Search results for: foundation models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7957

Search results for: foundation models

7597 An Inquiry into the Usage of Complex Systems Models to Examine the Effects of the Agent Interaction in a Political Economic Environment

Authors: Ujjwall Sai Sunder Uppuluri

Abstract:

Group theory is a powerful tool that researchers can use to provide a structural foundation for their Agent Based Models. These Agent Based models are argued by this paper to be the future of the Social Science Disciplines. More specifically, researchers can use them to apply evolutionary theory to the study of complex social systems. This paper illustrates one such example of how theoretically an Agent Based Model can be formulated from the application of Group Theory, Systems Dynamics, and Evolutionary Biology to analyze the strategies pursued by states to mitigate risk and maximize usage of resources to achieve the objective of economic growth. This example can be applied to other social phenomena and this makes group theory so useful to the analysis of complex systems, because the theory provides the mathematical formulaic proof for validating the complex system models that researchers build and this will be discussed by the paper. The aim of this research, is to also provide researchers with a framework that can be used to model political entities such as states on a 3-dimensional plane. The x-axis representing resources (tangible and intangible) available to them, y the risks, and z the objective. There also exist other states with different constraints pursuing different strategies to climb the mountain. This mountain’s environment is made up of risks the state faces and resource endowments. This mountain is also layered in the sense that it has multiple peaks that must be overcome to reach the tallest peak. A state that sticks to a single strategy or pursues a strategy that is not conducive to the climbing of that specific peak it has reached is not able to continue advancement. To overcome the obstacle in the state’s path, it must innovate. Based on the definition of a group, we can categorize each state as being its own group. Each state is a closed system, one which is made up of micro level agents who have their own vectors and pursue strategies (actions) to achieve some sub objectives. The state also has an identity, the inverse being anarchy and/or inaction. Finally, the agents making up a state interact with each other through competition and collaboration to mitigate risks and achieve sub objectives that fall within the primary objective. Thus, researchers can categorize the state as an organism that reflects the sum of the output of the interactions pursued by agents at the micro level. When states compete, they employ a strategy and that state which has the better strategy (reflected by the strategies pursued by her parts) is able to out-compete her counterpart to acquire some resource, mitigate some risk or fulfil some objective. This paper will attempt to illustrate how group theory combined with evolutionary theory and systems dynamics can allow researchers to model the long run development, evolution, and growth of political entities through the use of a bottom up approach.

Keywords: complex systems, evolutionary theory, group theory, international political economy

Procedia PDF Downloads 135
7596 Probing Language Models for Multiple Linguistic Information

Authors: Bowen Ding, Yihao Kuang

Abstract:

In recent years, large-scale pre-trained language models have achieved state-of-the-art performance on a variety of natural language processing tasks. The word vectors produced by these language models can be viewed as dense encoded presentations of natural language that in text form. However, it is unknown how much linguistic information is encoded and how. In this paper, we construct several corresponding probing tasks for multiple linguistic information to clarify the encoding capabilities of different language models and performed a visual display. We firstly obtain word presentations in vector form from different language models, including BERT, ELMo, RoBERTa and GPT. Classifiers with a small scale of parameters and unsupervised tasks are then applied on these word vectors to discriminate their capability to encode corresponding linguistic information. The constructed probe tasks contain both semantic and syntactic aspects. The semantic aspect includes the ability of the model to understand semantic entities such as numbers, time, and characters, and the grammatical aspect includes the ability of the language model to understand grammatical structures such as dependency relationships and reference relationships. We also compare encoding capabilities of different layers in the same language model to infer how linguistic information is encoded in the model.

Keywords: language models, probing task, text presentation, linguistic information

Procedia PDF Downloads 107
7595 Application Difference between Cox and Logistic Regression Models

Authors: Idrissa Kayijuka

Abstract:

The logistic regression and Cox regression models (proportional hazard model) at present are being employed in the analysis of prospective epidemiologic research looking into risk factors in their application on chronic diseases. However, a theoretical relationship between the two models has been studied. By definition, Cox regression model also called Cox proportional hazard model is a procedure that is used in modeling data regarding time leading up to an event where censored cases exist. Whereas the Logistic regression model is mostly applicable in cases where the independent variables consist of numerical as well as nominal values while the resultant variable is binary (dichotomous). Arguments and findings of many researchers focused on the overview of Cox and Logistic regression models and their different applications in different areas. In this work, the analysis is done on secondary data whose source is SPSS exercise data on BREAST CANCER with a sample size of 1121 women where the main objective is to show the application difference between Cox regression model and logistic regression model based on factors that cause women to die due to breast cancer. Thus we did some analysis manually i.e. on lymph nodes status, and SPSS software helped to analyze the mentioned data. This study found out that there is an application difference between Cox and Logistic regression models which is Cox regression model is used if one wishes to analyze data which also include the follow-up time whereas Logistic regression model analyzes data without follow-up-time. Also, they have measurements of association which is different: hazard ratio and odds ratio for Cox and logistic regression models respectively. A similarity between the two models is that they are both applicable in the prediction of the upshot of a categorical variable i.e. a variable that can accommodate only a restricted number of categories. In conclusion, Cox regression model differs from logistic regression by assessing a rate instead of proportion. The two models can be applied in many other researches since they are suitable methods for analyzing data but the more recommended is the Cox, regression model.

