Search results for: displacement spectrum reduction factor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11814

Search results for: displacement spectrum reduction factor

11454 Analysis of Elastic-Plastic Deformation of Reinforced Concrete Shear-Wall Structures under Earthquake Excitations

Authors: Oleg Kabantsev, Karomatullo Umarov

Abstract:

The engineering analysis of earthquake consequences demonstrates a significantly different level of damage to load-bearing systems of different types. Buildings with reinforced concrete columns and separate shear-walls receive the highest level of damage. Traditional methods for predicting damage under earthquake excitations do not provide an answer to the question about the reasons for the increased vulnerability of reinforced concrete frames with shear-walls bearing systems. Thus, the study of the problem of formation and accumulation of damages in the structures reinforced concrete frame with shear-walls requires the use of new methods of assessment of the stress-strain state, as well as new approaches to the calculation of the distribution of forces and stresses in the load-bearing system based on account of various mechanisms of elastic-plastic deformation of reinforced concrete columns and walls. The results of research into the processes of non-linear deformation of structures with a transition to destruction (collapse) will allow to substantiate the characteristics of limit states of various structures forming an earthquake-resistant load-bearing system. The research of elastic-plastic deformation processes of reinforced concrete structures of frames with shear-walls is carried out on the basis of experimentally established parameters of limit deformations of concrete and reinforcement under dynamic excitations. Limit values of deformations are defined for conditions under which local damages of the maximum permissible level are formed in constructions. The research is performed by numerical methods using ETABS software. The research results indicate that under earthquake excitations, plastic deformations of various levels are formed in various groups of elements of the frame with the shear-wall load-bearing system. During the main period of seismic effects in the shear-wall elements of the load-bearing system, there are insignificant volumes of plastic deformations, which are significantly lower than the permissible level. At the same time, plastic deformations are formed in the columns and do not exceed the permissible value. At the final stage of seismic excitations in shear-walls, the level of plastic deformations reaches values corresponding to the plasticity coefficient of concrete , which is less than the maximum permissible value. Such volume of plastic deformations leads to an increase in general deformations of the bearing system. With the specified parameters of the deformation of the shear-walls in concrete columns, plastic deformations exceeding the limiting values develop, which leads to the collapse of such columns. Based on the results presented in this study, it can be concluded that the application seismic-force-reduction factor, common for the all load-bearing system, does not correspond to the real conditions of formation and accumulation of damages in elements of the load-bearing system. Using a single coefficient of seismic-force-reduction factor leads to errors in predicting the seismic resistance of reinforced concrete load-bearing systems. In order to provide the required level of seismic resistance buildings with reinforced concrete columns and separate shear-walls, it is necessary to use values of the coefficient of seismic-force-reduction factor differentiated by types of structural groups.1

Keywords: reinforced concrete structures, earthquake excitation, plasticity coefficients, seismic-force-reduction factor, nonlinear dynamic analysis

Procedia PDF Downloads 205
11453 Assessment of Petrophysical Parameters Using Well Log and Core Data

Authors: Khulud M. Rahuma, Ibrahim B. Younis

Abstract:

Assessment of petrophysical parameters are very essential for reservoir engineer. Three techniques can be used to predict reservoir properties: well logging, well testing, and core analysis. Cementation factor and saturation exponent are very required for calculation, and their values role a great effect on water saturation estimation. In this study a sensitive analysis was performed to investigate the influence of cementation factor and saturation exponent variation applying logs, and core analysis. Measurements of water saturation resulted in a maximum difference around fifteen percent.

Keywords: porosity, cementation factor, saturation exponent, formation factor, water saturation

Procedia PDF Downloads 693
11452 Sensitivity of the Estimated Output Energy of the Induction Motor to both the Asymmetry Supply Voltage and the Machine Parameters

Authors: Eyhab El-Kharashi, Maher El-Dessouki

Abstract:

The paper is dedicated to precise assessment of the induction motor output energy during the unbalanced operation. Since many years ago and until now the voltage complex unbalance factor (CVUF) is used only to assess the output energy of the induction motor while this output energy for asymmetry supply voltage does not depend on the value of unbalanced voltage only but also on the machine parameters. The paper illustrates the variation of the two unbalance factors, complex voltage unbalance factor (CVUF) and impedance unbalance factor (IUF), with positive sequence voltage component, reveals that degree and manner of unbalance in supply voltage. From this point of view the paper delineates the current unbalance factor (CUF) to exactly reflect the output energy during unbalanced operation. The paper proceeds to illustrate the importance of using this factor in the multi-machine system to precise prediction of the output energy during the unbalanced operation. The use of the proposed unbalance factor (CUF) avoids the accumulation of the error due to more than one machine in the system which is expected if only the complex voltage unbalance factor (CVUF) is used.

