Search results for: natural gas direct injection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9371

Search results for: natural gas direct injection

9011 Effect of a Single Injection of hCG on Testosterone Concentration in Male Alpacas

Authors: A. ElZawam, D. McLean, A. Tibary

Abstract:

In alpaca, age at puberty is variable and the factors regulating the pattern of puberty and sexual maturation are a subject of controversy. Plasma testosterone level is often used as an indicator of sexual maturity. Our hypothesis is that hCG treatment will cause an increase in testosterone level that is correlated with animal age. The specific aim was to investigate the testicular tissue response to a single hCG injection by monitoring the serum testosterone concentration. Eighty four (n=84) males ranging in age from 6 to 60 months were used. Alpacas were grouped based on their ages into 15 groups. Each group had three to five male animals. Blood samples were collected from the jugular vein before treatment with hCG and 2 hours after intravenous administration of 3000 IU of hCG (Chorulon®). The serum was harvested and stored at -20ºC until the analysis. The effect of age on basal testosterone level and response to hCG treatment was evaluated by Analysis of Variance. As a result, basal serum testosterone concentrations were very low (<0.1ng/ml) until 9 months of age. Although basal serum testosterone concentrations increased steadily with age there was a significant variation amongst males within the same age group. Administration of 3000 IU of hCG, resulted in an average increase of 50% (P<0.05) in serum testosterone concentration after 2 hours. The percentage increase in serum testosterone in response to hCG stimulation varied from 51 to 81%. There was no correlation between the degree of response and age. However, the response to hCG injection presented two modes of increase depending on the age of animals. The first mode occurred at ages 9 to 14 months and the second mode was observed between 22 and 36 months. In conclusion, our results suggest that testicular growth and sensitivity to LH stimulation may be bimodal in the male alpaca with a rapid increase in growth and sensitivity between 9 and 14 months of age and a second phase of increased responsiveness after 21 months of ages.

Keywords: alpaca, testosterone, hCG, animal science

Procedia PDF Downloads 552
9010 Photonic Dual-Microcomb Ranging with Extreme Speed Resolution

Authors: R. R. Galiev, I. I. Lykov, A. E. Shitikov, I. A. Bilenko

Abstract:

Dual-comb interferometry is based on the mixing of two optical frequency combs with slightly different lines spacing which results in the mapping of the optical spectrum into the radio-frequency domain for future digitizing and numerical processing. The dual-comb approach enables diverse applications, including metrology, fast high-precision spectroscopy, and distance range. Ordinary frequency-modulated continuous-wave (FMCW) laser-based Light Identification Detection and Ranging systems (LIDARs) suffer from two main disadvantages: slow and unreliable mechanical, spatial scan and a rather wide linewidth of conventional lasers, which limits speed measurement resolution. Dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds, along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for an in-flight sampling of gun projectiles moving at 150 meters per second, was previously demonstrated. Nevertheless, pump lasers with EDFA amplifiers made the device bulky and expensive. An alternative approach is a direct coupling of the laser to a reference microring cavity. Backscattering can tune the laser to the eigenfrequency of the cavity via the so-called self-injection locked (SIL) effect. Moreover, the nonlinearity of the cavity allows a solitonic frequency comb generation in the very same cavity. In this work, we developed a fully integrated, power-efficient, electrically driven dual-micro comb source based on the semiconductor lasers SIL to high-quality integrated Si3N4 microresonators. We managed to obtain robust 1400-1700 nm combs generation with a 150 GHz or 1 THz lines spacing and measure less than a 1 kHz Lorentzian withs of stable, MHz spaced beat notes in a GHz band using two separated chips, each pumped by its own, self-injection locked laser. A deep investigation of the SIL dynamic allows us to find out the turn-key operation regime even for affordable Fabry-Perot multifrequency lasers used as a pump. It is important that such lasers are usually more powerful than DFB ones, which were also tested in our experiments. In order to test the advantages of the proposed techniques, we experimentally measured a minimum detectable speed of a reflective object. It has been shown that the narrow line of the laser locked to the microresonator provides markedly better velocity accuracy, showing velocity resolution down to 16 nm/s, while the no-SIL diode laser only allowed 160 nm/s with good accuracy. The results obtained are in agreement with the estimations and open up ways to develop LIDARs based on compact and cheap lasers. Our implementation uses affordable components, including semiconductor laser diodes and commercially available silicon nitride photonic circuits with microresonators.

