Search results for: input–output analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30186

Search results for: input–output analysis

29826 Efficient Filtering of Graph Based Data Using Graph Partitioning

Authors: Nileshkumar Vaishnav, Aditya Tatu

Abstract:

An algebraic framework for processing graph signals axiomatically designates the graph adjacency matrix as the shift operator. In this setup, we often encounter a problem wherein we know the filtered output and the filter coefficients, and need to find out the input graph signal. Solution to this problem using direct approach requires O(N3) operations, where N is the number of vertices in graph. In this paper, we adapt the spectral graph partitioning method for partitioning of graphs and use it to reduce the computational cost of the filtering problem. We use the example of denoising of the temperature data to illustrate the efficacy of the approach.

Keywords: graph signal processing, graph partitioning, inverse filtering on graphs, algebraic signal processing

Procedia PDF Downloads 310
29825 Application of Neural Network on the Loading of Copper onto Clinoptilolite

Authors: John Kabuba

Abstract:

The study investigated the implementation of the Neural Network (NN) techniques for prediction of the loading of Cu ions onto clinoptilolite. The experimental design using analysis of variance (ANOVA) was chosen for testing the adequacy of the Neural Network and for optimizing of the effective input parameters (pH, temperature and initial concentration). Feed forward, multi-layer perceptron (MLP) NN successfully tracked the non-linear behavior of the adsorption process versus the input parameters with mean squared error (MSE), correlation coefficient (R) and minimum squared error (MSRE) of 0.102, 0.998 and 0.004 respectively. The results showed that NN modeling techniques could effectively predict and simulate the highly complex system and non-linear process such as ion-exchange.

Keywords: clinoptilolite, loading, modeling, neural network

Procedia PDF Downloads 415
29824 An Investigation on Material Removal Rate of EDM Process: A Response Surface Methodology Approach

Authors: Azhar Equbal, Anoop Kumar Sood, M. Asif Equbal, M. Israr Equbal

Abstract:

In the present work response surface methodology (RSM) based central composite design (CCD) is used for analyzing the electrical discharge machining (EDM) process. For experimentation, mild steel is selected as work piece and copper is used as electrode. Three machining parameters namely current (I), spark on time (Ton) and spark off time (Toff) are selected as the input variables. The output or response chosen is material removal rate (MRR) which is to be maximized. To reduce the number of runs face centered central composite design (FCCCD) was used. ANOVA was used to determine the significance of parameter and interactions. The suitability of model is tested using Anderson darling (AD) plot. The results conclude that different parameters considered i.e. current, pulse on and pulse off time; all have dominant effect on the MRR. At last, the optimized parameter setting for maximizing MRR is found through main effect plot analysis.

Keywords: EDM, electrode, MRR, RSM, ANOVA

Procedia PDF Downloads 305
29823 A Corpus Output Error Analysis of Chinese L2 Learners From America, Myanmar, and Singapore

Authors: Qiao-Yu Warren Cai

Abstract:

Due to the rise of big data, building corpora and using them to analyze ChineseL2 learners’ language output has become a trend. Various empirical research has been conducted using Chinese corpora built by different academic institutes. However, most of the research analyzed the data in the Chinese corpora usingcorpus-based qualitative content analysis with descriptive statistics. Descriptive statistics can be used to make summations about the subjects or samples that research has actually measured to describe the numerical data, but the collected data cannot be generalized to the population. Comte, a Frenchpositivist, has argued since the 19th century that human beings’ knowledge, whether the discipline is humanistic and social science or natural science, should be verified in a scientific way to construct a universal theory to explain the truth and human beings behaviors. Inferential statistics, able to make judgments of the probability of a difference observed between groups being dependable or caused by chance (Free Geography Notes, 2015)and to infer from the subjects or examples what the population might think or behave, is just the right method to support Comte’s argument in the field of TCSOL. Also, inferential statistics is a core of quantitative research, but little research has been conducted by combing corpora with inferential statistics. Little research analyzes the differences in Chinese L2 learners’ language corpus output errors by using theOne-way ANOVA so that the findings of previous research are limited to inferring the population's Chinese errors according to the given samples’ Chinese corpora. To fill this knowledge gap in the professional development of Taiwanese TCSOL, the present study aims to utilize the One-way ANOVA to analyze corpus output errors of Chinese L2 learners from America, Myanmar, and Singapore. The results show that no significant difference exists in ‘shì (是) sentence’ and word order errors, but compared with Americans and Singaporeans, it is significantly easier for Myanmar to have ‘sentence blends.’ Based on the above results, the present study provides an instructional approach and contributes to further exploration of how Chinese L2 learners can have (and use) learning strategies to lower errors.