Keywords: induction motor, electromagnetic torque, voltage unbalance, energy conversion

Procedia PDF Downloads 557
11451 Influence of Rainfall Intensity on Infiltration and Deformation of Unsaturated Soil Slopes

Authors: Bouziane Mohamed Tewfik

Abstract:

In order to improve the understanding of the influence of rainfall intensity on infiltration and deformation behaviour of unsaturated soil slopes, numerical 2D analyses are carried out by a three phase elasto-viscoplastic seepage-deformation coupled method. From the numerical results, it is shown that regardless of the saturated permeability of the soil slope, the increase in the pore water pressure (reduction in suction) during rainfall infiltration is localized close to the slope surface. In addition, the generation of the pore water pressure and the lateral displacement are mainly controlled by the ratio of the rainfall intensity to the saturated permeability of the soil.

Keywords: unsaturated soil, slope stability, rainfall infiltration, numerical analysis

Procedia PDF Downloads 468
11450 Deciphering Suitability of Rhamnolipids as Emulsifying Agent for Hydrophobic Pollutants

Authors: Asif Jamal, Samia Sakindar, Ramla Rehman

Abstract:

Biosurfactants are amphiphilic surface active compounds obtained from natural resources such as plants and microorganisms. Because of their diverse physicochemical characteristics biosurfactant are replacing synthetic compounds in various commercial applications. In present study, a strain of P. aeruginosa was isolated from crude oil contaminated soil as efficient biosurfactant producers. The biosurfactant production was analyzed as a function of surface tension reduction, oil spreading capacity, emulsification index and hemolysis assay. This bacterial strain showed excellent emulsion activity of EI24 85%, surface tension reduction up to 28.6 mNm-1 and 7.0 mm oil displacement zone. Physicochemical and biological properties of extracted rhamnolipid were also investigated in current study. The chemical composition of product from strain PSS was analyzed by FTIR spectroscopy. The results revealed that extracted biosurfactant was rhamnolipid type in nature having RL-1 and RL-2 homologues. The surface behavior of rhamnolipid in aqueous phase was investigated varying extreme pH, temperature, salt conditions and with various hydrocarbons. The results indicated that biosurfactant produced by strain PSS Which showed stability during high temperature up to 121 C, salt concentrations up to 20% and pH range between (4—14). The emulsification activity with different hydrocarbons was also remarkable. It was concluded that rhamnolipid biosurfactant produced by strain PSS has excellent potential as emulsifying/remediation agent for broad range of hydrophobic pollutants.

Keywords: P. aeruginosa, bioremediation, rhamnolipid, surfactants

Procedia PDF Downloads 281
11449 Loading Factor Performance of a Centrifugal Compressor Impeller: Specific Features and Way of Modeling

Authors: K. Soldatova, Y. Galerkin

Abstract:

A loading factor performance is necessary for the modeling of centrifugal compressor gas dynamic performance curve. Measured loading factors are linear function of a flow coefficient at an impeller exit. The performance does not depend on the compressibility criterion. To simulate loading factor performances, the authors present two parameters: a loading factor at zero flow rate and an angle between an ordinate and performance line. The calculated loading factor performances of non-viscous are linear too and close to experimental performances. Loading factor performances of several dozens of impellers with different blade exit angles, blade thickness and number, ratio of blade exit/inlet height, and two different type of blade mean line configuration. There are some trends of influence, which are evident – comparatively small blade thickness influence, and influence of geometry parameters is more for impellers with bigger blade exit angles, etc. Approximating equations for both parameters are suggested. The next phase of work will be simulating of experimental performances with the suggested approximation equations as a base.

Keywords: loading factor performance, centrifugal compressor, impeller, modeling

Procedia PDF Downloads 349
11448 Design and Development of Tandem Dynamometer for Testing and Validation of Motor Performance Parameters

Authors: Vedansh More, Lalatendu Bal, Ronak Panchal, Atharva Kulkarni

Abstract:

The project aims at developing a cost-effective test bench capable of testing and validating the complete powertrain package of an electric vehicle. Emrax 228 high voltage synchronous motor was selected as the prime mover for study. A tandem type dynamometer comprising of two loading methods; inertial, using standard inertia rollers and absorptive, using a separately excited DC generator with resistive coils was developed. The absorptive loading of the prime mover was achieved by implementing a converter circuit through which duty of the input field voltage level was controlled. This control was efficacious in changing the magnetic flux and hence the generated voltage which was ultimately dropped across resistive coils assembled in a load bank with all parallel configuration. The prime mover and loading elements were connected via a chain drive with a 2:1 reduction ratio which allows flexibility in placement of components and a relaxed rating of the DC generator. The development will aid in determination of essential characteristics like torque-RPM, power-RPM, torque factor, RPM factor, heat loads of devices and battery pack state of charge efficiency but also provides a significant financial advantage over existing versions of dynamometers with its cost-effective solution.