Keywords: dual-comb spectroscopy, LIDAR, optical microresonator, self-injection locking

Procedia PDF Downloads 52
9009 Comparative Study Between Oral and Intralesional Injection of Beta Blocker in the Treatment of Infantile Capillary Hemangioma

Authors: Nadeen Eltoukhy, Sahar S. Sheta, Walaa Elnaggar, Karim Bakr

Abstract:

Purpose: The aim of this study is to compare the clinical efficacy and side effects of oral versus intralesional propranolol treatment of infantile capillary hemangiomas in infants. Methods: The study enrolled 40 infants diagnosed with infantile capillary hemangiomas. Patients were divided into 2 groups: Group A (Non-invasive group) included 20 infants who received oral propranolol hydrochloride starting at a dose of 1 mg/kg/day BID, then increased to a max of 2 mg/kg/day BID gradually over 2 weeks for 3 months. Group B (Invasive group) included 20 infants who received intralesional propranolol injection at a dose of 1 mg/mL; the volume of the injected drug depended on the size of the lesion (0.2 mL injected per cm of lesion diameter), with a maximum volume of 1 mL for a lesion of 5 cm diameter under complete aseptic conditions in the operating theater. Results: At three months after initiating treatment, the circumferential size of the hemangioma showed a statistically significant decrease in both groups; in Group A from 3.66±2.89 cm to 1.56±1.26 cm with p-value <0.05 and in Group B from 2.99±2.73 cm to 1.32±1.18 cm with p-value <0.05. There is no statistically significant comparative difference between the two groups (p-value = 0.538 = insignificant). Regarding the complications of oral propranolol, one patient (5%) had bradycardia, and one patient (5%) had diarrhea. In the injection group, 20 patients (100%) had local edema, and one patient (5%) had a local infection. Conclusions: Both oral non-invasive and intralesional invasive propranolol are safely used to successfully treat and decrease the size of infantile hemangioma while showing no statistically comparative difference between both treatment techniques.

Keywords: hemangioma, oral beta blocker, intralesional beta blocker, infants

Procedia PDF Downloads 34
9008 Modern Trends in Foreign Direct Investments in Georgia

Authors: Rusudan Kinkladze, Guguli Kurashvili, Ketevan Chitaladze

Abstract:

Foreign direct investment is a driving force in the development of the interdependent national economies, and the study and analysis of investments is an urgent problem. It is particularly important for transitional economies, such as Georgia, and the study and analysis of investments is an urgent problem. Consequently, the goal of the research is the study and analysis of direct foreign investments in Georgia, and identification and forecasting of modern trends, and covers the period of 2006-2015. The study uses the methods of statistical observation, grouping and analysis, the methods of analytical indicators of time series, trend identification and the predicted values are calculated, as well as various literary and Internet sources relevant to the research. The findings showed that modern investment policy In Georgia is favorable for domestic as well as foreign investors. Georgia is still a net importer of investments. In 2015, the top 10 investing countries was led by Azerbaijan, United Kingdom and Netherlands, and the largest share of FDIs were allocated in the transport and communication sector; the financial sector was the second, followed by the health and social work sector, and the same trend will continue in the future. 

Keywords: foreign direct investments, methods, statistics, analysis

Procedia PDF Downloads 300
9007 Natural Law in the Mu’Tazilite Theology

Authors: Samaneh Khalili

Abstract:

Natural law theory, in moral philosophy, refers to a system of unchanging values held to be mutual to all humans and can be discovered through reason. The natural law theory is commonly associated with western Philosophers. In contrast, discussions on notions of natural law in Islamic intellectual history were relatively rare. This paper aims to show that the moral theory developed by the Mu'tazilite thinkers can be classified in the ideas of natural law. In doing so, this study will demonstrate that the objective and unchanging values, according to Mu'tazilite theologians, provide the guidelines for assessing the Islamic law rules in the field of human coexistence. The focus of the paper lies on ʿAbd al-Ğabbār, who was the most influential thinker in the late epoch of the Muʿtazila. Although ʿAbd al-Ǧabbār did not leave a text with a systematic discussion of natural law, his teaching of nature, human reason, and the moral values of actions are all scattered throughout his work -'al-Muġnī fī abwāb at-tawḥīd wa-l-'adl'. It is necessary to focus on ʿAbd al-Ǧabbār's theories on reason, nature, and ethics since natural law revolves around the basic concepts of nature, reason, and moral value. While analyzing the concept of the Nature, it will attempt to answer how he explains the world's physical structure and God's relationship to natural events. Moreover, from ʿAbd al-Ǧabbār's point of view, is nature a self-determined system that follows its inner principle in every kind of change, or is nature guided by an external power? Does causality govern natural events? About the concept of reason, an attempt is made to examine how human reason, according to ʿAbd al-Ǧabbār, conceives moral attributes. Finally, the Autor will discuss the concepts of objective values and the place of rights and duties derived from Islamic law in ʿAbd al-Ǧabbār's thought.

Keywords: Islamic law, Mu'tazilite theology, natural law in Islamic theology, objective and unchanging values.