Keywords: Chinese corpus, error analysis, one-way analysis of variance, Chinese L2 learners, Americans, myanmar, Singaporeans

Procedia PDF Downloads 106
29822 Implementation of a Novel Modified Multilevel Inverter Topology for Grid Connected PV System

Authors: Dhivya Balakrishnan, Dhamodharan Shanmugam

Abstract:

Multilevel converters offer high power capability, associated with lower output harmonics and lower commutation losses. Their main disadvantage is their complexity requiring a great number of power devices and passive components, and a rather complex control circuitry. This paper proposes a single-phase seven-level inverter for grid connected PV systems, With a novel pulse width-modulated (PWM) control scheme. Three reference signals that are identical to each other with an offset that is equivalent to the amplitude of the triangular carrier signal were used to generate the PWM signals. The inverter is capable of producing seven levels of output-voltage levels from the dc supply voltage. This paper proposes a new multilevel inverter topology using an H-bridge output stage with two bidirectional auxiliary switches. The new topology produces a significant reduction in the number of power devices and capacitors required to implement a multilevel output using the asymmetric cascade configuration.

Keywords: asymmetric cascade configuration, H-Bridge, multilevel inverter, Pulse Width Modulation (PWM)

Procedia PDF Downloads 357
29821 Development and Verification of the Idom Shielding Optimization Tool

Authors: Omar Bouhassoun, Cristian Garrido, César Hueso

Abstract:

The radiation shielding design is an optimization problem with multiple -constrained- objective functions (radiation dose, weight, price, etc.) that depend on several parameters (material, thickness, position, etc.). The classical approach for shielding design consists of a brute force trial-and-error process subject to previous designer experience. Therefore, the result is an empirical solution but not optimal, which can degrade the overall performance of the shielding. In order to automate the shielding design procedure, the IDOM Shielding Optimization Tool (ISOT) has been developed. This software combines optimization algorithms with the capabilities to read/write input files, run calculations, as well as parse output files for different radiation transport codes. In the first stage, the software was established to adjust the input files for two well-known Monte Carlo codes (MCNP and Serpent) and optimize the result (weight, volume, price, dose rate) using multi-objective genetic algorithms. Nevertheless, its modular implementation easily allows the inclusion of more radiation transport codes and optimization algorithms. The work related to the development of ISOT and its verification on a simple 3D multi-layer shielding problem using both MCNP and Serpent will be presented. ISOT looks very promising for achieving an optimal solution to complex shielding problems.

Keywords: optimization, shielding, nuclear, genetic algorithm

Procedia PDF Downloads 110
29820 Gray Level Image Encryption

Authors: Roza Afarin, Saeed Mozaffari

Abstract:

The aim of this paper is image encryption using Genetic Algorithm (GA). The proposed encryption method consists of two phases. In modification phase, pixels locations are altered to reduce correlation among adjacent pixels. Then, pixels values are changed in the diffusion phase to encrypt the input image. Both phases are performed by GA with binary chromosomes. For modification phase, these binary patterns are generated by Local Binary Pattern (LBP) operator while for diffusion phase binary chromosomes are obtained by Bit Plane Slicing (BPS). Initial population in GA includes rows and columns of the input image. Instead of subjective selection of parents from this initial population, a random generator with predefined key is utilized. It is necessary to decrypt the coded image and reconstruct the initial input image. Fitness function is defined as average of transition from 0 to 1 in LBP image and histogram uniformity in modification and diffusion phases, respectively. Randomness of the encrypted image is measured by entropy, correlation coefficients and histogram analysis. Experimental results show that the proposed method is fast enough and can be used effectively for image encryption.