Keywords: absorptive load, chain drive, chordal action, DC generator, dynamometer, electric vehicle, inertia rollers, load bank, powertrain, pulse width modulation, reduction ratio, road load, testbench

Procedia PDF Downloads 232
11447 Exploratory Factor Analysis of Natural Disaster Preparedness Awareness of Thai Citizens

Authors: Chaiyaset Promsri

Abstract:

Based on the synthesis of related literatures, this research found thirteen related dimensions that involved the development of natural disaster preparedness awareness including hazard knowledge, hazard attitude, training for disaster preparedness, rehearsal and practice for disaster preparedness, cultural development for preparedness, public relations and communication, storytelling, disaster awareness game, simulation, past experience to natural disaster, information sharing with family members, and commitment to the community (time of living).  The 40-item of natural disaster preparedness awareness questionnaire was developed based on these thirteen dimensions. Data were collected from 595 participants in Bangkok metropolitan and vicinity. Cronbach's alpha was used to examine the internal consistency for this instrument. Reliability coefficient was 97, which was highly acceptable.  Exploratory Factor Analysis where principal axis factor analysis was employed. The Kaiser-Meyer-Olkin index of sampling adequacy was .973, indicating that the data represented a homogeneous collection of variables suitable for factor analysis. Bartlett's test of Sphericity was significant for the sample as Chi-Square = 23168.657, df = 780, and p-value < .0001, which indicated that the set of correlations in the correlation matrix was significantly different and acceptable for utilizing EFA. Factor extraction was done to determine the number of factors by using principal component analysis and varimax.  The result revealed that four factors had Eigen value greater than 1 with more than 60% cumulative of variance. Factor #1 had Eigen value of 22.270, and factor loadings ranged from 0.626-0.760. This factor was named as "Knowledge and Attitude of Natural Disaster Preparedness".  Factor #2 had Eigen value of 2.491, and factor loadings ranged from 0.596-0.696. This factor was named as "Training and Development". Factor #3 had Eigen value of 1.821, and factor loadings ranged from 0.643-0.777. This factor was named as "Building Experiences about Disaster Preparedness".  Factor #4 had Eigen value of 1.365, and factor loadings ranged from 0.657-0.760. This was named as "Family and Community". The results of this study provided support for the reliability and construct validity of natural disaster preparedness awareness for utilizing with populations similar to sample employed.

Keywords: natural disaster, disaster preparedness, disaster awareness, Thai citizens

Procedia PDF Downloads 378
11446 Application of Waterflooding Technique in Petroleum Reservoir

Authors: Khwaja Naweed Seddiqi

Abstract:

Hydrocarbon resources are important for the redevelopment and sustainable progress of Afghanistan’s infrastructure. This paper aim is to increase the oil recovery of Hitervian reservoir of Angut oil field in north part of Afghanistan by an easy and available method, which is Buckley-Leveret frontal displacement theory. In this paper oil displacement by water that takes placed by injecting water into the under laying petroleum reservoir which called waterflooding technique is investigated. The theory is investigated in a laboratory experiment first then applied in Angut oil field which is now under the operation of a private petroleum company. Based on this study oil recovery of Angut oil field, residual oil saturation, Buckle-Leveret saturation and FBL is determined.

Keywords: waterflooding technique, two phase fluid flow, Buckley-Leveret, petroleum engineering

Procedia PDF Downloads 435
11445 ADA Tool for Satellite InSAR-Based Ground Displacement Analysis: The Granada Region

Authors: M. Cuevas-González, O. Monserrat, A. Barra, C. Reyes-Carmona, R.M. Mateos, J. P. Galve, R. Sarro, M. Cantalejo, E. Peña, M. Martínez-Corbella, J. A. Luque, J. M. Azañón, A. Millares, M. Béjar, J. A. Navarro, L. Solari

Abstract:

Geohazard prone areas require continuous monitoring to detect risks, understand the phenomena occurring in those regions and prevent disasters. Satellite interferometry (InSAR) has come to be a trustworthy technique for ground movement detection and monitoring in the last few years. InSAR based techniques allow to process large areas providing high number of displacement measurements at low cost. However, the results provided by such techniques are usually not easy to interpret by non-experienced users hampering its use for decision makers. This work presents a set of tools developed in the framework of different projects (Momit, Safety, U-Geohaz, Riskcoast) and an example of their use in the Granada Coastal area (Spain) is shown. The ADA (Active Displacement Areas) tool have been developed with the aim of easing the management, use and interpretation of InSAR based results. It provides a semi-automatic extraction of the most significant ADAs through the application ADAFinder tool. This tool aims to support the exploitation of the European Ground Motion Service (EU-GMS), which will provide consistent, regular and reliable information regarding natural and anthropogenic ground motion phenomena all over Europe.