Keywords: logistic regression model, Cox regression model, survival analysis, hazard ratio

Procedia PDF Downloads 452
7594 Comparison of Wake Oscillator Models to Predict Vortex-Induced Vibration of Tall Chimneys

Authors: Saba Rahman, Arvind K. Jain, S. D. Bharti, T. K. Datta

Abstract:

The present study compares the semi-empirical wake-oscillator models that are used to predict vortex-induced vibration of structures. These models include those proposed by Facchinetti, Farshidian, and Dolatabadi, and Skop and Griffin. These models combine a wake oscillator model resembling the Van der Pol oscillator model and a single degree of freedom oscillation model. In order to use these models for estimating the top displacement of chimneys, the first mode vibration of the chimneys is only considered. The modal equation of the chimney constitutes the single degree of freedom model (SDOF). The equations of the wake oscillator model and the SDOF are simultaneously solved using an iterative procedure. The empirical parameters used in the wake-oscillator models are estimated using a newly developed approach, and response is compared with experimental data, which appeared comparable. For carrying out the iterative solution, the ode solver of MATLAB is used. To carry out the comparative study, a tall concrete chimney of height 210m has been chosen with the base diameter as 28m, top diameter as 20m, and thickness as 0.3m. The responses of the chimney are also determined using the linear model proposed by E. Simiu and the deterministic model given in Eurocode. It is observed from the comparative study that the responses predicted by the Facchinetti model and the model proposed by Skop and Griffin are nearly the same, while the model proposed by Fashidian and Dolatabadi predicts a higher response. The linear model without considering the aero-elastic phenomenon provides a less response as compared to the non-linear models. Further, for large damping, the prediction of the response by the Euro code is relatively well compared to those of non-linear models.

Keywords: chimney, deterministic model, van der pol, vortex-induced vibration

Procedia PDF Downloads 219
7593 Seismic Behavior of Steel Moment-Resisting Frames for Uplift Permitted in Near-Fault Regions

Authors: M. Tehranizadeh, E. Shoushtari Rezvani

Abstract:

Seismic performance of steel moment-resisting frame structures is investigated considering nonlinear soil-structure interaction (SSI) effects. 10-, 15-, and 20-story planar building frames with aspect ratio of 3 are designed in accordance with current building codes. Inelastic seismic demands of the superstructure are considered using concentrated plasticity model. The raft foundation system is designed for different soil types. Beam-on-nonlinear Winkler foundation (BNWF) is used to represent dynamic impedance of the underlying soil. Two sets of pulse-like as well as no-pulse near-fault earthquakes are used as input ground motions. The results show that the reduction in drift demands due to nonlinear SSI is characterized by a more uniform distribution pattern along the height when compared to the fixed-base and linear SSI condition. It is also concluded that beneficial effects of nonlinear SSI on displacement demands is more significant in case of pulse-like ground motions and performance level of the steel moment-resisting frames can be enhanced.

Keywords: soil-structure interaction, uplifting, soil plasticity, near-fault earthquake, tall building

Procedia PDF Downloads 548
7592 Analysis of Moving Loads on Bridges Using Surrogate Models

Authors: Susmita Panda, Arnab Banerjee, Ajinkya Baxy, Bappaditya Manna

Abstract:

The design of short to medium-span high-speed bridges in critical locations is an essential aspect of vehicle-bridge interaction. Due to dynamic interaction between moving load and bridge, mathematical models or finite element modeling computations become time-consuming. Thus, to reduce the computational effort, a universal approximator using an artificial neural network (ANN) has been used to evaluate the dynamic response of the bridge. The data set generation and training of surrogate models have been conducted over the results obtained from mathematical modeling. Further, the robustness of the surrogate model has been investigated, which showed an error percentage of less than 10% with conventional methods. Additionally, the dependency of the dynamic response of the bridge on various load and bridge parameters has been highlighted through a parametric study.

