Search results for: nonlinear systems of equations
11387 A Mathematical Model of Power System State Estimation for Power Flow Solution
Authors: F. Benhamida, A. Graa, L. Benameur, I. Ziane
Abstract:
The state estimation of the electrical power system operation state is very important for supervising task. With the nonlinearity of the AC power flow model, the state estimation problem (SEP) is a nonlinear mathematical problem with many local optima. This paper treat the mathematical model for the SEP and the monitoring of the nonlinear systems of great dimensions with an application on power electrical system, the modelling, the analysis and state estimation synthesis in order to supervise the power system behavior. in fact, it is very difficult, to see impossible, (for reasons of accessibility, techniques and/or of cost) to measure the excessive number of the variables of state in a large-sized system. It is thus important to develop software sensors being able to produce a reliable estimate of the variables necessary for the diagnosis and also for the control.Keywords: power system, state estimation, robustness, observability
Procedia PDF Downloads 52311386 Actuator Fault Detection and Fault Tolerant Control of a Nonlinear System Using Sliding Mode Observer
Authors: R. Loukil, M. Chtourou, T. Damak
Abstract:
In this work, we use the Fault detection and isolation and the Fault tolerant control based on sliding mode observer in order to introduce the well diagnosis of a nonlinear system. The robustness of the proposed observer for the two techniques is tested through a physical example. The results in this paper show the interaction between the Fault tolerant control and the Diagnosis procedure.Keywords: fault detection and isolation FDI, fault tolerant control FTC, sliding mode observer, nonlinear system, robustness, stability
Procedia PDF Downloads 37411385 Unconventional Calculus Spreadsheet Functions
Authors: Chahid K. Ghaddar
Abstract:
The spreadsheet engine is exploited via a non-conventional mechanism to enable novel worksheet solver functions for computational calculus. The solver functions bypass inherent restrictions on built-in math and user defined functions by taking variable formulas as a new type of argument while retaining purity and recursion properties. The enabling mechanism permits integration of numerical algorithms into worksheet functions for solving virtually any computational problem that can be modelled by formulas and variables. Several examples are presented for computing integrals, derivatives, and systems of deferential-algebraic equations. Incorporation of the worksheet solver functions with the ubiquitous spreadsheet extend the utility of the latter as a powerful tool for computational mathematics.Keywords: calculus, differential algebraic equations, solvers, spreadsheet
Procedia PDF Downloads 36511384 Effects of Daily Temperature Changes on Transient Heat and Moisture Transport in Unsaturated Soils
Authors: Davood Yazdani Cherati, Ali Pak, Mehrdad Jafarzadeh
Abstract:
This research contains the formulation of a two-dimensional analytical solution to transient heat, and moisture flow in a semi-infinite unsaturated soil environment under the influence of daily temperature changes. For this purpose, coupled energy conservation and mass fluid continuity equations governing hydrothermal behavior of unsaturated soil media are presented in terms of temperature and volumetric moisture content. In consideration of the soil environment as an infinite half-space and by linearization of the governing equations, Laplace–Fourier transformation is conducted to convert differential equations with partial derivatives (PDEs) to ordinary differential equations (ODEs). The obtained ODEs are solved, and the inverse transformations are calculated to determine the solution to the system of equations. Results indicate that heat variation induces moisture transport in both horizontal and vertical directions.Keywords: analytical solution, heat conduction, hydrothermal analysis, laplace–fourier transformation, two-dimensional
Procedia PDF Downloads 21611383 Design of Reinforced Concrete (RC) Walls Considering Shear Amplification by Nonlinear Dynamic Behavior
Authors: Sunghyun Kim, Hong-Gun Park
Abstract:
In the performance-based design (PBD), by using the nonlinear dynamic analysis (NDA), the actual performance of the structure is evaluated. Unlike frame structures, in the wall structures, base shear force which is resulted from the NDA, is greatly amplified than that from the elastic analysis. This shear amplifying effect causes repeated designs which make designer difficult to apply the PBD. Therefore, in this paper, factors which affect shear amplification were studied. For the 20-story wall model, the NDA was performed. From the analysis results, the base shear amplification factor was proposed.Keywords: performance based design, shear amplification factor, nonlinear dynamic analysis, RC shear wall
Procedia PDF Downloads 38011382 Chaotic Electronic System with Lambda Diode
Authors: George Mahalu
Abstract:
The Chua diode has been configured over time in various ways, using electronic structures like as operational amplifiers (OAs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paper-work proposed here uses in the modeling a lambda diode type configuration consisting of two Junction Field Effect Transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.Keywords: chaos, lambda diode, strange attractor, nonlinear system
Procedia PDF Downloads 8911381 Analysis and Simulation of TM Fields in Waveguides with Arbitrary Cross-Section Shapes by Means of Evolutionary Equations of Time-Domain Electromagnetic Theory
Authors: Ömer Aktaş, Olga A. Suvorova, Oleg Tretyakov
Abstract:
The boundary value problem on non-canonical and arbitrary shaped contour is solved with a numerically effective method called Analytical Regularization Method (ARM) to calculate propagation parameters. As a result of regularization, the equation of first kind is reduced to the infinite system of the linear algebraic equations of the second kind in the space of L2. This equation can be solved numerically for desired accuracy by using truncation method. The parameters as cut-off wavenumber and cut-off frequency are used in waveguide evolutionary equations of electromagnetic theory in time-domain to illustrate the real-valued TM fields with lossy and lossless media.Keywords: analytical regularization method, electromagnetic theory evolutionary equations of time-domain, TM Field
Procedia PDF Downloads 50111380 MHD Stagnation-Point Flow over a Plate
Authors: H. Niranjan, S. Sivasankaran
Abstract:
Heat and mass transfer near a steady stagnation point boundary layer flow of viscous incompressible fluid through porous media investigates along a vertical plate is thoroughly studied under the presence of magneto hydrodynamic (MHD) effects. The fluid flow is steady, laminar, incompressible and in two-dimensional. The nonlinear differential coupled parabolic partial differential equations of continuity, momentum, energy and specie diffusion are converted into the non-similar boundary layer equations using similarity transformation, which are then solved numerically using the Runge-Kutta method along with shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.Keywords: MHD, porous medium, slip, convective boundary condition, stagnation point
Procedia PDF Downloads 30211379 Nonlinear Analysis of Reinforced Concrete Arched Structures Considering Soil-Structure Interaction
Authors: Mohamed M. El Gendy, Ibrahim A. El Arabi, Rafeek W. Abdel-Missih, Omar A. Kandil
Abstract:
Nonlinear analysis is one of the most important design and safety tools in structural engineering. Based on the finite-element method, a geometrical and material nonlinear analysis of large span reinforced concrete arches is carried out considering soil-structure interaction. The concrete section details and reinforcement distribution are taken into account. The behavior of soil is considered via Winkler's and continuum models. A computer program (NARC II) is specially developed in order to follow the structural behavior of large span reinforced concrete arches up to failure. The results obtained by the proposed model are compared with available literature for verification. This work confirmed that the geometrical and material nonlinearities, as well as soil structure interaction, have considerable influence on the structural response of reinforced concrete arches.Keywords: nonlinear analysis, reinforced concrete arched structure, soil-structure interaction, geotechnical engineering
Procedia PDF Downloads 43911378 Solution of Hybrid Fuzzy Differential Equations
Authors: Mahmood Otadi, Maryam Mosleh
Abstract:
The hybrid differential equations have a wide range of applications in science and engineering. In this paper, the homotopy analysis method (HAM) is applied to obtain the series solution of the hybrid differential equations. Using the homotopy analysis method, it is possible to find the exact solution or an approximate solution of the problem. Comparisons are made between improved predictor-corrector method, homotopy analysis method and the exact solution. Finally, we illustrate our approach by some numerical example.Keywords: fuzzy number, fuzzy ODE, HAM, approximate method
Procedia PDF Downloads 51311377 On a Continuous Formulation of Block Method for Solving First Order Ordinary Differential Equations (ODEs)
Authors: A. M. Sagir
Abstract:
The aim of this paper is to investigate the performance of the developed linear multistep block method for solving first order initial value problem of Ordinary Differential Equations (ODEs). The method calculates the numerical solution at three points simultaneously and produces three new equally spaced solution values within a block. The continuous formulations enable us to differentiate and evaluate at some selected points to obtain three discrete schemes, which were used in block form for parallel or sequential solutions of the problems. A stability analysis and efficiency of the block method are tested on ordinary differential equations involving practical applications, and the results obtained compared favorably with the exact solution. Furthermore, comparison of error analysis has been developed with the help of computer software.Keywords: block method, first order ordinary differential equations, linear multistep, self-starting
