Search results for: clinical trial optimization
7168 Structural Optimization Using Catenary and Other Natural Shapes
Authors: Mitchell Gohnert
Abstract:
This paper reviews some fundamental concepts of structural optimization, which is focused on the shape of the structure. Bending stresses produce high peak stresses at each face of the member, and therefore, substantially more material is required to resist bending. The shape of the structure has a profound effect on stress levels. Stress may be reduced dramatically by simply changing the shape to accommodate natural stress flow. The main objective of structural optimization is to direct the thrust line along the axis of the member. Optimal shapes include the catenary arch or dome, triangular shapes, and columns. If the natural flow of stress matches the shape of the structures, the most optimal shape is determined. Structures, however, must resist multiple load patterns. An optimal shape is still possible by ensuring that the thrust lines fall within the middle third of the member.Keywords: optimization, natural structures, shells, catenary, domes, arches
Procedia PDF Downloads 437167 Orange Fleshed Sweet Potato Response to Filter Cake and Macadamia Husk Compost in Two Agro-Ecologies of Kwazulu-Natal, South Africa
Authors: Kayode Fatokun, Nozipho N. Motsa
Abstract:
Field experiments were carried out during the summer/autumn (first trial) and winter/spring (second trial) seasons of 2019 and 2021 inDlangubo, Ngwelezane, and Mtubatubaareas of KwaZulu-Natal Province of South Africa to study the drought amelioration effects and impact of 2 locally available organic wastes [filter cake (FC) and macadamia husk compost (MHC)] on the productivity, and physiological responses of 4 orange-fleshed sweet potato cultivars (Buregard cv., Impilo, W-119 and 199062.1). The effects of FC and MHC were compared with that of inorganic fertilizer (IF) [2:3:2 (30)], FC+IF, MHC+IF, and control. The soil amendments were applied in the first trials only. Climatic data such as humidity, temperature, and rainfall were taken via remote sensing. The results of the first trial indicated that filter cake and IF significantly performed better than MHC. While the strength of filter cake may be attributable to its rich array of mineral nutrients such as calcium, magnesium, potassium, sodium, zinc, copper, manganese, iron, and phosphorus. The little performance from MHC may be attributable to its water holding capacity. Also, a positive correction occurred between the yield of the test OFSP cultivars and climatic factors such as rainfall, NDVI, and NDWI values. Whereas the inorganic fertilizer did not have any significant effect on the growth and productivity of any of the tested sweet potato cultivars in the second trial; FC, and MHC largely maintained their significant performances. In conclusion, the use of FC is highly recommended in the production of the test orange-fleshed sweet potato cultivars. Also, the study indicated that both FC and MHC may not only supply the needed plant nutrients but has the capacity to reduce the impact of drought on the growth of the test cultivars. These findings are of great value to farmers, especially the resource-poorones.Keywords: amendments, drought, filter cake, macadamia husk compost, sweet potato
Procedia PDF Downloads 987166 Optimization of Electrocoagulation Process Using Duelist Algorithm
Authors: Totok R. Biyanto, Arif T. Mardianto, M. Farid R. R., Luthfi Machmudi, kandi mulakasti
Abstract:
The main objective of this research is optimizing the electrocoagulation process design as a post-treatment for biologically vinasse effluent process. The first principle model with three independent variables that affect the energy consumption of electrocoagulation process i.e. current density, electrode distance, and time of treatment process are chosen as optimized variables. The process condition parameters were determined with the value of pH, electrical conductivity, and temperature of vinasse about 6.5, 28.5 mS/cm, 52 oC, respectively. Aluminum was chosen as the electrode material of electrocoagulation process. Duelist algorithm was used as optimization technique due to its capability to reach a global optimum. The optimization results show that the optimal process can be reached in the conditions of current density of 2.9976 A/m2, electrode distance of 1.5 cm and electrolysis time of 119 min. The optimized energy consumption during process is 34.02 Wh.Keywords: optimization, vinasse effluent, electrocoagulation, energy consumption
Procedia PDF Downloads 4697165 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model
Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao
Abstract:
Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization
Procedia PDF Downloads 1287164 A Bacterial Foraging Optimization Algorithm Applied to the Synthesis of Polyacrylamide Hydrogels
Authors: Florin Leon, Silvia Curteanu
Abstract:
The Bacterial Foraging Optimization (BFO) algorithm is inspired by the behavior of bacteria such as Escherichia coli or Myxococcus xanthus when searching for food, more precisely the chemotaxis behavior. Bacteria perceive chemical gradients in the environment, such as nutrients, and also other individual bacteria, and move toward or in the opposite direction to those signals. The application example considered as a case study consists in establishing the dependency between the reaction yield of hydrogels based on polyacrylamide and the working conditions such as time, temperature, monomer, initiator, crosslinking agent and inclusion polymer concentrations, as well as type of the polymer added. This process is modeled with a neural network which is included in an optimization procedure based on BFO. An experimental study of BFO parameters is performed. The results show that the algorithm is quite robust and can obtain good results for diverse combinations of parameter values.Keywords: bacterial foraging, hydrogels, modeling and optimization, neural networks
Procedia PDF Downloads 1537163 Evaluation of the exIWO Algorithm Based on the Traveling Salesman Problem
Authors: Daniel Kostrzewa, Henryk Josiński
Abstract:
The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version created by the researchers from the University of Tehran. The authors of the present paper have extended the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals’ selection. The goal of the project was to evaluate the exIWO by testing its usefulness for solving some test instances of the traveling salesman problem (TSP) taken from the TSPLIB collection which allows comparing the experimental results with optimal values.Keywords: expanded invasive weed optimization algorithm (exIWO), traveling salesman problem (TSP), heuristic approach, inversion operator