Keywords: artificial neural network, mode superposition method, moving load analysis, surrogate models

Procedia PDF Downloads 98
7591 Case Study: Hybrid Mechanically Stabilized Earth Wall System Built on Basal Reinforced Raft

Authors: S. Kaymakçı, D. Gündoğdu, H. Özçelik

Abstract:

The truck park of a warehouse for a chain of supermarket was going to be constructed on a poor ground. Rather than using a piled foundation, the client was convinced that a ground improvement using a reinforced foundation raft also known as “basal reinforcement” shall work. The retaining structures supporting the truck park area were designed using a hybrid structure made up of the Terramesh® Wall System and MacGrid™ high strength geogrids. The total wall surface area is nearly 2740 sq.m , reaching a maximum height of 13.00 meters. The area is located in the first degree seismic zone of Turkey and the design seismic acceleration is high. The design of walls has been carried out using pseudo-static method (limit equilibrium) taking into consideration different loading conditions using Eurocode 7. For each standard approach stability analysis in seismic condition were performed. The paper presents the detailed design of the reinforced soil structure, basal reinforcement and the construction methods; advantages of using such system for the project are discussed.

Keywords: basal reinforcement, geogrid, reinforced soil raft, reinforced soil wall, soil reinforcement

Procedia PDF Downloads 300
7590 Applying Multiplicative Weight Update to Skin Cancer Classifiers

Authors: Animish Jain

Abstract:

This study deals with using Multiplicative Weight Update within artificial intelligence and machine learning to create models that can diagnose skin cancer using microscopic images of cancer samples. In this study, the multiplicative weight update method is used to take the predictions of multiple models to try and acquire more accurate results. Logistic Regression, Convolutional Neural Network (CNN), and Support Vector Machine Classifier (SVMC) models are employed within the Multiplicative Weight Update system. These models are trained on pictures of skin cancer from the ISIC-Archive, to look for patterns to label unseen scans as either benign or malignant. These models are utilized in a multiplicative weight update algorithm which takes into account the precision and accuracy of each model through each successive guess to apply weights to their guess. These guesses and weights are then analyzed together to try and obtain the correct predictions. The research hypothesis for this study stated that there would be a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The SVMC model had an accuracy of 77.88%. The CNN model had an accuracy of 85.30%. The Logistic Regression model had an accuracy of 79.09%. Using Multiplicative Weight Update, the algorithm received an accuracy of 72.27%. The final conclusion that was drawn was that there was a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The conclusion was made that using a CNN model would be the best option for this problem rather than a Multiplicative Weight Update system. This is due to the possibility that Multiplicative Weight Update is not effective in a binary setting where there are only two possible classifications. In a categorical setting with multiple classes and groupings, a Multiplicative Weight Update system might become more proficient as it takes into account the strengths of multiple different models to classify images into multiple categories rather than only two categories, as shown in this study. This experimentation and computer science project can help to create better algorithms and models for the future of artificial intelligence in the medical imaging field.

Keywords: artificial intelligence, machine learning, multiplicative weight update, skin cancer

Procedia PDF Downloads 78
7589 Chemometric Estimation of Inhibitory Activity of Benzimidazole Derivatives by Linear Least Squares and Artificial Neural Networks Modelling

Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić, Stela Jokić

Abstract:

The subject of this paper is to correlate antibacterial behavior of benzimidazole derivatives with their molecular characteristics using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on the inhibitory activity of benzimidazole derivatives against Staphylococcus aureus. The data were processed by linear least squares (LLS) and artificial neural network (ANN) procedures. The LLS mathematical models have been developed as a calibration models for prediction of the inhibitory activity. The quality of the models was validated by leave one out (LOO) technique and by using external data set. High agreement between experimental and predicted inhibitory acivities indicated the good quality of the derived models. These results are part of the CMST COST Action No. CM1306 "Understanding Movement and Mechanism in Molecular Machines".

Keywords: Antibacterial, benzimidazoles, chemometric, QSAR.

Procedia PDF Downloads 315
7588 Enhancement of Aircraft Longitudinal Stability Using Tubercles

Authors: Muhammad Umer, Aishwariya Giri, Umaiyma Rakha

Abstract:

Mimicked from the humpback whale flippers, the application of tubercle technology is seen to be particularly advantageous at high angles of attack. This particular advantage is of paramount importance when it comes to structures producing lift at high angles of attack. This characteristic of the technology makes it ideal for horizontal stabilizers and selecting the same as the subject of study to identify and exploit the advantage highlighted by researchers on airfoils, this project aims in establishing a foundation for the application of the bio-mimicked technology on an existing aircraft. Using a baseline and 2 tubercle configuration integrated models, the project targets to achieve the twin aim of highlighting the possibility and merits over the base model and also choosing the right configuration in providing the best characteristic suitable for high angles of attack. To facilitate this study, the required models are generated using Solidworks followed by trials in a virtual aerodynamic environment using Fluent in Ansys for resolving the project objectives. Following a structured plan, the aim is to initially identify the advantages mathematically and then selecting the optimal configuration, simulate the end configuration at angles mimicking the actual operation envelope for the particular structure. Upon simulating the baseline configuration at various angles of attack, the stall angle was determined to be 22 degrees. Thus, the tubercle configurations will be simulated and compared at 4 different angles of attacks: 0, 10, 20, and 24. Further, after providing the optimum configuration of horizontal stabilizers, this study aims at the integration of aircraft structure so that the results better imply the end deliverables of real life application. This draws the project scope closer at this point into longitudinal static stability considerations and improvements in the manoeuvrability characteristics. The objective of the study is to achieve a complete overview ready for real life application with marked benefits obtainable from bio morphing of the tubercle technology.

Keywords: flow simulation, horizontal stabilizer, stability enhancement, tubercle

Procedia PDF Downloads 319
7587 Fusion of MOLA-based DEMs and HiRISE Images for Large-Scale Mars Mapping

Authors: Ahmed F. Elaksher, Islam Omar

Abstract:

In this project, we used MOLA-based DEMs to orthorectify HiRISE optical images. The MOLA data was interpolated using the kriging interpolation technique. Corresponding tie points were then digitized from both datasets. These points were employed in co-registering both datasets using GIS analysis tools. Different transformation models, including the affine and projective transformation models, were used with different sets and distributions of tie points. Additionally, we evaluated the use of the MOLA elevations in co-registering the MOLA and HiRISE datasets. The planimetric RMSEs achieved for each model are reported. Results suggested the use of 3D-2D transformation models.

Keywords: photogrammetry, Mars, MOLA, HiRISE

Procedia PDF Downloads 74
7586 Evaluation of QSRR Models by Sum of Ranking Differences Approach: A Case Study of Prediction of Chromatographic Behavior of Pesticides

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

The present study deals with the selection of the most suitable quantitative structure-retention relationship (QSRR) models which should be used in prediction of the retention behavior of basic, neutral, acidic and phenolic pesticides which belong to different classes: fungicides, herbicides, metabolites, insecticides and plant growth regulators. Sum of ranking differences (SRD) approach can give a different point of view on selection of the most consistent QSRR model. SRD approach can be applied not only for ranking of the QSRR models, but also for detection of similarity or dissimilarity among them. Applying the SRD analysis, the most similar models can be found easily. In this study, selection of the best model was carried out on the basis of the reference ranking (“golden standard”) which was defined as the row average values of logarithm of retention time (logtr) defined by high performance liquid chromatography (HPLC). Also, SRD analysis based on experimental logtr values as reference ranking revealed similar grouping of the established QSRR models already obtained by hierarchical cluster analysis (HCA).

Keywords: chemometrics, chromatography, pesticides, sum of ranking differences

Procedia PDF Downloads 373
7585 Dual Language Immersion Models in Theory and Practice

Authors: S. Gordon

Abstract:

Dual language immersion is growing fast in language teaching today. This study provides an overview and evaluation of the different models of Dual language immersion programs in US K-12 schools. First, the paper provides a brief current literature review on the theory of Dual Language Immersion (DLI) in Second Language Acquisition (SLA) studies. Second, examples of several types of DLI language teaching models in US K-12 public schools are presented (including 50/50 models, 90/10 models, etc.). Third, we focus on the unique example of DLI education in the state of Utah, a successful, growing program in K-12 schools that includes: French, Chinese, Spanish, and Portuguese. The project investigates the theory and practice particularly of the case of public elementary and secondary school children that study half their school day in the L1 and the other half in the chosen L2, from kindergarten (age 5-6) through high school (age 17-18). Finally, the project takes the observations of Utah French DLI elementary through secondary programs as a case study. To conclude, we look at the principal challenges, pedagogical objectives and outcomes, and important implications for other US states and other countries (such as France currently) that are in the process of developing similar language learning programs.