Keywords: correlation coefficients, genetic algorithm, image encryption, image entropy

Procedia PDF Downloads 330
29819 An Empirical Study on the Integration of Listening and Speaking Activities with Writing Instruction for Middles School English Language Learners

Authors: Xueyan Hu, Liwen Chen, Weilin He, Sujie Peng

Abstract:

Writing is an important but challenging skill For English language learners. Due to the small amount of time allocated for writing classes at schools, students have relatively few opportunities to practice writing in the classroom. While the practice of integrating listening and speaking activates with writing instruction has been used for adult English language learners, its application for young English learners has seldom been examined due to the challenge of listening and speaking activities for young English language learners. The study attempted to integrating integrating listening and speaking activities with writing instruction for middle school English language learners so as to improving their writing achievements and writing abilities in terms of the word use, coherence, and complexity in their writings. Guided by Gagne's information processing learning theory and memetics, this study conducted a 8-week writing instruction with an experimental class (n=44) and a control class (n=48) . Students in the experimental class participated in a series of listening and retelling activities about a writing sample the teacher used for writing instruction during each period of writing class. Students in the control class were taught traditionally with teachers’ direction instruction using the writing sample. Using the ANCOVA analysis of the scores of students’ writing, word-use, Chinese-English translation and the text structure, this study showed that the experimental writing instruction can significantly improve students’ writing performance. Compared with the students in the control class, the students in experimental class had significant better performance in word use and complexity in their essays. This study provides useful enlightenment for the teaching of English writing for middle school English language learners. Teachers can skillfully use information technology to integrate listening, speaking, and writing teaching, considering students’ language input and output. Teachers need to select suitable and excellent composition templates for students to ensure their high-quality language input.

Keywords: wring instruction, retelling, English language learners, listening and speaking

Procedia PDF Downloads 82
29818 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models

Authors: Suriya

Abstract:

Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.

Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar

Procedia PDF Downloads 48
29817 Predictive Output Feedback Linearization for Safe Control of Collaborative Robots

Authors: Aliasghar Arab

Abstract:

Autonomous robots interacting with humans, as safety-critical nonlinear control systems, are complex closed-loop cyber-physical dynamical machines. Keeping these intelligent yet complicated systems safe and smooth during their operations is challenging. The aim of the safe predictive output feedback linearization control synthesis is to design a novel controller for smooth trajectory following while unsafe situations must be avoided. The controller design should obtain a linearized output for smoothness and invariance to a safety subset. Inspired by finite-horizon nonlinear model predictive control, the problem is formulated as constrained nonlinear dynamic programming. The safety constraints can be defined as control barrier functions. Avoiding unsafe maneuvers and performing smooth motions increases the predictability of the robot’s movement for humans when robots and people are working together. Our results demonstrate the proposed output linearization method obeys the safety constraints and, compared to existing safety-guaranteed methods, is smoother and performs better.

Keywords: robotics, collaborative robots, safety, autonomous robots

Procedia PDF Downloads 97
29816 Internal Node Stabilization for Voltage Sense Amplifiers in Multi-Channel Systems

Authors: Sanghoon Park, Ki-Jin Kim, Kwang-Ho Ahn

Abstract:

This paper discusses the undesirable charge transfer by the parasitic capacitances of the input transistors in a voltage sense amplifier. Due to its intrinsic rail-to-rail voltage transition, the input sides are inevitably disturbed. It can possible disturb the stabilities of the reference voltage levels. Moreover, it becomes serious in multi-channel systems by altering them for other channels, and so degrades the linearity of the systems. In order to alleviate the internal node voltage transition, the internal node stabilization technique is proposed by utilizing an additional biasing circuit. It achieves 47% and 43% improvements for node stabilization and input referred disturbance, respectively.