Procedia PDF Downloads 71
9006 Numerical Modeling of Turbulent Natural Convection in a Square Cavity

Authors: Mohammadreza Sedighi, Mohammad Said Saidi, Hesamoddin Salarian

Abstract:

A numerical study has been performed to investigate the effect of using different turbulent models on natural convection flow field and temperature distributions in partially heated square cavity compare to benchmark. The temperature of the right vertical wall is lower than that of heater while other walls are insulated. The commercial CFD codes are used to model. Standard k-w model provided good agreement with the experimental data.

Keywords: Buoyancy, Cavity, CFD, Heat Transfer, Natural Convection, Turbulence

Procedia PDF Downloads 320
9005 Oil Producing Wells Using a Technique of Gas Lift on Prosper Software

Authors: Nikhil Yadav, Shubham Verma

Abstract:

Gas lift is a common technique used to optimize oil production in wells. Prosper software is a powerful tool for modeling and optimizing gas lift systems in oil wells. This review paper examines the effectiveness of Prosper software in optimizing gas lift systems in oil-producing wells. The literature review identified several studies that demonstrated the use of Prosper software to adjust injection rate, depth, and valve characteristics to optimize gas lift system performance. The results showed that Prosper software can significantly improve production rates and reduce operating costs in oil-producing wells. However, the accuracy of the model depends on the accuracy of the input data, and the cost of Prosper software can be high. Therefore, further research is needed to improve the accuracy of the model and evaluate the cost-effectiveness of using Prosper software in gas lift system optimization

Keywords: gas lift, prosper software, injection rate, operating costs, oil-producing wells

Procedia PDF Downloads 59
9004 Effects of Polymer Adsorption and Desorption on Polymer Flooding in Waterflooded Reservoir

Authors: Sukruthai Sapniwat, Falan Srisuriyachai

Abstract:

Polymer Flooding is one of the most well-known methods in Enhanced Oil Recovery (EOR) technology which can be implemented after either primary or secondary recovery, resulting in favorable conditions for the displacement mechanism in order to lower the residual oil in the reservoir. Polymer substances can lower the mobility ratio of the whole process by increasing the viscosity of injected water. Therefore, polymer flooding can increase volumetric sweep efficiency, which leads to a better recovery factor. Moreover, polymer adsorption onto rock surface can help decrease reservoir permeability contrast with high heterogeneity. Due to the reduction of the absolute permeability, effective permeability to water, representing flow ability of the injected fluid, is also reduced. Once polymer is adsorbed onto rock surface, polymer molecule can be desorbed when different fluids are injected. This study is performed to evaluate the effects of the adsorption and desorption process of polymer solutions to yield benefits on the oil recovery mechanism. A reservoir model is constructed by reservoir simulation program called STAR® commercialized by the Computer Modeling Group (CMG). Various polymer concentrations, starting times of polymer flooding process and polymer injection rates were evaluated with selected values of polymer desorption degrees including 0, 25, 50, 75 and 100%. The higher the value, the more adsorbed polymer molecules to return back to flowing fluid. According to the results, polymer desorption lowers polymer consumption, especially at low concentrations. Furthermore, starting time of polymer flooding and injection rate affect the oil production. The results show that waterflooding followed by earlier polymer flooding can increase the oil recovery factor while the higher injection rate also enhances the recovery. Polymer concentration is related to polymer consumption due to the two main benefits of polymer flooding control described above. Therefore, polymer slug size should be optimized based on polymer concentration. Polymer desorption causes polymer re-employment that is previously adsorbed onto rock surface, resulting in an increase of sweep efficiency in the further period of polymer flooding process. Even though waterflooding supports polymer injectivity, water cut at the producer can prematurely terminate the oil production. The injection rate decreases polymer adsorption due to decreased retention time of polymer flooding process.

Keywords: enhanced oil recovery technology, polymer adsorption and desorption, polymer flooding, reservoir simulation

Procedia PDF Downloads 298
9003 Preventing Neurodegenerative Diseases by Stabilization of Superoxide Dismutase by Natural Polyphenolic Compounds

Authors: Danish Idrees, Vijay Kumar, Samudrala Gourinath

Abstract:

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by misfolding and aggregation of Cu, Zn superoxide dismutase (SOD1). The use of small molecules has been shown to stabilize the SOD1 dimer and preventing its dissociation and aggregation. In this study, we employed molecular docking, molecular dynamics simulation and surface plasmon resonance (SPR) to study the interactions between SOD1 and natural polyphenolic compounds. In order to explore the noncovalent interaction between SOD1 and natural polyphenolic compounds, molecular docking and molecular dynamic (MD) simulations were employed to gain insights into the binding modes and free energies of SOD1-polyphenolic compounds. MM/PBSA methods were used to calculate free energies from obtained MD trajectories. The compounds, Hesperidin, Ergosterol, and Rutin showed the excellent binding affinity in micromolar range with SOD1. Ergosterol and Hesperidin have the strongest binding affinity to SOD1 and was subjected to further characterization. Biophysical experiments using Circular Dichroism and Thioflavin T fluorescence spectroscopy results show that the binding of these two compounds can stabilize SOD1 dimer and inhibit the aggregation of SOD1. Molecular simulation results also suggest that these compounds reduce the dissociation of SOD1 dimers through direct interaction with the dimer interface. This study will be helpful to develop other drug-like molecules which may have the effect to reduce the aggregation of SOD1.