Keywords: dual language immersion, second language acquisition, language teaching, pedagogy, teaching, French

Procedia PDF Downloads 173
7584 Analysis of Bridge-Pile Foundation System in Multi-layered Non-Linear Soil Strata Using Energy-Based Method

Authors: Arvan Prakash Ankitha, Madasamy Arockiasamy

Abstract:

The increasing demand for adopting pile foundations in bridgeshas pointed towardsthe need to constantly improve the existing analytical techniques for better understanding of the behavior of such foundation systems. This study presents a simplistic approach using the energy-based method to assess the displacement responses of piles subjected to general loading conditions: Axial Load, Lateral Load, and a Bending Moment. The governing differential equations and the boundary conditions for a bridge pile embedded in multi-layered soil strata subjected to the general loading conditions are obtained using the Hamilton’s principle employing variational principles and minimization of energies. The soil non-linearity has been incorporated through simple constitutive relationships that account for degradation of soil moduli with increasing strain values.A simple power law based on published literature is used where the soil is assumed to be nonlinear-elastic and perfectly plastic. A Tresca yield surface is assumed to develop the soil stiffness variation with different strain levels that defines the non-linearity of the soil strata. This numerical technique has been applied to a pile foundation in a two - layered soil strata for a pier supporting the bridge and solved using the software MATLAB R2019a. The analysis yields the bridge pile displacements at any depth along the length of the pile. The results of the analysis are in good agreement with the published field data and the three-dimensional finite element analysis results performed using the software ANSYS 2019R3. The methodology can be extended to study the response of the multi-strata soil supporting group piles underneath the bridge piers.

Keywords: pile foundations, deep foundations, multilayer soil strata, energy based method

Procedia PDF Downloads 139
7583 Fixed-Bed Column Studies of Green Malachite Removal by Use of Alginate-Encapsulated Aluminium Pillared Clay

Authors: Lazhar mouloud, Chemat Zoubida, Ouhoumna Faiza

Abstract:

The main objective of this study, concerns the modeling of breakthrough curves obtained in the adsorption column of malachite green into alginate-encapsulated aluminium pillared clay in fixed bed according to various operating parameters such as the initial concentration, the feed rate and the height fixed bed, applying mathematical models namely: the model of Bohart and Adams, Wolborska, Bed Depth Service Time, Clark and Yoon-Nelson. These models allow us to express the different parameters controlling the performance of the dynamic adsorption system. The results have shown that all models were found suitable for describing the whole or a definite part of the dynamic behavior of the column with respect to the flow rate, the inlet dye concentration and the height of fixed bed.

Keywords: adsorption column, malachite green, pillared clays, alginate, modeling, mathematic models, encapsulation.

Procedia PDF Downloads 506
7582 An Improvement of a Dynamic Model of the Secondary Sedimentation Tank and Field Validation

Authors: Zahir Bakiri, Saci Nacefa

Abstract:

In this paper a comparison in made between two models, with and without dispersion term, and focused on the characterization of the movement of the sludge blanket in the secondary sedimentation tank using the solid flux theory and the velocity settling. This allowed us develop a one-dimensional models, with and without dispersion based on a thorough experimental study carried out in situ and the application of online data which are the mass load flow, transfer concentration, and influent characteristic. On the other hand, in the proposed model, the new settling velocity law (double-exponential function) used is based on the Vesilind function.

Keywords: wastewater, activated sludge, sedimentation, settling velocity, settling models

Procedia PDF Downloads 388
7581 Mapping Poverty in the Philippines: Insights from Satellite Data and Spatial Econometrics

Authors: Htet Khaing Lin

Abstract:

This study explores the relationship between a diverse set of variables, encompassing both environmental and socio-economic factors, and poverty levels in the Philippines for the years 2012, 2015, and 2018. Employing Ordinary Least Squares (OLS), Spatial Lag Models (SLM), and Spatial Error Models (SEM), this study delves into the dynamics of key indicators, including daytime and nighttime land surface temperature, cropland surface, urban land surface, rainfall, population size, normalized difference water, vegetation, and drought indices. The findings reveal consistent patterns and unexpected correlations, highlighting the need for nuanced policies that address the multifaceted challenges arising from the interplay of environmental and socio-economic factors.

Keywords: poverty analysis, OLS, spatial lag models, spatial error models, Philippines, google earth engine, satellite data, environmental dynamics, socio-economic factors

Procedia PDF Downloads 98
7580 Geopotential Models Evaluation in Algeria Using Stochastic Method, GPS/Leveling and Topographic Data

Authors: M. A. Meslem

Abstract:

For precise geoid determination, we use a reference field to subtract long and medium wavelength of the gravity field from observations data when we use the remove-compute-restore technique. Therefore, a comparison study between considered models should be made in order to select the optimal reference gravity field to be used. In this context, two recent global geopotential models have been selected to perform this comparison study over Northern Algeria. The Earth Gravitational Model (EGM2008) and the Global Gravity Model (GECO) conceived with a combination of the first model with anomalous potential derived from a GOCE satellite-only global model. Free air gravity anomalies in the area under study have been used to compute residual data using both gravity field models and a Digital Terrain Model (DTM) to subtract the residual terrain effect from the gravity observations. Residual data were used to generate local empirical covariance functions and their fitting to the closed form in order to compare their statistical behaviors according to both cases. Finally, height anomalies were computed from both geopotential models and compared to a set of GPS levelled points on benchmarks using least squares adjustment. The result described in details in this paper regarding these two models has pointed out a slight advantage of GECO global model globally through error degree variances comparison and ground-truth evaluation.