Keywords: voltage sense amplifier, voltage transition, node stabilization, biasing circuits

Procedia PDF Downloads 478
29815 R&D Diffusion and Productivity in a Globalized World: Country Capabilities in an MRIO Framework

Authors: S. Jimenez, R.Duarte, J.Sanchez-Choliz, I. Villanua

Abstract:

There is a certain consensus in economic literature about the factors that have influenced in historical differences in growth rates observed between developed and developing countries. However, it is less clear what elements have marked different paths of growth in developed economies in recent decades. R&D has always been seen as one of the major sources of technological progress, and productivity growth, which is directly influenced by technological developments. Following recent literature, we can say that ‘innovation pushes the technological frontier forward’ as well as encourage future innovation through the creation of externalities. In other words, productivity benefits from innovation are not fully appropriated by innovators, but it also spread through the rest of the economies encouraging absorptive capacities, what have become especially important in a context of increasing fragmentation of production This paper aims to contribute to this literature in two ways, first, exploring alternative indexes of R&D flows embodied in inter-country, inter-sectorial flows of good and services (as approximation to technology spillovers) capturing structural and technological characteristic of countries and, second, analyzing the impact of direct and embodied R&D on the evolution of labor productivity at the country/sector level in recent decades. The traditional way of calculation through a multiregional input-output framework assumes that all countries have the same capabilities to absorb technology, but it is not, each one has different structural features and, this implies, different capabilities as part of literature, claim. In order to capture these differences, we propose to use a weight based on specialization structure indexes; one related with the specialization of countries in high-tech sectors and the other one based on a dispersion index. We propose these two measures because, as far as we understood, country capabilities can be captured through different ways; countries specialization in knowledge-intensive sectors, such as Chemicals or Electrical Equipment, or an intermediate technology effort across different sectors. Results suggest the increasing importance of country capabilities while increasing the trade openness. Besides, if we focus in the country rankings, we can observe that with high-tech weighted R&D embodied countries as China, Taiwan and Germany arose the top five despite not having the highest intensities of R&D expenditure, showing the importance of country capabilities. Additionally, through a fixed effects panel data model we show that, in fact, R&D embodied is important to explain labor productivity increases, in fact, even more that direct R&D investments. This is reflecting that globalization is more important than has been said until now. However, it is true that almost all analysis done in relation with that consider the effect of t-1 direct R&D intensity over economic growth. Nevertheless, from our point of view R&D evolve as a delayed flow and it is necessary some time to be able to see its effects on the economy, as some authors have already claimed. Our estimations tend to corroborate this hypothesis obtaining a gap between 4-5 years.

Keywords: economic growth, embodied, input-output, technology

Procedia PDF Downloads 124
29814 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.

Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm

Procedia PDF Downloads 304
29813 Development of the Internal Educational Quality Assurance System of Suan Sunandha Rajabhat University

Authors: Nipawan Tharasak, Sajeewan Darbavasu

Abstract:

This research aims 1) to study the opinion, problems and obstacles to internal educational quality assurance system for individual and the university levels, 2) to propose an approach to the development of quality assurance system of Suan Sunandha Rajabhat University. A study of problems and obstacles to internal educational quality assurance system of the university conducted with sample group consisting of staff and quality assurance committee members of the year 2010. There were 152 respondents. 5 executives were interviewed. Tool used in the research was document analysis. The structure of the interview questions and questionnaires with 5-rate scale. Reliability was 0.981. Data analysis were percentage, mean and standard deviation with content analysis. Results can be divided into 3 main points: (1) The implementation of the internal quality assurance system of the university. It was found that in overall, input, process and output factors received high scores. Each item is considered, the preparation, planning, monitoring and evaluation. The results of evaluation to improve the reporting and improvement according to an evaluation received high scores. However, the process received an average score. (2) Problems and obstacles. It was found that the personnel responsible for the duty still lack understanding of indicators and criteria of the quality assurance. (3) Development approach: -Staff should be encouraged to develop a better understanding of the quality assurance system. -Database system for quality assurance should be developed. -The results and suggestions should be applied in the next year development planning.