Keywords: ground displacements, InSAR, natural hazards, satellite imagery

Procedia PDF Downloads 219
11444 Environmental Fatigue Analysis for Control Rod Drive Mechanisms Seal House

Authors: Xuejiao Shao, Jianguo Chen, Xiaolong Fu

Abstract:

In this paper, the elastoplastic strain correction factor computed by software of ANSYS was modified, and the fatigue usage factor in air was also corrected considering in water under reactor operating condition. The fatigue of key parts on control rod drive mechanisms was analyzed considering the influence of environmental fatigue caused by the coolant in the react pressure vessel. The elastoplastic strain correction factor was modified by analyzing thermal and mechanical loads separately referring the rules of RCC-M 2002. The new elastoplastic strain correction factor Ke(mix) is computed to replace the original Ke computed by the software of ANSYS when evaluating the fatigue produced by thermal and mechanical loads together. Based on the Ke(mix) and the usage cycle and fatigue design curves, the new range of primary plus secondary stresses was evaluated to obtain the final fatigue usage factor. The results show that the precision of fatigue usage factor can be elevated by using modified Ke when the amplify of the primary and secondary stress is large to some extent. One approach has been proposed for incorporating the environmental effects considering the effects of reactor coolant environments on fatigue life in terms of an environmental correction factor Fen, which is the ratio of fatigue life in air at room. To incorporate environmental effects into the RCCM Code fatigue evaluations, the fatigue usage factor based on the current Code design curves is multiplied by the correction factor. The contribution of environmental effects to results is discussed. Fatigue life decreases logarithmically with decreasing strain rate below 10%/s, which is insensitive to strain rate when temperatures below 100°C.

Keywords: environmental fatigue, usage factor, elastoplastic strain correction factor, environmental correction

Procedia PDF Downloads 324
11443 Statistical Study and Simulation of 140 Kv X– Ray Tube by Monte Carlo

Authors: Mehdi Homayouni, Karim Adinehvand, Bakhtiar Azadbakht

Abstract:

In this study, we used Monte Carlo code (MCNP4C) that is a general method, for simulation, electron source and electric field, a disc source with 0.05 cm radius in direct of anode are used, radius of disc source show focal spot of X-ray tube that here is 0.05 cm. In this simulation, the anode is from tungsten with 18.9 g/cm3 density and angle of the anode is 18°. We simulated X-ray tube for 140 kv. For increasing of speed data acquisition, we use F5 tally. With determination the exact position of F5 tally in the program, outputs are acquired. In this spectrum the start point is about 0.02 Mev, the absorption edges are about 0.06 Mev and 0.07 Mev, and average energy is about 0.05 Mev.

Keywords: X-spectrum, simulation, Monte Carlo, tube

Procedia PDF Downloads 722
11442 Cognitive Weighted Polymorphism Factor: A New Cognitive Complexity Metric

Authors: T. Francis Thamburaj, A. Aloysius

Abstract:

Polymorphism is one of the main pillars of the object-oriented paradigm. It induces hidden forms of class dependencies which may impact software quality, resulting in higher cost factor for comprehending, debugging, testing, and maintaining the software. In this paper, a new cognitive complexity metric called Cognitive Weighted Polymorphism Factor (CWPF) is proposed. Apart from the software structural complexity, it includes the cognitive complexity on the basis of type. The cognitive weights are calibrated based on 27 empirical studies with 120 persons. A case study and experimentation of the new software metric shows positive results. Further, a comparative study is made and the correlation test has proved that CWPF complexity metric is a better, more comprehensive, and more realistic indicator of the software complexity than Abreu’s Polymorphism Factor (PF) complexity metric.

Keywords: cognitive complexity metric, object-oriented metrics, polymorphism factor, software metrics

Procedia PDF Downloads 458
11441 Fast Algorithm to Determine Initial Tsunami Wave Shape at Source

Authors: Alexander P. Vazhenin, Mikhail M. Lavrentiev, Alexey A. Romanenko, Pavel V. Tatarintsev

Abstract:

One of the problems obstructing effective tsunami modelling is the lack of information about initial wave shape at source. The existing methods; geological, sea radars, satellite images, contain an important part of uncertainty. Therefore, direct measurement of tsunami waves obtained at the deep water bottom peruse recorders is also used. In this paper we propose a new method to reconstruct the initial sea surface displacement at tsunami source by the measured signal (marigram) approximation with the help of linear combination of synthetic marigrams from the selected set of unit sources, calculated in advance. This method has demonstrated good precision and very high performance. The mathematical model and results of numerical tests are here described.

