side of the body. As a result, the lack of use of the paretic limb might be one of the main contributors to functional loss after clinical discharge. We aim to reverse this cycle by promoting the use of the paretic limb during activities of daily living (ADLs). To do so, we describe the key components of a system that is composed of a wearable bracelet (i.e., a smartwatch) and a mobile phone, designed to bring a set of neurorehabilitation principles that promote acquisition, retention and generalization of skills to the home of the patient. A fundamental question is whether the loss in motor function derived from learned–non–use may emerge as a consequence of decision–making processes for motor optimization. Our system is based on well-established rehabilitation strategies that aim to reverse this behaviour by increasing the reward associated with action execution as well as implicitly reducing the expected cost associated with the use of the paretic limb, following the notion of the reinforcement–induced movement therapy (RIMT). Here we validate an accelerometer–based measure of arm use, and its capacity to discriminate different activities that require increasing movement of the arm. We also show how the system can act as a personalized assistant by providing specific goals and adjusting them depending on the performance of the patients. The usability and acceptance of the device as a rehabilitation tool is tested using a battery of self–reported and objective measurements obtained from acute/subacute patients and healthy controls. We believe that an extension of these technologies will allow for the deployment of unsupervised rehabilitation paradigms during and beyond the hospitalization time.Keywords: stroke, wearables, learned non use, hemiparesis, ADLs
Procedia PDF Downloads 2191205 Presenting a Model in the Analysis of Supply Chain Management Components by Using Statistical Distribution Functions
Authors: Ramin Rostamkhani, Thurasamy Ramayah
Abstract:
One of the most important topics of today’s industrial organizations is the challenging issue of supply chain management. In this field, scientists and researchers have published numerous practical articles and models, especially in the last decade. In this research, to our best knowledge, the discussion of data modeling of supply chain management components using well-known statistical distribution functions has been considered. The world of science owns mathematics, and showing the behavior of supply chain data based on the characteristics of statistical distribution functions is innovative research that has not been published anywhere until the moment of doing this research. In an analytical process, describing different aspects of functions including probability density, cumulative distribution, reliability, and failure function can reach the suitable statistical distribution function for each of the components of the supply chain management. It can be applied to predict the behavior data of the relevant component in the future. Providing a model to adapt the best statistical distribution function in the supply chain management components will be a big revolution in the field of the behavior of the supply chain management elements in today's industrial organizations. Demonstrating the final results of the proposed model by introducing the process capability indices before and after implementing it alongside verifying the approach through the relevant assessment as an acceptable verification is a final step. The introduced approach can save the required time and cost to achieve the organizational goals. Moreover, it can increase added value in the organization.Keywords: analyzing, process capability indices, statistical distribution functions, supply chain management components
Procedia PDF Downloads 871204 Energy Enterprise Information System for Strategic Decision-Making
Authors: Woosik Jang, Seung H. Han, Seung Won Baek, Chan Young Park
Abstract:
Natural gas (NG) is a local energy resource that exists in certain countries, and most NG producers operate within unstable governments. Moreover, about 90% of the liquefied natural gas (LNG) market is governed by a small number of international oil companies (IOCs) and national oil companies (NOCs), market entry of second movers is extremely limited. To overcome these barriers, project viability should be assessed based on limited information at the project screening perspective. However, there have been difficulties at the early stages of projects as follows: (1) What factors should be considered? (2) How many experts are needed to make a decision? and (3) How to make an optimal decision with limited information? To answer these questions, this research suggests a LNG project viability assessment model based on the Dempster-Shafer theory (DST). Total of 11 indices for the gas field analysis and 23 indices for the market environment analysis are identified that reflect unique characteristics of LNG industry. Moreover, the proposed model evaluates LNG projects based on questionnaire survey and it provides not only quantified results but also uncertainty level of results based on DST. Consequently, the proposed model as a systematic framework can support the decision-making process from the gas field projects using quantitative results, and it is developed to a stand-alone system to enhance the practical usability. It is expected to improve the decision-making quality and opportunity in LNG projects for enterprise through informed decision.Keywords: project viability, LNG project, enterprise information system, Dempster-Shafer Theory, strategic decision-making
Procedia PDF Downloads 2581203 Dem Based Surface Deformation in Jhelum Valley: Insights from River Profile Analysis
Authors: Syed Amer Mahmood, Rao Mansor Ali Khan
Abstract:
This study deals with the remote sensing analysis of tectonic deformation and its implications to understand the regional uplift conditions in the lower Jhelum and eastern Potwar. Identification and mapping of active structures is an important issue in order to assess seismic hazards and to understand the Quaternary deformation of the region. Digital elevation models (DEMs) provide an opportunity to quantify land surface geometry in terms of elevation and its derivatives. Tectonic movement along the faults is often reflected by characteristic geomorphological features such as elevation, stream offsets, slope breaks and the contributing drainage area. The river profile analysis in this region using SRTM digital elevation model gives information about the tectonic influence on the local drainage network. The steepness and concavity indices have been calculated by power law of scaling relations under steady state conditions. An uplift rate map is prepared after carefully analysing the local drainage network showing uplift rates in mm/year. The active faults in the region control local drainages and the deflection of stream channels is a further evidence of the recent fault activity. The results show variable relative uplift conditions along MBT and Riasi and represent a wonderful example of the recency of uplift, as well as the influence of active tectonics on the evolution of young orogens.Keywords: quaternary deformation, SRTM DEM, geomorphometric indices, active tectonics and MBT
Procedia PDF Downloads 348