Keywords: amyotrophic lateral sclerosis, molecular dynamics simulation, surface plasmon resonance, superoxide dismutase

Procedia PDF Downloads 118
9002 Crowdalert: An Android Application for Increasing the Awareness and Response Initiatives of the Citizens through Crowdsourcing

Authors: John Benedict Bernardo

Abstract:

Crowdsourcing is a way of collecting information provided by the volunteers. This crowdsourced information has the capacity to increase the people’s situational awareness in times of disasters. The research reflected in this paper strives to demonstrate the benefits of crowdsourcing during natural disasters and the ways of utilizing it for disaster response. Shared information regarding natural disasters from social media is often scattered as the inputs from these media are uncategorized. For this reason, the study aims to equip the citizens a medium that is solely intended for sharing and/or obtaining natural disaster-related information. Ergo, an android application was developed to gather and publicize this volunteered information. The capability of crowdsourcing and the effectiveness of the application were evaluated and the result shows overwhelming agreement that this study is indeed efficient in increasing the awareness and response initiatives of the citizens during natural disasters.

Keywords: crowdsourcing, natural disasters, mobile application, social media

Procedia PDF Downloads 300
9001 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process

Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke

Abstract:

In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.

Keywords: composite, dynamic mechanical analysis, long fibre reinforced thermoplastics, mechanical properties, time temperature superposition

Procedia PDF Downloads 180
9000 A Fully Coupled Thermo-Hydraulic Mechanical Elastoplastic Damage Constitutive Model for Porous Fractured Medium during CO₂ Injection

Authors: Nikolaos Reppas, Yilin Gui

Abstract:

A dual-porosity finite element-code will be presented for the stability analysis of the wellbore during CO₂ injection. An elastoplastic damage response will be considered to the model. The Finite Element Method (FEM) will be validated using experimental results from literature or from experiments that are planned to be undertaken at Newcastle University. The main target of the research paper is to present a constitutive model that can help industries to safely store CO₂ in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elastoplastic damage Thermo-Hydraulic-Mechanical (THM) model will determine the pressure and temperature of the injected CO₂ as well as the size of the radius of the wellbore that can make the Carbon Capture and Storage (CCS) procedure more efficient.

Keywords: carbon capture and storage, Wellbore stability, elastoplastic damage response for rock, constitutive THM model, fully coupled thermo-hydraulic-mechanical model

Procedia PDF Downloads 152
8999 Impact Modified Oil Palm Empty Fruit Bunch Fiber/Poly(Lactic) Acid Composite

Authors: Mohammad D. H. Beg, John O. Akindoyo, Suriati Ghazali, Abdullah A. Mamun

Abstract:

In this study, composites were fabricated from oil palm empty fruit bunch fiber and poly(lactic) acid by extrusion followed by injection moulding. Surface of the fiber was pre-treated by ultrasound in an alkali medium and treatment efficiency was investigated by scanning electron microscopy (SEM) analysis and Fourier transforms infrared spectrometer (FTIR). Effect of fiber treatment on composite was characterized by tensile strength (TS), tensile modulus (TM) and impact strength (IS). Furthermore, biostrong impact modifier was incorporated into the treated fiber composite to improve its impact properties. Mechanical testing showed an improvement of up to 23.5% and 33.6% respectively for TS and TM of treated fiber composite above untreated fiber composite. On the other hand incorporation of impact modifier led to enhancement of about 20% above the initial IS of the treated fiber composite.

Keywords: fiber treatment, impact modifier, natural fibers, ultrasound

Procedia PDF Downloads 460
8998 A Natural Killer T Cell Subset That Protects against Airway Hyperreactivity

Authors: Ya-Ting Chuang, Krystle Leung, Ya-Jen Chang, Rosemarie H. DeKruyff, Paul B. Savage, Richard Cruse, Christophe Benoit, Dirk Elewaut, Nicole Baumgarth, Dale T. Umetsu

Abstract:

We examined characteristics of a Natural Killer T (NKT) cell subpopulation that developed during influenza infection in neonatal mice, and that suppressed the subsequent development of allergic asthma in a mouse model. This NKT cell subset expressed CD38 but not CD4, produced IFN-γ, but not IL-17, IL-4 or IL-13, and inhibited the development of airway hyperreactivity (AHR) through contact-dependent suppressive activity against helper CD4 T cells. The NKT subset expanded in the lungs of neonatal mice after infection with influenza, but also after treatment of neonatal mice with a Th1-biasing α-GalCer glycolipid analogue, Nu-α-GalCer. These results suggest that early/neonatal exposure to infection or to antigenic challenge can affect subsequent lung immunity by altering the profile of cells residing in the lung and that some subsets of NKT cells can have direct inhibitory activity against CD4+ T cells in allergic asthma. Importantly, our results also suggest a potential therapy for young children that might provide protection against the development of asthma.