Keywords: numerical tests, orthogonal decomposition, Tsunami Initial Sea Surface Displacement

Procedia PDF Downloads 469
11440 Heavy Metal Reduction in Plant Using Soil Amendment

Authors: C. Chaiyaraksa, T. Khamko

Abstract:

This study investigated the influence of limestone and sepiolite on heavy metals accumulation in the soil and soybean. The soil was synthesized to contaminate with zinc 150 mg/kg, copper 100 mg/kg, and cadmium 1 mg/kg. The contaminated soil was mixed with limestone and sepiolite at the ratio of 1:0, 0:1, 1:1, and 2:1. The amount of soil modifier added to soil was 0.2%, 0.4%, and 0.8%. The metals determination was performed on soil both before and after soybean planting and in the root, shoot, and seed of soybean after harvesting. The study was also on metal translocate from root to seed and on bioaccumulation factor. Using of limestone and sepiolite resulted in a reduction of metals accumulated in soybean. For soil containing a high concentration of copper, cadmium, and zinc, a mixture of limestone and sepiolite (1:1) was recommended to mix with soil with the amount of 0.2%. Zinc could translocate from root to seed more than copper, and cadmium. From studying the movement of metals from soil to accumulate in soybean, the result was that soybean could absorb the highest amount of cadmium, followed by zinc, and copper, respectively.

Keywords: heavy metals, limestone, sepiolite, soil, soybean

Procedia PDF Downloads 154
11439 Seismic Retrofitting of Structures Using Steel Plate Slit Dampers Based on Genetic Algorithm

Authors: Mohamed Noureldin, Jinkoo Kim

Abstract:

In this study, a genetic algorithm was used to find out the optimum locations of the slit dampers satisfying a target displacement. A seismic retrofit scheme for a building structure was presented using steel plate slit dampers. A cyclic loading test was used to verify the energy dissipation capacity of the slit damper. The seismic retrofit of the model structure using the slit dampers was compared with the retrofit with enlarging shear walls. The capacity spectrum method was used to propose a simple damper distribution scheme proportional to the inter-story drifts. The validity of the simple story-wise damper distribution procedure was verified by comparing the results of the genetic algorithm. It was observed that the proposed simple damper distribution pattern was in a good agreement with the optimum distribution obtained from the genetic algorithm. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032809).

Keywords: slit dampers, seismic retrofit, genetic algorithm, optimum design

Procedia PDF Downloads 223
11438 Reduction Conditions of Briquetted Solid Wastes Generated by the Integrated Iron and Steel Plant

Authors: Gökhan Polat, Dicle Kocaoğlu Yılmazer, Muhlis Nezihi Sarıdede

Abstract:

Iron oxides are the main input to produce iron in integrated iron and steel plants. During production of iron from iron oxides, some wastes with high iron content occur. These main wastes can be classified as basic oxygen furnace (BOF) sludge, flue dust and rolling scale. Recycling of these wastes has a great importance for both environmental effects and reduction of production costs. In this study, recycling experiments were performed on basic oxygen furnace sludge, flue dust and rolling scale which contain 53.8%, 54.3% and 70.2% iron respectively. These wastes were mixed together with coke as reducer and these mixtures are pressed to obtain cylindrical briquettes. These briquettes were pressed under various compacting forces from 1 ton to 6 tons. Also, both stoichiometric and twice the stoichiometric cokes were added to investigate effect of coke amount on reduction properties of the waste mixtures. Then, these briquettes were reduced at 1000°C and 1100°C during 30, 60, 90, 120 and 150 min in a muffle furnace. According to the results of reduction experiments, the effect of compacting force, temperature and time on reduction ratio of the wastes were determined. It is found that 1 ton compacting force, 150 min reduction time and 1100°C are the optimum conditions to obtain reduction ratio higher than 75%.

Keywords: Coke, iron oxide wastes, recycling, reduction

Procedia PDF Downloads 340
11437 Optimum Structural Wall Distribution in Reinforced Concrete Buildings Subjected to Earthquake Excitations

Authors: Nesreddine Djafar Henni, Akram Khelaifia, Salah Guettala, Rachid Chebili

Abstract:

Reinforced concrete shear walls and vertical plate-like elements play a pivotal role in efficiently managing a building's response to seismic forces. This study investigates how the performance of reinforced concrete buildings equipped with shear walls featuring different shear wall-to-frame stiffness ratios aligns with the requirements stipulated in the Algerian seismic code RPA99v2003, particularly in high-seismicity regions. Seven distinct 3D finite element models are developed and evaluated through nonlinear static analysis. Engineering Demand Parameters (EDPs) such as lateral displacement, inter-story drift ratio, shear force, and bending moment along the building height are analyzed. The findings reveal two predominant categories of induced responses: force-based and displacement-based EDPs. Furthermore, as the shear wall-to-frame ratio increases, there is a concurrent increase in force-based EDPs and a decrease in displacement-based ones. Examining the distribution of shear walls from both force and displacement perspectives, model G with the highest stiffness ratio, concentrating stiffness at the building's center, intensifies induced forces. This configuration necessitates additional reinforcements, leading to a conservative design approach. Conversely, model C, with the lowest stiffness ratio, distributes stiffness towards the periphery, resulting in minimized induced shear forces and bending moments, representing an optimal scenario with maximal performance and minimal strength requirements.