Procedia PDF Downloads 30611376 Mapping Method to Solve a Nonlinear Schrodinger Type Equation
Authors: Edamana Vasudevan Krishnan
Abstract:
This paper studies solitons in optical materials with the help of Mapping Method. Two types of nonlinear media have been investigated, namely, the cubic nonlinearity and the quintic nonlinearity. The soliton solutions, shock wave solutions and singular solutions have been derives with certain constraint conditions.Keywords: solitons, integrability, metamaterials, mapping method
Procedia PDF Downloads 49411375 Reducing Total Harmonic Content of 9-Level Inverter by Use of Cuckoo Algorithm
Authors: Mahmoud Enayati, Sirous Mohammadi
Abstract:
In this paper, a novel procedure to find the firing angles of the multilevel inverters of supply voltage and, consequently, to decline the total harmonic distortion (THD), has been presented. In order to eliminate more harmonics in the multilevel inverters, its number of levels can be lessened or pulse width modulation waveform, in which more than one switching occur in each level, be used. Both cases complicate the non-algebraic equations and their solution cannot be performed by the conventional methods for the numerical solution of nonlinear equations such as Newton-Raphson method. In this paper, Cuckoo algorithm is used to compute the optimal firing angle of the pulse width modulation voltage waveform in the multilevel inverter. These angles should be calculated in such a way that the voltage amplitude of the fundamental frequency be generated while the total harmonic distortion of the output voltage be small. The simulation and theoretical results for the 9-levels inverter offer the high applicability of the proposed algorithm to identify the suitable firing angles for declining the low order harmonics and generate a waveform whose total harmonic distortion is very small and it is almost a sinusoidal waveform.Keywords: evolutionary algorithms, multilevel inverters, total harmonic content, Cuckoo Algorithm
Procedia PDF Downloads 53411374 Simulation of Nonlinear Behavior of Reinforced Concrete Slabs Using Rigid Body-Spring Discrete Element Method
Authors: Felix Jr. Garde, Eric Augustus Tingatinga
Abstract:
Most analysis procedures of reinforced concrete (RC) slabs are based on elastic theory. When subjected to large forces, however, slabs deform beyond elastic range and the study of their behavior and performance require nonlinear analysis. This paper presents a numerical model to simulate nonlinear behavior of RC slabs using rigid body-spring discrete element method. The proposed slab model composed of rigid plate elements and nonlinear springs is based on the yield line theory which assumes that the nonlinear behavior of the RC slab subjected to transverse loads is contained in plastic or yield-lines. In this model, the displacement of the slab is completely described by the rigid elements and the deformation energy is concentrated in the flexural springs uniformly distributed at the potential yield lines. The spring parameters are determined from comparison of transverse displacements and stresses developed in the slab obtained using FEM and the proposed model with assumed homogeneous material. Numerical models of typical RC slabs with varying geometry, reinforcement, support conditions, and loading conditions, show reasonable agreement with available experimental data. The model was also shown to be useful in investigating dynamic behavior of slabs.Keywords: RC slab, nonlinear behavior, yield line theory, rigid body-spring discrete element method
Procedia PDF Downloads 32511373 Numerical Regularization of Ill-Posed Problems via Hybrid Feedback Controls
Authors: Eugene Stepanov, Arkadi Ponossov
Abstract:
Many mathematical models used in biological and other applications are ill-posed. The reason for that is the nature of differential equations, where the nonlinearities are assumed to be step functions, which is done to simplify the analysis. Prominent examples are switched systems arising from gene regulatory networks and neural field equations. This simplification leads, however, to theoretical and numerical complications. In the presentation, it is proposed to apply the theory of hybrid feedback controls to regularize the problem. Roughly speaking, one attaches a finite state control (‘automaton’), which follows the trajectories of the original system and governs its dynamics at the points of ill-posedness. The construction of the automaton is based on the classification of the attractors of the specially designed adjoint dynamical system. This ‘hybridization’ is shown to regularize the original switched system and gives rise to efficient hybrid numerical schemes. Several examples are provided in the presentation, which supports the suggested analysis. The method can be of interest in other applied fields, where differential equations contain step-like nonlinearities.Keywords: hybrid feedback control, ill-posed problems, singular perturbation analysis, step-like nonlinearities
Procedia PDF Downloads 24711372 The Physical Impact of Nano-Layer Due to Dispersions of Carbon Nano-Tubes through an Absorbent Channel: A Numerical Nano-Fluid Flow Model