Keywords: NKT subset, asthma, airway hyperreactivity, hygiene hypothesis, influenza

Procedia PDF Downloads 217
8997 Renewable Energy Interfaced Shunt Active Filter Using a Virtual Flux Direct Power Control

Authors: M. R. Bengourina, M. Rahli, L. Hassaine, S. Saadi

Abstract:

In this study, we present a control method entitled virtual flux direct power control of a grid connected photovoltaic system associated with an active power filter. The virtual flux direct control of power (VF-DPC) is employed for the calculation of reference current generation. In this technique, the switches states of inverter are selected from a table of switching based on the immediate errors between the active and reactive powers and their reference values. The objectives of this paper are the reduction of Total Harmonic Distortion (THD) of source current, compensating reactive power and injecting the maximum active power available from the PV array into the load and/or grid. MATLAB/SIMULINK simulations are provided to demonstrate the performance of the proposed approach.

Keywords: shunt active power filter, VF-DPC, photovoltaic, MPPT

Procedia PDF Downloads 297
8996 Effect of Amlodipine on Dichlorvos-Induced Seizure in Mice

Authors: Omid Ghollipoor Bashiri, Farzam Hatefi

Abstract:

Dichlorvos a synthetic organophosphate poisons are used as insecticide. These toxins can be used insecticides in agriculture and medicine for destruction and/or eradication of ectoparasites of animals. Studies have shown that Dichlorvos creation seizure effects in different animals. Amlodipine, dihydropyridine calcium channel blockers, widely used for treatment of cardiovascular diseases. Studies have shown that the calcium channel blockers are anticonvulsant effects in different animal models. The aim of this study was to determine the effect of Amlodipine on Dichlorvos-induced seizures in mice. In this experiment, the animals were received different doses of Amlodipine (2.5, 5, 10, 20 and 40 mg/ kg b.wt.) intraperitoneally 30 min before intraperitoneal injection of Dichlorvos (50 mg/kg b.wt). After Dichlorvos injection, clonic and tonic seizures, and finally was the fate was investigated. Results showed that Amlodipine dose-dependently reduced the severity of Dichlorvos-induced seizures, so that Amlodipine at a dose of 5mg (The lowest, p<0.05) and 40 mg/kg b.wt. (The highest, p<0.001) which had anticonvulsant effects. The anticonvulsant activity of Amlodipine suggests that possibly due to the antagonistic effect on voltage-dependent calcium channel.

Keywords: dichlorvos, amlodipine, seizures, mice

Procedia PDF Downloads 289
8995 The Role of Metallic Mordant in Natural Dyeing Process: Experimental and Quantum Study on Color Fastness

Authors: Bo-Gaun Chen, Chiung-Hui Huang, Mei-Ching Chiang, Kuo-Hsing Lee, Chia-Chen Ho, Chin-Ping Huang, Chin-Heng Tien

Abstract:

It is known that the natural dyeing of cloth results moderate color, but with poor color fastness. This study points out the correlation between the macroscopic color fastness of natural dye to the cotton fiber and the microscopic binding energy of dye molecule to the cellulose. With the additive metallic mordant, the new-formed coordination bond bridges the dye to the fiber surface and thus affects the color fastness as well as the color appearance. The density functional theory (DFT) calculation is therefore used to explore the most possible mechanism during the dyeing process. Finally, the experimental results reflect the strong effect of three different metal ions on the natural dyeing clothes.

Keywords: binding energy, color fastness, density functional theory (DFT), natural dyeing, metallic mordant

Procedia PDF Downloads 531
8994 Eco-Friendly Textiles: The Power of Natural Dyes

Authors: Bushra

Abstract:

This paper explores the historical significance, ecological benefits, and contemporary applications of natural dyes in textile dyeing, aiming to provide a comprehensive overview of their potential to contribute to a sustainable fashion industry while minimizing ecological footprints. This research explores the potential of natural dyes as a sustainable alternative to synthetic dyes in the textile industry, examining their historical context, sources, and environmental benefits. Natural dyes come from plants, animals, and minerals, including roots, leaves, bark, fruits, flowers, insects, and metal salts, used as mordants to fix dyes to fabrics. Natural dyeing involves extraction, mordanting, and dyeing techniques. Optimizing these processes can enhance the performance of natural dyes, making them viable for contemporary textile applications based on experimental research. Natural dyes offer eco-friendly benefits like biodegradability, non-toxicity, and resource renewables, reducing pollution, promoting biodiversity, and reducing reliance on petrochemicals. Natural dyes offer benefits but face challenges in color consistency, scalability, and performance, requiring industrial production to meet modern consumer standards for durability and colorfastness. Contemporary initiatives in the textile industry include fashion brands like Eileen Fisher and Patagonia incorporating natural dyes, artisans like India Flint's Botanical Alchemy promoting traditional dyeing techniques, and research projects like the European Union's Horizon 2020 program. Natural dyes offer a sustainable textile industry solution, reducing environmental impact and promoting harmony with nature. Research and innovation are paving the way for widespread adoption, transforming textile dyeing.