Keywords: dual RC buildings, RC shear walls, modeling, static nonlinear pushover analysis, optimization, seismic performance

Procedia PDF Downloads 56
11436 Synthesis of Silver Powders Destined for Conductive Paste Metallization of Solar Cells Using Butyl-Carbitol and Butyl-Carbitol Acetate Chemical Reduction

Authors: N. Moudir, N. Moulai-Mostefa, Y. Boukennous, I. Bozetine, N. Kamel, D. Moudir

Abstract:

the study focuses on a novel process of silver powders synthesis for the preparation of conductive pastes used for solar cells metalization. Butyl-Carbitol and butyl-carbitol Acetate have been used as solvents and reducing agents of silver nitrate (AgNO3) as precursor to get silver powders. XRD characterization revealed silver powders with a cubic crystal system. SEM micro graphs showed spherical morphology of the particles. Laser granulometer gives similar particles distribution for the two agents. Using same glass frit and organic vehicle for comparative purposes, two conductive pastes were prepared with the synthesized silver powders for the front-side metalization of multi-crystalline cells. The pastes provided acceptable fill factor of 59.5 % and 60.8 % respectively.

Keywords: chemical reduction, conductive paste, silver nitrate, solar cell

Procedia PDF Downloads 304
11435 Simulation of 140 Kv X– Ray Tube by MCNP4C Code

Authors: Amin Sahebnasagh, Karim Adinehvand, Bakhtiar Azadbakht

Abstract:

In this study, we used Monte Carlo code (MCNP4C) that is a general method, for simulation, electron source and electric field, a disc source with 0.05 cm radius in direct of anode are used, radius of disc source show focal spot of x-ray tube that here is 0.05 cm. In this simulation, anode is from tungsten with 18.9 g/cm3 density and angle of anode is 180. we simulated x-ray tube for 140 kv. For increasing of speed data acquisition we use F5 tally. With determination the exact position of F5 tally in program, outputs are acquired. In this spectrum the start point is about 0.02 Mev, the absorption edges are about 0.06 Mev and 0.07 Mev and average energy is about 0.05 Mev.

Keywords: x-spectrum, simulation, Monte Carlo, MCNP4C code

Procedia PDF Downloads 646
11434 Biosynthesis, Characterization and Interplay of Bacteriocin-nanoparticles to Combat Infectious Drug Resistant Pathogens

Authors: Asma Ansari, Afsheen Aman, Shah Ali Ul Qader

Abstract:

In the past few years, numerous concerns have been raised against increased bacterial resistance towards effective drugs and become a debated issue all over the world. With the emergence of drug resistant pathogens, the interaction of natural antimicrobial compounds and antibacterial nanoparticles has emerged as a potential candidate for combating infectious diseases. Microbial diversity in the biome provides an opportunity to screen new species which are capable of producing large number of antimicrobial compounds. Among these antimicrobial compounds, bacteriocins are highly specific and efficient antagonists. A combination of bacteriocin along with nanoparticles could prove to be more potent due to broadened antibacterial spectrum with possibly lower doses. In the current study, silver nanoparticles were synthesized through biological reduction using various isolated bacterial, fungal and yeast strains. Spectroscopy and scanning electron microscopy (SEM) was performed for the confirmation of nanoparticles. Bacteriocin was characterized and purified to homogeneity through gel permeation chromatography. The estimated molecular weight of bacteriocin was 10 kDa. Amino acid analysis and N-terminal sequencing revealed the novelty of the protein. Then antibacterial potential of silver nanoparticles and broad inhibitory spectrum bacteriocin was determined through agar well diffusion assay. These synthesized bacteriocin-Nanoparticles exhibit a good potential for clinical applications as compared to bacteriocin alone. This combination of bacteriocin with nanoparticles will be used as a new sort of biocide in the field of nano-proteomics. The advancement of nanoparticles-mediated drug delivery system will open a new age for rapid eradication of pathogens from biological systems.

Keywords: BAC-IB17, multidrug resistance, purification, silver nanoparticles

Procedia PDF Downloads 494
11433 Seismic Performance of Slopes Subjected to Earthquake Mainshock Aftershock Sequences

Authors: Alisha Khanal, Gokhan Saygili

Abstract:

It is commonly observed that aftershocks follow the mainshock. Aftershocks continue over a period of time with a decreasing frequency and typically there is not sufficient time for repair and retrofit between a mainshock–aftershock sequence. Usually, aftershocks are smaller in magnitude; however, aftershock ground motion characteristics such as the intensity and duration can be greater than the mainshock due to the changes in the earthquake mechanism and location with respect to the site. The seismic performance of slopes is typically evaluated based on the sliding displacement predicted to occur along a critical sliding surface. Various empirical models are available that predict sliding displacement as a function of seismic loading parameters, ground motion parameters, and site parameters but these models do not include the aftershocks. The seismic risks associated with the post-mainshock slopes ('damaged slopes') subjected to aftershocks is significant. This paper extends the empirical sliding displacement models for flexible slopes subjected to earthquake mainshock-aftershock sequences (a multi hazard approach). A dataset was developed using 144 pairs of as-recorded mainshock-aftershock sequences using the Pacific Earthquake Engineering Research Center (PEER) database. The results reveal that the combination of mainshock and aftershock increases the seismic demand on slopes relative to the mainshock alone; thus, seismic risks are underestimated if aftershocks are neglected.