Authors: Muhammad Zubair Akbar Qureshi, Abdul Bari Farooq
Abstract:
The intention of the current study to analyze the significance of nano-layer in incompressible magneto-hydrodynamics (MHD) flow of a Newtonian nano-fluid consisting of carbon nano-materials has been considered through an absorbent channel with moving porous walls. Using applicable similarity transforms, the governing equations are converted into a system of nonlinear ordinary differential equations which are solved by using the 4th-order Runge-Kutta technique together with shooting methodology. The phenomena of nano-layer have also been modeled mathematically. The inspiration behind this segment is to reveal the behavior of involved parameters on velocity and temperature profiles. A detailed table is presented in which the effects of involved parameters on shear stress and heat transfer rate are discussed. Specially presented the impact of the thickness of the nano-layer and radius of the particle on the temperature profile. We observed that due to an increase in the thickness of the nano-layer, the heat transfer rate increases rapidly. The consequences of this research may be advantageous to the applications of biotechnology and industrial motive.Keywords: carbon nano-tubes, magneto-hydrodynamics, nano-layer, thermal conductivity
Procedia PDF Downloads 12811371 Optimal-Based Structural Vibration Attenuation Using Nonlinear Tuned Vibration Absorbers
Authors: Pawel Martynowicz
Abstract:
Vibrations are a crucial problem for slender structures such as towers, masts, chimneys, wind turbines, bridges, high buildings, etc., that is why most of them are equipped with vibration attenuation or fatigue reduction solutions. In this work, a slender structure (i.e., wind turbine tower-nacelle model) equipped with nonlinear, semiactive tuned vibration absorber(s) is analyzed. For this study purposes, magnetorheological (MR) dampers are used as semiactive actuators. Several optimal-based approaches to structural vibration attenuation are investigated against the standard ‘ground-hook’ law and passive tuned vibration absorber(s) implementations. The common approach to optimal control of nonlinear systems is offline computation of the optimal solution, however, so determined open loop control suffers from lack of robustness to uncertainties (e.g., unmodelled dynamics, perturbations of external forces or initial conditions), and thus perturbation control techniques are often used. However, proper linearization may be an issue for highly nonlinear systems with implicit relations between state, co-state, and control. The main contribution of the author is the development as well as numerical and experimental verification of the Pontriagin maximum-principle-based vibration control concepts that produce directly actuator control input (not the demanded force), thus force tracking algorithm that results in control inaccuracy is entirely omitted. These concepts, including one-step optimal control, quasi-optimal control, and optimal-based modified ‘ground-hook’ law, can be directly implemented in online and real-time feedback control for periodic (or semi-periodic) disturbances with invariant or time-varying parameters, as well as for non-periodic, transient or random disturbances, what is a limitation for some other known solutions. No offline calculation, excitations/disturbances assumption or vibration frequency determination is necessary, moreover, all of the nonlinear actuator (MR damper) force constraints, i.e., no active forces, lower and upper saturation limits, hysteresis-type dynamics, etc., are embedded in the control technique, thus the solution is optimal or suboptimal for the assumed actuator, respecting its limitations. Depending on the selected method variant, a moderate or decisive reduction in the computational load is possible compared to other methods of nonlinear optimal control, while assuring the quality and robustness of the vibration reduction system, as well as considering multi-pronged operational aspects, such as possible minimization of the amplitude of the deflection and acceleration of the vibrating structure, its potential and/or kinetic energy, required actuator force, control input (e.g. electric current in the MR damper coil) and/or stroke amplitude. The developed solutions are characterized by high vibration reduction efficiency – the obtained maximum values of the dynamic amplification factor are close to 2.0, while for the best of the passive systems, these values exceed 3.5.Keywords: magnetorheological damper, nonlinear tuned vibration absorber, optimal control, real-time structural vibration attenuation, wind turbines
Procedia PDF Downloads 12611370 Fundamental Solutions for Discrete Dynamical Systems Involving the Fractional Laplacian
Authors: Jorge Gonzalez Camus, Valentin Keyantuo, Mahamadi Warma
Abstract:
In this work, we obtain representation results for solutions of a time-fractional differential equation involving the discrete fractional Laplace operator in terms of generalized Wright functions. Such equations arise in the modeling of many physical systems, for example, chain processes in chemistry and radioactivity. The focus is on the linear problem of the simplified Moore - Gibson - Thompson equation, where the discrete fractional Laplacian and the Caputo fractional derivate of order on (0,2] are involved. As a particular case, we obtain the explicit solution for the discrete heat equation and discrete wave equation. Furthermore, we show the explicit solution for the equation involving the perturbed Laplacian by the identity operator. The main tool for obtaining the explicit solution are the Laplace and discrete Fourier transforms, and Stirling's formula. The methodology mainly is to apply both transforms in the equation, to find the inverse of each transform, and to prove that this solution is well defined, using Stirling´s formula.Keywords: discrete fractional Laplacian, explicit representation of solutions, fractional heat and wave equations, fundamental
Procedia PDF Downloads 20911369 Melnikov Analysis for the Chaos of the Nonlocal Nanobeam Resting on Fractional-Order Softening Nonlinear Viscoelastic Foundations
Authors: Guy Joseph Eyebe, Gambo Betchewe, Alidou Mohamadou, Timoleon Crepin Kofane
Abstract:
In the present study, the dynamics of nanobeam resting on fractional order softening nonlinear viscoelastic pasternack foundations is studied. The Hamilton principle is used to derive the nonlinear equation of the motion. Approximate analytical solution is obtained by applying the standard averaging method. The Melnikov method is used to investigate the chaotic behaviors of device, the critical curve separating the chaotic and non-chaotic regions are found. It is shown that appearance of chaos in the system depends strongly on the fractional order parameter.Keywords: chaos, fractional-order, Melnikov method, nanobeam
Procedia PDF Downloads 16211368 Capture Zone of a Well Field in an Aquifer Bounded by Two Parallel Streams
Authors: S. Nagheli, N. Samani, D. A. Barry
Abstract:
In this paper, the velocity potential and stream function of capture zone for a well field in an aquifer bounded by two parallel streams with or without a uniform regional flow of any directions are presented. The well field includes any number of extraction or injection wells or a combination of both types with any pumping rates. To delineate the capture envelope, the potential and streamlines equations are derived by conformal mapping method. This method can help us to release constrains of other methods. The equations can be applied as useful tools to design in-situ groundwater remediation systems, to evaluate the surface–subsurface water interaction and to manage the water resources.Keywords: complex potential, conformal mapping, image well theory, Laplace’s equation, superposition principle
Procedia PDF Downloads 43211367 Design of Reduced Links for Link-to-Column Connections in Eccentrically Braced Frames
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
Link-to-column connection in eccentrically braced frames (EBF) has been a critical problem since the link flange connected to the column fractured prior to the required link rotation. Even though the problem in link-to-column connection still exist, the use of an eccentrically braced frame (EBF) is increasing day by day as EBF have high elastic stiffness, stable inelastic response under repeated lateral loading, and excellent ductility and energy dissipation capacity. In order to address this problem, a reduced web and flange link section is proposed and evaluated in this study. Reducing the web with holes makes the link to control the failure at the edge of holes introduced. Reducing the flange allows the link to control the location at which the plastic hinge is formed. Thus, the failure supposed to occur in the link flange connected at the connection move to the web and to the reduced link flange. Nonlinear FE analysis and experimental investigations have been done on the developed links, and the result shows that the link satisfies the plastic rotation limit recommended in AICS-360-10. Design equations that define the behavior of the proposed link have been recommended, and the equations were verified through the experimental and FE analysis results.Keywords: EBFs, earthquake disaster, link-to-column connection, reduced link section
Procedia PDF Downloads 38111366 Path Integrals and Effective Field Theory of Large Scale Structure
Authors: Revant Nayar
Abstract:
In this work, we recast the equations describing large scale structure, and by extension all nonlinear fluids, in the path integral formalism. We first calculate the well known two and three point functions using Schwinger Keldysh formalism used commonly to perturbatively solve path integrals in non- equilibrium systems. Then we include EFT corrections due to pressure, viscosity, and noise as effects on the time-dependent propagator. We are able to express results for arbitrary two and three point correlation functions in LSS in terms of differential operators acting on a triple K master intergral. We also, for the first time, get analytical results for more general initial conditions deviating from the usual power law P∝kⁿ by introducing a mass scale in the initial conditions. This robust field theoretic formalism empowers us with tools from strongly coupled QFT to study the strongly non-linear regime of LSS and turbulent fluid dynamics such as OPE and holographic duals. These could be used to capture fully the strongly non-linear dynamics of fluids and move towards solving the open problem of classical turbulence.Keywords: quantum field theory, cosmology, effective field theory, renormallisation