Keywords: historical significance, textile industry, natural dyes, sustainability

Procedia PDF Downloads 20
8993 Stress Corrosion Crack Identification with Direct Assessment Method in Pipeline Downstream from a Compressor Station

Authors: H. Gholami, M. Jalali Azizpour

Abstract:

Stress Corrosion Crack (SCC) in pipeline is a type of environmentally assisted cracking (EAC), since its discovery in 1965 as a possible cause of failure in pipeline, SCC has caused, on average, one of two failures per year in the U.S, According to the NACE SCC DA a pipe line segment is considered susceptible to SCC if all of the following factors are met: The operating stress exceeds 60% of specified minimum yield strength (SMYS), the operating temperature exceeds 38°C, the segment is less than 32 km downstream from a compressor station, the age of the pipeline is greater than 10 years and the coating type is other than Fusion Bonded Epoxy(FBE). In this paper as a practical experience in NISOC, Direct Assessment (DA) Method is used for identification SCC defect in unpiggable pipeline located downstream of compressor station.

Keywords: stress corrosion crack, direct assessment, disbondment, transgranular SCC, compressor station

Procedia PDF Downloads 364
8992 Effect of Fuel Lean Reburning Process on NOx Reduction and CO Emission

Authors: Changyeop Lee, Sewon Kim

Abstract:

Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the effect of fuel lean reburning on NOx/CO reduction in LNG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LNG gas as the reburn fuel as well as the main fuel. The effects of reburn fuel fraction and injection manner of the reburn fuel were studied when the fuel lean reburning system was applied. The paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. At steady state, temperature distribution and emission formation in the furnace have been measured and compared. This paper makes clear that in order to decrease both NOx and CO concentrations in the exhaust when the pulsated fuel lean reburning system was adapted, it is important that the control of some factors such as frequency and duty ratio. Also it shows the fuel lean reburning is also effective method to reduce NOx as much as reburning.

Keywords: fuel lean reburn, NOx, CO, LNG flame

Procedia PDF Downloads 406
8991 Experimental Investigation of Natural Frequency and Forced Vibration of Euler-Bernoulli Beam under Displacement of Concentrated Mass and Load

Authors: Aref Aasi, Sadegh Mehdi Aghaei, Balaji Panchapakesan

Abstract:

This work aims to evaluate the free and forced vibration of a beam with two end joints subjected to a concentrated moving mass and a load using the Euler-Bernoulli method. The natural frequency is calculated for different locations of the concentrated mass and load on the beam. The analytical results are verified by the experimental data. The variations of natural frequency as a function of the location of the mass, the effect of the forced frequency on the vibrational amplitude, and the displacement amplitude versus time are investigated. It is discovered that as the concentrated mass moves toward the center of the beam, the natural frequency of the beam and the relative error between experimental and analytical data decreases. There is a close resemblance between analytical data and experimental observations.

Keywords: Euler-Bernoulli beam, natural frequency, forced vibration, experimental setup

Procedia PDF Downloads 244
8990 The Assessment of Natural Ventilation Performance for Thermal Comfort in Educational Space: A Case Study of Design Studio in the Arab Academy for Science and Technology, Alexandria

Authors: Alaa Sarhan, Rania Abd El Gelil, Hana Awad

Abstract:

Through the last decades, the impact of thermal comfort on the working performance of users and occupants of an indoor space has been a concern. Research papers concluded that natural ventilation quality directly impacts the levels of thermal comfort. Natural ventilation must be put into account during the design process in order to improve the inhabitant's efficiency and productivity. One example of daily long-term occupancy spaces is educational facilities. Many individuals spend long times receiving a considerable amount of knowledge, and it takes additional time to apply this knowledge. Thus, this research is concerned with user's level of thermal comfort in design studios of educational facilities. The natural ventilation quality in spaces is affected by a number of parameters including orientation, opening design, and many other factors. This research aims to investigate the conscious manipulation of the physical parameters of the spaces and its impact on natural ventilation performance which subsequently affects thermal comfort of users. The current research uses inductive and deductive methods to define natural ventilation design considerations, which are used in a field study in a studio in the university building in Alexandria (AAST) to evaluate natural ventilation performance through analyzing and comparing the current case to the developed framework and conducting computational fluid dynamics simulation. Results have proved that natural ventilation performance is successful by only 50% of the natural ventilation design framework; these results are supported by CFD simulation.