Keywords: quasigeoid, gravity aomalies, covariance, GGM

Procedia PDF Downloads 136
7579 Analysis of Tilting Cause of a Residential Building in Durres by the Use of Cptu Test

Authors: Neritan Shkodrani

Abstract:

On November 26, 2019, an earthquake hit the central western part of Albania. It was assessed as Mw 6.4. Its epicenter was located offshore north western Durrës, about 7 km north of the city. In this paper, the consequences of settlements of very soft soils have been discussed for the case of a residential building, mentioned as “K Building”, which was suffering a significant tilting after the earthquake. “KBuilding” is an RC framed building having 12+1 (basement) storiesand a floor area of 21000 m2. The construction of the building was completed in 2012. “KBuilding”, located in Durres city, suffered severe non-structural damage during November 26, 2019, Durrës Earthquake sequences. During the in-site inspections immediately after the earthquake, the general condition of the buildings, the presence of observable settlements on the ground, and the crack situation in the structure were determined, and damage inspection were performed. It was significant to note that the “K Building” presented tilting that might be attributed, as it was believed at the beginning, partially to the failure of the columns of the ground floor and partially to liquefaction phenomena, but it did not collapse. At the first moment was not clear if the foundation had a bearing capacity failure or the foundation failed because of the soil liquefaction. Geotechnical soil investigations by using CPTU test were executed, and their data are usedto evaluatebearing capacity, consolidation settlement of the mat foundation, and soil liquefaction since they were believed to be the main reasons of this building tilting.Geotechnical soil investigation consist in 5 (five) Static Cone Penetration tests with pore pressure measurement (piezocone test). They reached a penetration depth of 20.0 m to 30.0 mand, clearly shown the presence of very soft and organic soils in the soil profile of the site. Geotechnical CPT based analysis of bearing capacity, consolidation, and secondary settlement are applied, and results are reported for each test. These results shown very small values of allowable bearing capacity and very high values of consolidation and secondary settlements. Liquefaction analysis based on the data of CPTU tests and the characteristics of ground shaking of the mentioned earthquake has shown the possibility of liquefaction for some layers of the considered soil profile, but the estimated vertical settlements are at a small range and clearly shown that the main reason of the building tilting was not related to the consequences of liquefaction, but was an existing settlement caused from the applied bearing pressure of this building. All the CPTU tests were carried out on August 2021, almost two years after the November 26, 2019, Durrës Earthquake and when the building itself was demolished. After removing the mat foundation on September 2021, it was possible to carry out CPTU tests even on the footprint of the existing building, which made possible to observe the effects of long time applied of foundation bearing pressure to the consolidation on the considered soil profile.

Keywords: bearing capacity, cone penetration test, consolidation settlement, secondary settlement, soil liquefaction, etc

Procedia PDF Downloads 95
7578 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models

Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai

Abstract:

Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.

Keywords: plant identification, CNN, image processing, vision transformer, classification

Procedia PDF Downloads 102
7577 Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models

Authors: A. B. M. Rezaul Islam, Ernur Karadogan

Abstract:

Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model.

Keywords: constitutive models, FAST sensitivity analysis, sensitivity analysis, sobol, shape memory alloy, uncertainty analysis

Procedia PDF Downloads 143
7576 Measuring Environmental Efficiency of Energy in OPEC Countries

Authors: Bahram Fathi, Seyedhossein Sajadifar, Naser Khiabani

Abstract:

Data envelopment analysis (DEA) has recently gained popularity in energy efficiency analysis. A common feature of the previously proposed DEA models for measuring energy efficiency performance is that they treat energy consumption as an input within a production framework without considering undesirable outputs. However, energy use results in the generation of undesirable outputs as byproducts of producing desirable outputs. Within a joint production framework of both desirable and undesirable outputs, this paper presents several DEA-type linear programming models for measuring energy efficiency performance. In addition to considering undesirable outputs, our models treat different energy sources as different inputs so that changes in energy mix could be accounted for in evaluating energy efficiency. The proposed models are applied to measure the energy efficiency performances of 12 OPEC countries and the results obtained are presented.