Procedia PDF Downloads 13511365 Agent/Group/Role Organizational Model to Simulate an Industrial Control System
Authors: Noureddine Seddari, Mohamed Belaoued, Salah Bougueroua
Abstract:
The modeling of complex systems is generally based on the decomposition of their components into sub-systems easier to handle. This division has to be made in a methodical way. In this paper, we introduce an industrial control system modeling and simulation based on the Multi-Agent System (MAS) methodology AALAADIN and more particularly the underlying conceptual model Agent/Group/Role (AGR). Indeed, in this division using AGR model, the overall system is decomposed into sub-systems in order to improve the understanding of regulation and control systems, and to simplify the implementation of the obtained agents and their groups, which are implemented using the Multi-Agents Development KIT (MAD-KIT) platform. This approach appears to us to be the most appropriate for modeling of this type of systems because, due to the use of MAS, it is possible to model real systems in which very complex behaviors emerge from relatively simple and local interactions between many different individuals, therefore a MAS is well adapted to describe a system from the standpoint of the activity of its components, that is to say when the behavior of the individuals is complex (difficult to describe with equations). The main aim of this approach is the take advantage of the performance, the scalability and the robustness that are intuitively provided by MAS.Keywords: complex systems, modeling and simulation, industrial control system, MAS, AALAADIN, AGR, MAD-KIT
Procedia PDF Downloads 24011364 Multiple Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equation
Authors: A. Guezane-Lakoud, S. Bensebaa
Abstract:
In this paper, we study a boundary value problem of nonlinear fractional differential equation. Existence and positivity results of solutions are obtained.Keywords: positive solution, fractional caputo derivative, Banach contraction principle, Avery and Peterson fixed point theorem
Procedia PDF Downloads 41411363 Static Output Feedback Control of a Two-Wheeled Inverted Pendulum Using Sliding Mode Technique
Authors: Yankun Yang, Xinggang Yan, Konstantinos Sirlantzis, Gareth Howells
Abstract:
This paper presents a static output feedback sliding mode control method to regulate a two-wheeled inverted pendulum system with considerations of matched and unmatched uncertainties. A sliding surface is designed and the associated sliding motion stability is analysed based on the reduced-order dynamics. A static output sliding mode control law is synthesised to drive the system to the sliding surface and maintain a sliding motion afterwards. The nonlinear bounds on the uncertainties are employed in the stability analysis and control design to improve the robustness. The simulation results demonstrate the effectiveness of the proposed control.Keywords: two-wheeled inverted pendulum, output feedback sliding mode control, nonlinear systems, robotics
Procedia PDF Downloads 25011362 Nonlinear Response of Infinite Beams on a Multilayer Tensionless Extensible Geosynthetic – Reinforced Earth Bed under Moving Load
Authors: K. Karuppasamy
Abstract:
In this paper analysis of an infinite beam resting on multilayer tensionless extensible geosynthetic reinforced granular fill - poor soil system overlying soft soil strata under moving the load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear Winkler springs representing the underlying the very poor soil. The multilayer tensionless extensible geosynthetic layer has been assumed to deform such that at the interface the geosynthetic and the soil have some deformation. Nonlinear behavior of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Governing differential equations of the soil foundation system have been obtained and solved with the help of appropriate boundary conditions. The solution has been obtained by employing finite difference method by means of Gauss-Siedel iterative scheme. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil – foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. These parameters include the magnitude of applied load, the velocity of the load, damping, the ultimate resistance of the poor soil and granular fill layer. The range of values of parameters has been considered as per Indian Railways conditions. This study clearly observed that the comparisons of multilayer tensionless extensible geosynthetic reinforcement with poor foundation soil and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil – foundation system. However, for the considered range of velocity, the response has been found to be insensitive towards velocity. The ultimate resistance of granular fill layer has also been found to have no significant influence on the response of the system.Keywords: infinite beams, multilayer tensionless extensible geosynthetic, granular layer, moving load and nonlinear behavior of poor soil