Keywords: development system, internal quality assurance, education, educational quality assurance

Procedia PDF Downloads 297
29812 “To Err Is Human…” Revisiting Oral Error Correction in Class

Authors: David Steven Rosenstein

Abstract:

The widely accepted “Input Theory” of language acquisition proposes that language is basically acquired unconsciously through extensive exposure to all kinds of natural oral and written sources, especially those where the level of the input is slightly above the learner’s competence. As such, it implies that oral error correction by teachers in a classroom is unnecessary, a waste of time, and maybe even counterproductive. And yet, oral error correction by teachers in the classroom continues to be a very common phenomenon. While input theory advocates claim that such correction doesn’t work, interrupts a student’s train of thought, harms fluency, and may cause students embarrassment and fear, many teachers would disagree. They would claim that students know they make mistakes and want to be corrected in order to know they are improving, thereby encouraging students’ desire to keep studying. Moreover, good teachers can create a positive atmosphere where students will not be embarrassed or fearful. Perhaps now is the time to revisit oral error correction in the classroom and consider the results of research carried out long ago by the present speaker. The research indicates that oral error correction may be beneficial in many cases.

Keywords: input theory, language acquisition, teachers' corrections, recurrent errors

Procedia PDF Downloads 32
29811 Grid Tied Photovoltaic Power on School Roof

Authors: Yeong-cheng Wang, Jin-Yinn Wang, Ming-Shan Lin, Jian-Li Dong

Abstract:

To universalize the adoption of sustainable energy, the R.O.C. government encourages public buildings to introduce the PV power station on the building roof, whereas most old buildings did not include the considerations of photovoltaic (PV) power facilities in the design phase. Several factors affect the PV electricity output, the temperature is the key one, different PV technologies have different temperature coefficients. Other factors like PV panel azimuth, panel inclination from the horizontal plane, and row to row distance of PV arrays, mix up at the beginning of system design. The goal of this work is to maximize the annual energy output of a roof mount PV system. Tables to simplify the design work are developed; the results can be used for engineering project quote directly.

Keywords: optimal inclination, array azimuth, annual output

Procedia PDF Downloads 677
29810 Artificial Neural Network to Predict the Optimum Performance of Air Conditioners under Environmental Conditions in Saudi Arabia

Authors: Amr Sadek, Abdelrahaman Al-Qahtany, Turkey Salem Al-Qahtany

Abstract:

In this study, a backpropagation artificial neural network (ANN) model has been used to predict the cooling and heating capacities of air conditioners (AC) under different conditions. Sufficiently large measurement results were obtained from the national energy-efficiency laboratories in Saudi Arabia and were used for the learning process of the ANN model. The parameters affecting the performance of the AC, including temperature, humidity level, specific heat enthalpy indoors and outdoors, and the air volume flow rate of indoor units, have been considered. These parameters were used as inputs for the ANN model, while the cooling and heating capacity values were set as the targets. A backpropagation ANN model with two hidden layers and one output layer could successfully correlate the input parameters with the targets. The characteristics of the ANN model including the input-processing, transfer, neurons-distance, topology, and training functions have been discussed. The performance of the ANN model was monitored over the training epochs and assessed using the mean squared error function. The model was then used to predict the performance of the AC under conditions that were not included in the measurement results. The optimum performance of the AC was also predicted under the different environmental conditions in Saudi Arabia. The uncertainty of the ANN model predictions has been evaluated taking into account the randomness of the data and lack of learning.

Keywords: artificial neural network, uncertainty of model predictions, efficiency of air conditioners, cooling and heating capacities

Procedia PDF Downloads 73
29809 The Effect Analysis of Monetary Instruments through Islamic Banking Financing Channel toward Economic Growth in Indonesia, Period January 2008-December 2015

Authors: Sobar M. Johari, Ida Putri Anjarsari

Abstract:

In the transmission of monetary instrument towards real sector of the economy, Bank Indonesia as monetary authority has developed Islamic Bank Indonesia Certificate (abbreviated as SBIS) as an instrument in Islamic open market operation. One of the monetary transmission channels could take place through financing channel from which the fund is used as the source of banking financing. This study aims to analyse the impact of Islamic monetary instrument towards output or economic growth. Data used in this research is taken from Bank Indonesia and Central Board of Statistics for the period of January 2008 until December 2015. The study employs Granger Causality Test, Vector Error Correction Model (VECM), Impulse Response Function (IRF) technique and Forecast Error Variance Decomposition (FEVD) as its analytical methods. The results show that, first, the transmission mechanism of banking financing channel are not linked to output. Second, estimation results of VECM show that SBIS, PUAS, and FIN have significant impact in the long term towards output. When there is monetary shock, output or economic growth could be recovered and stabilized in the short term. FEVD results show that Islamic banking financing contributes 1.33 percent to increase economic growth.