Keywords: energy efficiency, undesirable outputs, data envelopment analysis

Procedia PDF Downloads 734
7575 Enhancing Model Interoperability and Reuse by Designing and Developing a Unified Metamodel Standard

Authors: Arash Gharibi

Abstract:

Mankind has always used models to solve problems. Essentially, models are simplified versions of reality, whose need stems from having to deal with complexity; many processes or phenomena are too complex to be described completely. Thus a fundamental model requirement is that it contains the characteristic features that are essential in the context of the problem to be solved or described. Models are used in virtually every scientific domain to deal with various problems. During the recent decades, the number of models has increased exponentially. Publication of models as part of original research has traditionally been in in scientific periodicals, series, monographs, agency reports, national journals and laboratory reports. This makes it difficult for interested groups and communities to stay informed about the state-of-the-art. During the modeling process, many important decisions are made which impact the final form of the model. Without a record of these considerations, the final model remains ill-defined and open to varying interpretations. Unfortunately, the details of these considerations are often lost or in case there is any existing information about a model, it is likely to be written intuitively in different layouts and in different degrees of detail. In order to overcome these issues, different domains have attempted to implement their own approaches to preserve their models’ information in forms of model documentation. The most frequently cited model documentation approaches show that they are domain specific, not to applicable to the existing models and evolutionary flexibility and intrinsic corrections and improvements are not possible with the current approaches. These issues are all because of a lack of unified standards for model documentation. As a way forward, this research will propose a new standard for capturing and managing models’ information in a unified way so that interoperability and reusability of models become possible. This standard will also be evolutionary, meaning members of modeling realm could contribute to its ongoing developments and improvements. In this paper, the current 3 of the most common metamodels are reviewed and according to pros and cons of each, a new metamodel is proposed.

Keywords: metamodel, modeling, interoperability, reuse

Procedia PDF Downloads 197
7574 Implied Adjusted Volatility by Leland Option Pricing Models: Evidence from Australian Index Options

Authors: Mimi Hafizah Abdullah, Hanani Farhah Harun, Nik Ruzni Nik Idris

Abstract:

With the implied volatility as an important factor in financial decision-making, in particular in option pricing valuation, and also the given fact that the pricing biases of Leland option pricing models and the implied volatility structure for the options are related, this study considers examining the implied adjusted volatility smile patterns and term structures in the S&P/ASX 200 index options using the different Leland option pricing models. The examination of the implied adjusted volatility smiles and term structures in the Australian index options market covers the global financial crisis in the mid-2007. The implied adjusted volatility was found to escalate approximately triple the rate prior the crisis.

Keywords: implied adjusted volatility, financial crisis, Leland option pricing models, Australian index options

Procedia PDF Downloads 378
7573 Design Charts for Strip Footing on Untreated and Cement Treated Sand Mat over Underlying Natural Soft Clay

Authors: Sharifullah Ahmed, Sarwar Jahan Md. Yasin

Abstract:

Shallow foundations on unimproved soft natural soils can undergo a high consolidation and secondary settlement. For low and medium rise building projects on such soil condition, pile foundation may not be cost effective. In such cases an alternative to pile foundations may be shallow strip footings placed on a double layered improved soil system soil. The upper layer of this system is untreated or cement treated compacted sand and underlying layer is natural soft clay. This system will reduce the settlement to an allowable limit. The current research has been conducted with the settlement of a rigid plane-strain strip footing of 2.5 m width placed on the surface of a soil consisting of an untreated or cement treated sand layer overlying a bed of homogeneous soft clay. The settlement of the mentioned shallow foundation has been studied considering both cases with the thicknesses of the sand layer are 0.3 to 0.9 times the width of footing. The response of the clay layer is assumed as undrained for plastic loading stages and drained during consolidation stages. The response of the sand layer is drained during all loading stages. FEM analysis was done using PLAXIS 2D Version 8.0. A natural clay deposit of 15 m thickness and 18 m width has been modeled using Hardening Soil Model, Soft Soil Model, Soft Soil Creep Model, and upper improvement layer has been modeled using only Hardening Soil Model. The groundwater level is at the top level of the clay deposit that made the system fully saturated. Parametric study has been conducted to determine the effect of thickness, density, cementation of the sand mat and density, shear strength of the soft clay layer on the settlement of strip foundation under the uniformly distributed vertical load of varying value. A set of the chart has been established for designing shallow strip footing on the sand mat over thick, soft clay deposit through obtaining the particular thickness of sand mat for particular subsoil parameter to ensure no punching shear failure and no settlement beyond allowable level. Design guideline in the form of non-dimensional charts has been developed for footing pressure equivalent to medium-rise residential or commercial building foundation with strip footing on soft inorganic Normally Consolidated (NC) soil of Bangladesh having void ratio from 1.0 to 1.45.