Procedia PDF Downloads 43811361 Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil
Authors: H. Bensouilah, H. Boucherit, M. Lahmar
Abstract:
A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially when the dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.Keywords: elasto-aerodynamic lubrication, air foil bearing, steady-state deformation, dynamic deformation, stiffness and damping coefficients, perturbation method, fluid-structure interaction, Galerk infinite element method, finite difference method
Procedia PDF Downloads 39311360 Field Theories in Chiral Liquid Crystals: A Theory for Helicoids and Skyrmions
Authors: G. De Matteis, L. Martina, V. Turco
Abstract:
The work is focused on determining and comparing special nonlinear static configurations in cholesteric liquid crystals (CLCs), confined between two parallel plates and in the presence of an external static electric/magnetic field. The solutions are stabilised by topological and non-topological conservation laws since they are described in terms of integrable or partially integrable nonlinear boundary value problems. In cholesteric liquid crystals which are subject to geometric frustration; anchoring conditions at boundaries, i.e., homeotropic conditions, are incompatible with the cholesteric twist. This aspect turns out to be essential in the admissible classes of solutions, allowing also for disclination type singularities. Within the framework of Frank-Oseen theory, we study the static configurations for CLCs. First, we find numerical solutions for isolated axisymmetric states in confined CLCs with weak homeotropic anchoring at the boundaries. These solutions describe 3-dimensional modulations, namely spherulites or cholesteric bubbles, actually observed in these systems, of standard baby skyrmions. Relations with well-known nonlinear integrable systems are found and are used to explore the asymptotic behavior of the solutions. Then we turn our attention to extended periodic static configurations called Helicoids or cholesteric fingers, described by an elliptic sine-Gordon model with appropriate boundary conditions, showing how their period and energies are determined by both the thickness of the cell and the intensity of the external electric/magnetic field. We explicitly show that helicoids with π or 2π of rotations of the molecular director are different in many aspects and are not simply algebraically related. The behaviour of the solutions, their energy and the properties of the associated disclinations are discussed in detail, both analytically and numerically.Keywords: cholesteric liquid crystals, geometric frustration, helicoids, skyrmions
Procedia PDF Downloads 13011359 A Fundamental Functional Equation for Lie Algebras
Authors: Ih-Ching Hsu
Abstract:
Inspired by the so called Jacobi Identity (x y) z + (y z) x + (z x) y = 0, the following class of functional equations EQ I: F [F (x, y), z] + F [F (y, z), x] + F [F (z, x), y] = 0 is proposed, researched and generalized. Research methodologies begin with classical methods for functional equations, then evolve into discovering of any implicit algebraic structures. One of this paper’s major findings is that EQ I, under two additional conditions F (x, x) = 0 and F (x, y) + F (y, x) = 0, proves to be a fundamental functional equation for Lie Algebras. Existence of non-trivial solutions for EQ I can be proven by defining F (p, q) = [p q] = pq –qp, where p and q are quaternions, and pq is the quaternion product of p and q. EQ I can be generalized to the following class of functional equations EQ II: F [G (x, y), z] + F [G (y, z), x] + F [G (z, x), y] = 0. Concluding Statement: With a major finding proven, and non-trivial solutions derived, this research paper illustrates and provides a new functional equation scheme for studies in two major areas: (1) What underlying algebraic structures can be defined and/or derived from EQ I or EQ II? (2) What conditions can be imposed so that conditional general solutions to EQ I and EQ II can be found, investigated and applied?Keywords: fundamental functional equation, generalized functional equations, Lie algebras, quaternions
Procedia PDF Downloads 22511358 Modulational Instability of Ion-Acoustic Wave in Electron-Positron-Ion Plasmas with Two-Electron Temperature Distributions
Authors: Jitendra Kumar Chawla, Mukesh Kumar Mishra
Abstract:
The nonlinear amplitude modulation of ion-acoustic wave is studied in the presence of two-electron temperature distribution in unmagnetized electron-positron-ion plasmas. The Krylov-Bogoliubov-Mitropolosky (KBM) perturbation method is used to derive the nonlinear Schrödinger equation. The dispersive and nonlinear coefficients are obtained which depend on the temperature and concentration of the hot and cold electron species as well as the positron density and temperature. The modulationally unstable regions are studied numerically for a wide range of wave number. The effects of the temperature and concentration of the hot and cold electron on the modulational stability are investigated in detail.Keywords: modulational instability, ion acoustic wave, KBM method
Procedia PDF Downloads 667