Keywords: Islamic monetary instrument, Islamic banking financing channel, economic growth, Vector Error Correction Model (VECM)

Procedia PDF Downloads 281
29808 3D Mesh Coarsening via Uniform Clustering

Authors: Shuhua Lai, Kairui Chen

Abstract:

In this paper, we present a fast and efficient mesh coarsening algorithm for 3D triangular meshes. Theis approach can be applied to very complex 3D meshes of arbitrary topology and with millions of vertices. The algorithm is based on the clustering of the input mesh elements, which divides the faces of an input mesh into a given number of clusters for clustering purpose by approximating the Centroidal Voronoi Tessellation of the input mesh. Once a clustering is achieved, it provides us an efficient way to construct uniform tessellations, and therefore leads to good coarsening of polygonal meshes. With proliferation of 3D scanners, this coarsening algorithm is particularly useful for reverse engineering applications of 3D models, which in many cases are dense, non-uniform, irregular and arbitrary topology. Examples demonstrating effectiveness of the new algorithm are also included in the paper.

Keywords: coarsening, mesh clustering, shape approximation, mesh simplification

Procedia PDF Downloads 380
29807 Adaptive Optimal Controller for Uncertain Inverted Pendulum System: A Dynamic Programming Approach for Continuous Time System

Authors: Dao Phuong Nam, Tran Van Tuyen, Do Trong Tan, Bui Minh Dinh, Nguyen Van Huong

Abstract:

In this paper, we investigate the adaptive optimal control law for continuous-time systems with input disturbances and unknown parameters. This paper extends previous works to obtain the robust control law of uncertain systems. Through theoretical analysis, an adaptive dynamic programming (ADP) based optimal control is proposed to stabilize the closed-loop system and ensure the convergence properties of proposed iterative algorithm. Moreover, the global asymptotic stability (GAS) for closed system is also analyzed. The theoretical analysis for continuous-time systems and simulation results demonstrate the performance of the proposed algorithm for an inverted pendulum system.

Keywords: approximate/adaptive dynamic programming, ADP, adaptive optimal control law, input state stability, ISS, inverted pendulum

Procedia PDF Downloads 194
29806 Performance Evaluation of a Small Microturbine Cogeneration Functional Model

Authors: Jeni A. Popescu, Sorin G. Tomescu, Valeriu A. Vilag

Abstract:

The paper focuses on the potential methods of increasing the performance of a microturbine by combining additional elements available for utilization in a cogeneration plant. The activity is carried out within the framework of a project aiming to develop, manufacture and test a microturbine functional model with high potential in energetic industry utilization. The main goal of the analysis is to determine the parameters of the fluid flow passing through each section of the turbine, based on limited data available in literature for the focus output power range or provided by experimental studies, starting from a reference cycle, and considering different cycle options, including simple, intercooled and recuperated options, in order to optimize a small cogeneration plant operation. The studied configurations operate under the same initial thermodynamic conditions and are based on a series of assumptions, in terms of individual performance of the components, pressure/velocity losses, compression ratios, and efficiencies. The thermodynamic analysis evaluates the expected performance of the microturbine cycle, while providing a series of input data and limitations to be included in the development of the experimental plan. To simplify the calculations and to allow a clear estimation of the effect of heat transfer between fluids, the working fluid for all the thermodynamic evolutions is, initially, air, the combustion being modelled by simple heat addition to the system. The theoretical results, along with preliminary experimental results are presented, aiming for a correlation in terms of microturbine performance.

Keywords: cogeneration, microturbine, performance, thermodynamic analysis

Procedia PDF Downloads 168
29805 Number of Necessary Parameters for Parametrization of Stabilizing Controllers for two times two RHinf Systems

Authors: Kazuyoshi Mori

Abstract:

In this paper, we consider the number of parameters for the parametrization of stabilizing controllers for RHinf systems with size 2 × 2. Fortunately, any plant of this model can admit doubly coprime factorization. Thus we can use the Youla parameterization to parametrize the stabilizing contollers . However, Youla parameterization does not give itself the minimal number of parameters. This paper shows that the minimal number of parameters is four. As a result, we show that the Youla parametrization naturally gives the parameterization of stabilizing controllers with minimal numbers.