Keywords: design charts, ground improvement, PLAXIS 2D, primary and secondary settlement, sand mat, soft clay

Procedia PDF Downloads 122
7572 Evaluation of Environmental, Technical, and Economic Indicators of a Fused Deposition Modeling Process

Authors: M. Yosofi, S. Ezeddini, A. Ollivier, V. Lavaste, C. Mayousse

Abstract:

Additive manufacturing processes have changed significantly in a wide range of industries and their application progressed from rapid prototyping to production of end-use products. However, their environmental impact is still a rather open question. In order to support the growth of this technology in the industrial sector, environmental aspects should be considered and predictive models may help monitor and reduce the environmental footprint of the processes. This work presents predictive models based on a previously developed methodology for the environmental impact evaluation combined with a technical and economical assessment. Here we applied the methodology to the Fused Deposition Modeling process. First, we present the predictive models relative to different types of machines. Then, we present a decision-making tool designed to identify the optimum manufacturing strategy regarding technical, economic, and environmental criteria.

Keywords: additive manufacturing, decision-makings, environmental impact, predictive models

Procedia PDF Downloads 129
7571 Leveraging Unannotated Data to Improve Question Answering for French Contract Analysis

Authors: Touila Ahmed, Elie Louis, Hamza Gharbi

Abstract:

State of the art question answering models have recently shown impressive performance especially in a zero-shot setting. This approach is particularly useful when confronted with a highly diverse domain such as the legal field, in which it is increasingly difficult to have a dataset covering every notion and concept. In this work, we propose a flexible generative question answering approach to contract analysis as well as a weakly supervised procedure to leverage unannotated data and boost our models’ performance in general, and their zero-shot performance in particular.

Keywords: question answering, contract analysis, zero-shot, natural language processing, generative models, self-supervision

Procedia PDF Downloads 191
7570 Dow Polyols near Infrared Chemometric Model Reduction Based on Clustering: Reducing Thirty Global Hydroxyl Number (OH) Models to Less Than Five

Authors: Wendy Flory, Kazi Czarnecki, Matthijs Mercy, Mark Joswiak, Mary Beth Seasholtz

Abstract:

Polyurethane Materials are present in a wide range of industrial segments such as Furniture, Building and Construction, Composites, Automotive, Electronics, and more. Dow is one of the leaders for the manufacture of the two main raw materials, Isocyanates and Polyols used to produce polyurethane products. Dow is also a key player for the manufacture of Polyurethane Systems/Formulations designed for targeted applications. In 1990, the first analytical chemometric models were developed and deployed for use in the Dow QC labs of the polyols business for the quantification of OH, water, cloud point, and viscosity. Over the years many models have been added; there are now over 140 models for quantification and hundreds for product identification, too many to be reasonable for support. There are 29 global models alone for the quantification of OH across > 70 products at many sites. An attempt was made to consolidate these into a single model. While the consolidated model proved good statistics across the entire range of OH, several products had a bias by ASTM E1655 with individual product validation. This project summary will show the strategy for global model updates for OH, to reduce the number of models for quantification from over 140 to 5 or less using chemometric methods. In order to gain an understanding of the best product groupings, we identify clusters by reducing spectra to a few dimensions via Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP). Results from these cluster analyses and a separate validation set allowed dow to reduce the number of models for predicting OH from 29 to 3 without loss of accuracy.

Keywords: hydroxyl, global model, model maintenance, near infrared, polyol

Procedia PDF Downloads 133
7569 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 129
7568 Text Similarity in Vector Space Models: A Comparative Study

Authors: Omid Shahmirzadi, Adam Lugowski, Kenneth Younge

Abstract:

Automatic measurement of semantic text similarity is an important task in natural language processing. In this paper, we evaluate the performance of different vector space models to perform this task. We address the real-world problem of modeling patent-to-patent similarity and compare TFIDF (and related extensions), topic models (e.g., latent semantic indexing), and neural models (e.g., paragraph vectors). Contrary to expectations, the added computational cost of text embedding methods is justified only when: 1) the target text is condensed; and 2) the similarity comparison is trivial. Otherwise, TFIDF performs surprisingly well in other cases: in particular for longer and more technical texts or for making finer-grained distinctions between nearest neighbors. Unexpectedly, extensions to the TFIDF method, such as adding noun phrases or calculating term weights incrementally, were not helpful in our context.

Keywords: big data, patent, text embedding, text similarity, vector space model

Procedia PDF Downloads 173