Keywords: educational buildings, natural ventilation, , mediterranean climate, thermal comfort

Procedia PDF Downloads 193
8989 Direct Drive Double Fed Wind Generator

Authors: Vlado Ostovic

Abstract:

An electric machine topology characterized by single tooth winding in both stator and rotor is presented. The proposed machine is capable of operating as a direct drive double fed wind generator (DDDF, D3F) because it requires no gearbox and only a reduced-size converter. A wind turbine drive built around a D3F generator is cheaper to manufacture, requires less maintenance, and has a higher energy yield than its conventional counterparts. The single tooth wound generator of a D3F turbine has superb volume utilization and lower stator I2R losses due to its extremely short-end windings. Both stator and rotor of a D3F generator can be manufactured in segments, which simplifies its assembly and transportation to the site, and makes production cheaper.

Keywords: direct drive, double fed generator, gearbox, permanent magnet generators, single tooth winding, wind power

Procedia PDF Downloads 171
8988 Sediment Patterns from Fluid-Bed Interactions: A Direct Numerical Simulations Study on Fluvial Turbulent Flows

Authors: Nadim Zgheib, Sivaramakrishnan Balachandar

Abstract:

We present results on the initial formation of ripples from an initially flattened erodible bed. We use direct numerical simulations (DNS) of turbulent open channel flow over a fixed sinusoidal bed coupled with hydrodynamic stability analysis. We use the direct forcing immersed boundary method to account for the presence of the sediment bed. The resolved flow provides the bed shear stress and consequently the sediment transport rate, which is needed in the stability analysis of the Exner equation. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology, and the sediment flux is obtained from the DNS. We ran 11 simulations at a fixed shear Reynolds number of 180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of physical and modelling parameters to predict their effects on linear growth. The Froude number appears to be the critical controlling parameter in the early linear development of ripples, in contrast with the dominant role of particle Reynolds number during the equilibrium stage.

Keywords: direct numerical simulation, immersed boundary method, sediment-bed interactions, turbulent multiphase flow, linear stability analysis

Procedia PDF Downloads 160
8987 Optimization of the Culture Medium, Incubation Period, pH and Temperatures for Maximal Dye Bioremoval Using A. Fumigates

Authors: Wafaa M. Abd El-Rahim, Magda A. El-Meleigy, Eman Refaat

Abstract:

This study dealing with optimization the conditions affecting the formation of extracellular lignin- degrading enzymes to achieve maximal decolorization activity of Direct Violet dye by one fungal strain. In this study Aspergillus fumigates fungal strain used for production extracellular ligninolytic enzymes for removing Direct Violet dye under different conditions: culture medium, incubation period, pH and temperatures. The results indicted that the removal efficiency of A. fumigatus was enhanced by addition glucose and peptone to the culture medium. The addition of peptone and glucose was found to increase the decolorization activity of the fungal isolate from 51.38% to 93.74% after 4 days of incubation. The highest production of extracellular lignin degrading enzymes also recorded in Direct Violet dye medium supplemented with peptone and glucose. It was also found the decolorization activity of A. fumigatus was decreased gradually by increasing the incubation period up to 4 days. Also it was found that the fungal strain can grow and produce extracellular ligninolytic enzymes which accompanied by efficient removal of Direct Violet dye in a wide pH range of 4-8. The results also found that the maximal biosynthesis of ligninolytic enzymes which accompanied with maximal removal of Direct Violet dye was obtained at a temperature of 28C. This indicates that the different conditions of culture medium, incubation period, pH and temperatures are effective on dye decolorization on the fungal biomass and played a role in Direct Violet dye removal along with enzymatic activity of A. fumigatus.

Keywords: A. fumigates, extracellular lignin- degrading enzymes, textile dye, dye removing

Procedia PDF Downloads 258
8986 The Geometry of Natural Formation: an Application of Geometrical Analysis for Complex Natural Order of Pomegranate

Authors: Anahita Aris

Abstract:

Geometry always plays a key role in natural structures, which can be a source of inspiration for architects and urban designers to create spaces. By understanding formative principles in nature, a variety of options can be provided that lead to freedom of formation. The main purpose of this paper is to analyze the geometrical order found in pomegranate to find formative principles explaining its complex structure. The point is how spherical arils of pomegranate pressed together inside the fruit and filled the space as they expand in the growing process, which made a self-organized system leads to the formation of each of the arils are unique in size, topology and shape. The main challenge of this paper would be using advanced architectural modeling techniques to discover these principles.