Keywords: RHinfo, parameterization, number of parameters, multi-input, multi-output systems

Procedia PDF Downloads 407
29804 The Study of Climate Change Effects on the Performance of Thermal Power Plants in Iran

Authors: Masoud Soltani Hosseini, Fereshteh Rahmani, Mohammad Tajik Mansouri, Ali Zolghadr

Abstract:

Climate change is accompanied with ambient temperature increase and water accessibility limitation. The main objective of this paper is to investigate the effects of climate change on thermal power plants including gas turbines, steam and combined cycle power plants in Iran. For this purpose, the ambient temperature increase and water accessibility will be analyzed and their effects on power output and efficiency of thermal power plants will be determined. According to the results, the ambient temperature has high effect on steam power plants with indirect cooling system (Heller). The efficiency of this type of power plants decreases by 0.55 percent per 1oC ambient temperature increase. This amount is 0.52 and 0.2 percent for once-through and wet cooling systems, respectively. The decrease in power output covers a range of 0.2% to 0.65% for steam power plant with wet cooling system and gas turbines per 1oC air temperature increase. Based on the thermal power plants distribution in Iran and different scenarios of climate change, the total amount of power output decrease falls between 413 and 1661 MW due to ambient temperature increase. Another limitation incurred by climate change is water accessibility. In optimistic scenario, the power output of steam plants decreases by 1450 MW in dry and hot climate areas throughout next decades. The remaining scenarios indicate that the amount of decrease in power output would be by 4152 MW in highlands and cold climate. Therefore, it is necessary to consider appropriate solutions to overcome these limitations. Considering all the climate change effects together, the actual power output falls in range of 2465 and 7294 MW and efficiency loss covers the range of 0.12 to .56 % in different scenarios.

Keywords: climate, change, thermal, power plants

Procedia PDF Downloads 79
29803 Model Predictive Control of Turbocharged Diesel Engine with Exhaust Gas Recirculation

Authors: U. Yavas, M. Gokasan

Abstract:

Control of diesel engine’s air path has drawn a lot of attention due to its multi input-multi output, closed coupled, non-linear relation. Today, precise control of amount of air to be combusted is a must in order to meet with tight emission limits and performance targets. In this study, passenger car size diesel engine is modeled by AVL Boost RT, and then simulated with standard, industry level PID controllers. Finally, linear model predictive control is designed and simulated. This study shows the importance of modeling and control of diesel engines with flexible algorithm development in computer based systems.

Keywords: predictive control, engine control, engine modeling, PID control, feedforward compensation

Procedia PDF Downloads 636
29802 Batteryless DCM Boost Converter for Kinetic Energy Harvesting Applications

Authors: Andrés Gomez-Casseres, Rubén Contreras

Abstract:

In this paper, a bidirectional boost converter operated in Discontinuous Conduction Mode (DCM) is presented as a suitable power conditioning circuit for tuning of kinetic energy harvesters without the need of a battery. A nonlinear control scheme, composed by two linear controllers, is used to control the average value of the input current, enabling the synthesization of complex loads. The converter, along with the control system, is validated through SPICE simulations using the LTspice tool. The converter model and the controller transfer functions are derived. From the simulation results, it was found that the input current distortion increases with the introduced phase shift and that, such distortion, is almost entirely present at the zero-crossing point of the input voltage.

Keywords: average current control, boost converter, electrical tuning, energy harvesting

Procedia PDF Downloads 762
29801 Biochemical Identification and Study of Antibiotic Resistance in Isolated Bacteria from WWTP TIMGAD

Authors: Abdessemed Zineb, Atia Yahia, Yeza Salima

Abstract:

Water is self-purified by activated sludge process which makes its uniqueness. The main goal is the microbial biocenosis study of the input and output water of the waste water treatment system plant Timgad. 89.47% of the identified biocenosis belongs to ɤ-Proteobacteria while the remaining 10.52 % is equally divided between α-Proteobacteria and β-Proteobacteria. The antibiotics susceptibility profiles reveal that over 30 % are wild strains while the penicillinases are often present (11.30-20 %) with also other profiles. This proportion is worrying that the water discharged join the Oued Soltez used for irrigation. This disadvantage involves the installation of a chlorination step.