Keywords: seismic slope stability, mainshock, aftershock, landslide, earthquake, flexible slopes

Procedia PDF Downloads 146
11432 Secure Watermarking not at the Cost of Low Robustness

Authors: Jian Cao

Abstract:

This paper describes a novel watermarking technique which we call the random direction embedding (RDE) watermarking. Unlike traditional watermarking techniques, the watermark energy after the RDE embedding does not focus on a fixed direction, leading to the security against the traditional unauthorized watermark removal attack. In addition, the experimental results show that when compared with the existing secure watermarking, namely natural watermarking (NW), the RDE watermarking gains significant improvement in terms of robustness. In fact, the security of the RDE watermarking is not at the cost of low robustness, and it can even achieve more robust than the traditional spread spectrum watermarking, which has been shown to be very insecure.

Keywords: robustness, spread spectrum watermarking, watermarking security, random direction embedding (RDE)

Procedia PDF Downloads 383
11431 Dynamics Analyses of Swing Structure Subject to Rotational Forces

Authors: Buntheng Chhorn, WooYoung Jung

Abstract:

Large-scale swing has been used in entertainment and performance, especially in circus, for a very long time. To increase the safety of this type of structure, a thorough analysis for displacement and bearing stress was performed for an extreme condition where a full cycle swing occurs. Different masses, ranging from 40 kg to 220 kg, and velocities were applied on the swing. Then, based on the solution of differential dynamics equation, swing velocity response to harmonic force was obtained. Moreover, the resistance capacity was estimated based on ACI steel structure design guide. Subsequently, numerical analysis was performed in ABAQUS to obtain the stress on each frame of the swing. Finally, the analysis shows that the expansion of swing structure frame section was required for mass bigger than 150kg.

Keywords: swing structure, displacement, bearing stress, dynamic loads response, finite element analysis

Procedia PDF Downloads 378
11430 Condition Monitoring of a 3-Ø Induction Motor by Vibration Spectrum Analysis Using FFT Analyzer- a Case Study

Authors: Adi Narayana S Sudhakar. I

Abstract:

Energy conversion is one of the inevitable parts of any industries. It involves either conversion of mechanical energy in to electrical or vice versa. The later conversion of energy i.e. electrical to mechanical emphasizes the need of motor .Statistics reveals, about 8 % of industries’ annual turnover met on maintenance. Thus substantial numbers of efforts are required to minimize in incurring expenditure met towards break down maintenance. Condition monitoring is one of such techniques based on vibration widely used to recognize premature failures and paves a way to minimize cumbersome involved during breakdown of machinery. The present investigation involves a case study of squirrel cage induction motor (frequently in the electro machines) has been chosen for the conditional monitoring to predict its soundness on the basis of results of FFT analyser. Accelerometer which measures the acceleration converts in to impulses by FFT analyser generates vibration spectrum and time spectrum has been located at various positions on motor under different conditions. Results obtained from the FFT analyzer are compared to that of ISO standard vibration severity charts are taken to predict the preventative condition of considered machinery. Initial inspection of motor revealed that stator faults, broken end rings in rotor, eccentricity faults and misalignment between bearings are trouble shootings areas for present investigation. From the results of the shaft frequencies, it can be perceived that there is a misalignment between the bearings at both the ends. The higher order harmonics of FTF shows the presence of cracks on the race of the bearings at both the ends which are in the incipient stage. Replacement of the bearings at both the drive end (6306) and non-drive end (6206) and the alignment check between the bearings in the shaft are suggested as the constructive measures towards preventive maintenance of considered squirrel cage induction motor.

Keywords: FFT analyser, condition monitoring, vibration spectrum, time spectrum accelerometer

Procedia PDF Downloads 451
11429 Elaboration and Characterization of Tin Sulfide Thin Films Prepared by Spray Ultrasonic

Authors: A. Attaf, I. Bouhaf Kharkhachi

Abstract:

Hexagonal tin disulfide (SnS2) films were deposited by spray ultrasonic technique on glass substrates at different experimental conditions. The effect of deposition time (2, 4, 6, and 7 min) on different properties of SnS2 thin films was investigated by XRD and UV spectroscopy visible spectrum. X-ray diffraction study detected the preferential orientation growth of SnS2 compound having structure along (001) plane increased with the deposition time. The results of UV spectroscopy visible spectrum showed that films deposited at 4 min have high transmittance, up to 60%, in the visible region.