Keywords: advanced modeling techniques, architectural modeling, computational design, the geometry of natural formation, geometrical analysis, the natural order of pomegranate, voronoi diagrams

Procedia PDF Downloads 202
8985 Analysis of Economics and Value Addition of Optimized Blend with Petrodiesel of Nanocomposite Oil Methyl Esters

Authors: Chandrashekara Krishnappa, Yogish Huchaiah

Abstract:

The present work considers the importance of economic feasibility and financial viability of biodiesel production, and its use in the present context of prevailing Indian scenario. For this, costs involved in production of one litre of biodiesel from non-edible Jatropha and Pongamia oils Nano mix are considered. Biodiesel derived from the mix is blended with petrodiesel in various proportions and used in Compression Ignition (CI) Direct Injection (DI) engine. Performance and Emission characteristics were investigated. Optimization of the blends considering experimental results was carried out. To validate the experimental results and optimization, Multi-Functional Criteria Technique (MFCT) is used. Further, value additions in terms of INR due to increase in performance and reduction in emissions are investigated. Cost component of subsidy on petrodiesel is taken into consideration in the calculation of cost of one litre of it. Comparison of costs is with respect to the unit of power generated per litre of COME and petrodiesel. By the analysis it has been concluded that the amount saved with subsidy is INR 1.45 Lakh Crores per year and it is INR1.60 Lakh Crores per year without subsidy for petrodiesel.

Keywords: cap value addition, economic analysis, MFCT, NACOME, subsidy

Procedia PDF Downloads 223
8984 Semi-Natural Vertical Gardens and Urban Ecology, the Sample of Bartın City

Authors: Yeliz Sarı Nayim, B. N. Nayim

Abstract:

Vertical natural gardens encountered in urban ecosystems are important elements contributing to urban ecology by raising the quality of urban life. This research covers the investigation of the semi-natural plant walls of Bartın city which is located on the western Black Sea coast of Turkey. Landscape analysis and evaluation as a result of land and office work have resulted in vertical garden ecosystems that have been processed in the urban habitat map, mostly in natural stone walls, wooden garden fences, garden entrance doors, historical buildings and building walls. Structural surfaces on old building facades, especially with abandoned or still in use with natural stone walls, have been found to have many natural vertical gardens over time. Parietaria judaica, Cymbalaria longipes and Hedera helix species were dominant, and other types of content were recorded, providing information on the current biotope potential, human activities and effects on them. It has been emphasized that the described vertical gardens together with the species they contain should be protected in terms of Bartin urban ecology and biodiversity. It has been stated that sustainable urban planning, design and management should be considered as a compensation for open and green area losses.

Keywords: semi-natural vertical gardens, urban ecology, sustainable urban planning and design, Bartın

Procedia PDF Downloads 332
8983 Experimental Study on Tensile Strength of Polyethylene/Carbon Injected Composites

Authors: Armin Najipour, A. M. Fattahi

Abstract:

The aim of this research was to investigate the effect of the addition of multi walled carbon nanotubes on the mechanical properties of polyethylene/carbon nanotube nanocomposites. To do so, polyethylene and carbon nanotube were mixed in different weight percentages containing 0, 0.5, 1, and 1.5% carbon nanotube in two screw extruder apparatus by fusion. Then the nanocomposite samples were molded in injection apparatus according to ASTM:D638 standard. The effects of carbon nanotube addition in 4 different levels on the tensile strength, elastic modulus and elongation of the nanocomposite samples were investigated. The results showed that the addition of carbon nanotube had a significant effect on improving tensile strength of the nanocomposite samples such that by adding 1% w/w carbon nanotube, the tensile strength 23.4%,elastic modulus 60.4%and elongation 29.7% of the samples improved. Also, according to the results, Manera approximation model at percentages about 0.5% weight and modified Halpin-Tsai at percentages about 1% weight lead to favorite and reliable results.

Keywords: carbon nanotube, injection molding, Mechanical properties, Nanocomposite, polyethylene

Procedia PDF Downloads 244
8982 Multimodal Direct Neural Network Positron Emission Tomography Reconstruction

Authors: William Whiteley, Jens Gregor

Abstract:

In recent developments of direct neural network based positron emission tomography (PET) reconstruction, two prominent architectures have emerged for converting measurement data into images: 1) networks that contain fully-connected layers; and 2) networks that primarily use a convolutional encoder-decoder architecture. In this paper, we present a multi-modal direct PET reconstruction method called MDPET, which is a hybrid approach that combines the advantages of both types of networks. MDPET processes raw data in the form of sinograms and histo-images in concert with attenuation maps to produce high quality multi-slice PET images (e.g., 8x440x440). MDPET is trained on a large whole-body patient data set and evaluated both quantitatively and qualitatively against target images reconstructed with the standard PET reconstruction benchmark of iterative ordered subsets expectation maximization. The results show that MDPET outperforms the best previously published direct neural network methods in measures of bias, signal-to-noise ratio, mean absolute error, and structural similarity.

Keywords: deep learning, image reconstruction, machine learning, neural network, positron emission tomography

Procedia PDF Downloads 92