Keywords: activated sludge, biocenosis, antibiotics profiles, penicillinases, physic-chemical quality

Procedia PDF Downloads 304
29800 Korean Smart Cities: Strategic Foci, Characteristics and Effects

Authors: Sang Ho Lee, Yountaik Leem

Abstract:

This paper reviews Korean cases of smart cities through the analysis framework of strategic foci, characteristics and effects. Firstly, national strategies including c(cyber), e(electronic), u(ubiquitous) and s(smart) Korea strategies were considered from strategic angles. Secondly, the characteristics of smart cities in Korea were looked through the smart cities examples such as Seoul, Busan, Songdo and Sejong cities etc. from the views on the by STIM (Service, Technology, Infrastructure and Management) analysis. Finally, the effects of smart cities on socio-economies were investigated from industrial perspective using the input-output model and structural path analysis. Korean smart city strategies revealed that there were different kinds of strategic foci. c-Korea strategy focused on information and communications network building and user IT literacy. e-Korea strategy encouraged e-government and e-business through utilizing high-speed information and communications network. u-Korea strategy made ubiquitous service as well as integrated information and communication operations center. s-Korea strategy is propelling 4th industrial platform. Smart cities in Korea showed their own features and trends such as eco-intelligence, high efficiency and low cost oriented IoT, citizen sensored city, big data city. Smart city progress made new production chains fostering ICTs (Information Communication Technologies) and knowledge intermediate inputs to industries.

Keywords: Korean smart cities, Korean smart city strategies, STIM, smart service, infrastructure, technologies, management, effect of smart city

Procedia PDF Downloads 366
29799 Optimization of Organic Rankine Cycle System for Waste Heat Recovery from Excavator

Authors: Young Min Kim, Dong Gil Shin, Assmelash Assefa Negash

Abstract:

This study describes the application of a single loop organic Rankine cycle (ORC) for recovering waste heat from an excavator. In the case of waste heat recovery of the excavator, the heat of hydraulic oil can be used in the ORC system together with the other waste heat sources including the exhaust gas and engine coolant. The performances of four different cases of single loop ORC systems were studied at the main operating condition, and critical design factors are studied to get the maximum power output from the given waste heat sources. The energy and exergy analysis of the cycles are performed concerning the available heat source to determine the best fluid and system configuration. The analysis demonstrates that the ORC in the excavator increases 14% of the net power output at the main operating condition with a simpler system configuration at a lower expander inlet temperature than in a conventional vehicle engine without the heat of the hydraulic oil.

Keywords: engine, excavator, hydraulic oil, organic Rankine cycle (ORC), waste heat recovery

Procedia PDF Downloads 306
29798 Evaluation the Financial and Social Efficiency of Microfinance Institutions Using Data Envelope Analysis - A Sample Study of Active Microfinance Institutions in India

Authors: Hiba Mezaache

Abstract:

The study aims to assess the financial and social efficiency of microfinance institutions in india for the period 2015-2019 by using two models of economies of scale and choosing the output direction of the data envelope analysis (DEA) method and using the MIX MARKET database. The study concluded that microfinance institutions focus on achieving financial efficiency beyond their focus on achieving social efficiency to ensure their continuity in the market. Convergence in the efficiency ratios that have been achieved, but the optimum ratios have been achieved under the changing economies of scale; Efficiency is affected by the depth of reaching low-income groups, as serving this group raises costs and risks. The importance of lending to women in rural areas and raising their awareness to ensure their financial and social empowerment; Make improvements in operating expenses, asset management, and loan personnel control in order to maximize output.

Keywords: microfinance, financial efficiency, social efficiency, mix market, microfinance institutions

Procedia PDF Downloads 155
29797 Visual Search Based Indoor Localization in Low Light via RGB-D Camera

Authors: Yali Zheng, Peipei Luo, Shinan Chen, Jiasheng Hao, Hong Cheng

Abstract:

Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments.

Keywords: indoor navigation, low light, RGB-D camera, vision based

Procedia PDF Downloads 460