Keywords: structural and optical properties, tin sulfide, thin films, ultrasonic spray

Procedia PDF Downloads 469
11428 Amino Acid Coated Silver Nanoparticles: A Green Catalyst for Methylene Blue Reduction

Authors: Abhishek Chandra, Man Singh

Abstract:

Highly stable and homogeneously dispersed amino acid coated silver nanoparticles (ANP) of ≈ 10 nm diameter, ranging from 420 to 430 nm are prepared on AgNO3 solution addition to gum of Azadirachta indica solution at 373.15 K. The amino acids were selected based on their polarity. The synthesized nanoparticles were characterized by UV-Vis, FTIR spectroscopy, HR-TEM, XRD, SEM and 1H-NMR. The coated nanoparticles were used as catalyst for the reduction of methylene blue dye in presence of Sn(II) in aqueous, anionic and cationic micellar media. The rate of reduction of dye was determined by measuring the absorbance at 660 nm, spectrophotometrically and followed the order: Kcationic > Kanionic > Kwater. After 12 min and in absence of the ANP, only 2%, 3% and 6% of the dye reduction was completed in aqueous, anionic and cationic micellar media respectively while, in presence of ANP coated by polar neutral amino acid with non-polar -R group, the reduction completed to 84%, 95% and 98% respectively. The ANP coated with polar neutral amino acid having non-polar -R group, increased the rate of reduction of the dye by 94, 3205 and 6370 folds in aqueous, anionic and cationic micellar media respectively. Also, the rate of reduction of the dye increased by three folds when the micellar media was changed from anionic to cationic when the ANP is coated by a polar neutral amino acid having a non-polar -R group.

Keywords: silver nanoparticle, surfactant, methylene blue, amino acid

Procedia PDF Downloads 358
11427 Retrofitting of Asymmetric Steel Structure Equipped with Tuned Liquid Column Dampers by Nonlinear Finite Element Modeling

Authors: A. Akbarpour, M. R. Adib Ramezani, M. Zhian, N. Ghorbani Amirabad

Abstract:

One way to improve the performance of structures against of earthquake is passive control which requires no external power source. In this research, tuned liquid column dampers which are among of systems with the capability to transfer energy between various modes of vibration, are used. For the first time, a liquid column damper for vibration control structure is presented. After modeling this structure in design building software and performing the static and dynamic analysis and obtaining the necessary parameters for the design of tuned liquid column damper, the whole structure will be analyzed in finite elements software. The tuned liquid column dampers are installed on the structure and nonlinear time-history analysis is done in two cases of structures; with and without dampers. Finally the seismic behavior of building in the two cases will be examined. In this study the nonlinear time-history analysis on a twelve-story steel structure equipped with damper subject to records of earthquake including Loma Prieta, Northridge, Imperiall Valley, Pertrolia and Landers was performed. The results of comparing between two cases show that these dampers have reduced lateral displacement and acceleration of levels on average of 10%. Roof displacement and acceleration also reduced respectively 5% and 12%. Due to structural asymmetric in the plan, the maximum displacements of surrounding structures as well as twisting were studied. The results show that the dampers lead to a 10% reduction in the maximum response of structure stories surrounding points. At the same time, placing the dampers, caused to reduce twisting on the floor plan of the structure, Base shear of structure in the different earthquakes also has been reduced on the average of 6%.

Keywords: retrofitting, passive control, tuned liquid column damper, finite element analysis

Procedia PDF Downloads 413
11426 Effect of Deposition Time on Structural, Electrical, and Optical Properties of Tin Sulfide Thin Films Deposited by Spray Ultrasonic

Authors: I. Bouhaf Kharkhachi, A. Attaf

Abstract:

Tin sulfide thin films on glass substrate were prepared by spray ultrasonic technique, at different experimental conditions. The influence of deposition time (2, 4, 6, 8 and 10 min) on different properties of thin films, such us, (XRD) and (UV) spectroscopy visible spectrum was investigated. X-ray diffraction showing that thin films crystallized in SnS, SnS2, and Sn2S3 phases. The results of (UV) spectroscopy visible spectrum show that films deposited at 4 min are large transmittance 60% in the visible region.

Keywords: SnS, thin films, ultrasonic spray, X-ray diffraction, UV spectroscopy visible

Procedia PDF Downloads 520
11425 Bending and Shear Characteristics of Hollowcore Slab with Polystyrene Forms

Authors: Kang Kun Lee

Abstract:

New I-slab system with polystyrene forms and precast concrete deck is proposed to reduce the construction period and the self-weight of the slab. This paper presents experimental works on the bending and shear of the I-slabs. Five specimens were tested. The main parameters of experiments are diameters of the holes made by polystyrene form and the thickness of slab. Structural performance of I-slab is evaluated on the basis of failure mode, load-displacement curve, and ultimate strengths. Based on the test results, it is found that the critical punching shear sections are changed as the test variables are different, hence resulting in the varied punching shear strengths. Test results indicate that the developed I-slab is very effective to increase the strength due to self-weight reduction.

Keywords: hollowcore slab, section force-deformation response, precast concrete deck

Procedia PDF Downloads 389