Procedia PDF Downloads 8367162 Comparing the ‘Urgent Community Care Team’ Clinical Referrals in the Community with Suggestions from the Clinical Decision Support Software Dem DX
Abstract:
Background: Additional demands placed on senior clinical teams with ongoing COVID-19 management has accelerated the need to harness the wider healthcare professional resources and upskill them to take on greater clinical responsibility safely. The UK NHS Long Term Plan (2019)¹ emphasises the importance of expanding Advanced Practitioners’ (APs) roles to take on more clinical diagnostic responsibilities to cope with increased demand. In acute settings, APs are often the first point of care for patients and require training to take on initial triage responsibilities efficiently and safely. Critically, their roles include determining which onward services the patients may require, and assessing whether they can be treated at home, avoiding unnecessary admissions to the hospital. Dem Dx is a Clinical Reasoning Platform (CRP) that claims to help frontline healthcare professionals independently assess and triage patients. It guides the clinician from presenting complaints through associated symptoms to a running list of differential diagnoses, media, national and institutional guidelines. The objective of this study was to compare the clinical referral rates and guidelines adherence registered by the HMR Urgent Community Care Team (UCCT)² and Dem Dx recommendations using retrospective cases. Methodology: 192 cases seen by the UCCT were anonymised and reassessed using Dem Dx clinical pathways. We compared the UCCT’s performance with Dem Dx regarding the appropriateness of onward referrals. We also compared the clinical assessment regarding adherence to NICE guidelines recorded on the clinical notes and the presence of suitable guidance in each case. The cases were audited by two medical doctors. Results: Dem Dx demonstrated appropriate referrals in 85% of cases, compared to 47% in the UCCT team (p<0.001). Of particular note, Dem Dx demonstrated an almost 65% (p<0.001) improvement in the efficacy and appropriateness of referrals in a highly experienced clinical team. The effectiveness of Dem Dx is in part attributable to the relevant NICE and local guidelines found within the platform's pathways and was found to be suitable in 86% of cases. Conclusion: This study highlights the potential of clinical decision support, as Dem Dx, to improve the quality of onward clinical referrals delivered by a multidisciplinary team in primary care. It demonstrated that it could support healthcare professionals in making appropriate referrals, especially those that may be overlooked by providing suitable clinical guidelines directly embedded into cases and clear referral pathways. Further evaluation in the clinical setting has been planned to confirm those assumptions in a prospective study.Keywords: advanced practitioner, clinical reasoning, clinical decision-making, management, multidisciplinary team, referrals, triage
Procedia PDF Downloads 1497161 Prediction and Optimization of Machining Induced Residual Stresses in End Milling of AISI 1045 Steel
Authors: Wajid Ali Khan
Abstract:
Extensive experimentation and numerical investigation are performed to predict the machining-induced residual stresses in the end milling of AISI 1045 steel, and an optimization code has been developed using the particle swarm optimization technique. Experiments were conducted using a single factor at a time and design of experiments approach. Regression analysis was done, and a mathematical model of the cutting process was developed, thus predicting the machining-induced residual stress with reasonable accuracy. The mathematical model served as the objective function to be optimized using particle swarm optimization. The relationship between the different cutting parameters and the output variables, force, and residual stresses has been studied. The combined effect of the process parameters, speed, feed, and depth of cut was examined, and it is understood that 85% of the variation of these variables can be attributed to these machining parameters under research. A 3D finite element model is developed to predict the cutting forces and the machining-induced residual stresses in end milling operation. The results were validated experimentally and against the Johnson-cook model available in the literature.Keywords: residual stresses, end milling, 1045 steel, optimization
Procedia PDF Downloads 1027160 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design
Authors: Vahid Nademi
Abstract:
In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.Keywords: blood glucose monitoring, insulin pump, predictive control, optimization
Procedia PDF Downloads 1367159 An Adaptive Hybrid Surrogate-Assisted Particle Swarm Optimization Algorithm for Expensive Structural Optimization
Authors: Xiongxiong You, Zhanwen Niu
Abstract:
Choosing an appropriate surrogate model plays an important role in surrogates-assisted evolutionary algorithms (SAEAs) since there are many types and different kernel functions in the surrogate model. In this paper, an adaptive selection of the best suitable surrogate model method is proposed to solve different kinds of expensive optimization problems. Firstly, according to the prediction residual error sum of square (PRESS) and different model selection strategies, the excellent individual surrogate models are integrated into multiple ensemble models in each generation. Then, based on the minimum root of mean square error (RMSE), the best suitable surrogate model is selected dynamically. Secondly, two methods with dynamic number of models and selection strategies are designed, which are used to show the influence of the number of individual models and selection strategy. Finally, some compared studies are made to deal with several commonly used benchmark problems, as well as a rotor system optimization problem. The results demonstrate the accuracy and robustness of the proposed method.Keywords: adaptive selection, expensive optimization, rotor system, surrogates assisted evolutionary algorithms
Procedia PDF Downloads 1417158 Physical Activity and Nutrition Intervention for Singaporean Women Aged 50 Years and Above: A Study Protocol for a Community Based Randomised Controlled Trial
Authors: Elaine Yee Sing Wong, Jonine Jancey, Andy H. Lee, Anthony P. James
Abstract:
Singapore has a rapidly aging population, where the majority of older women aged 50 years and above, are physically inactive and have unhealthy dietary habits, placing them at ‘high risk’ of non-communicable diseases. Given the multiplicity of less than optimal dietary habits and high levels of physical inactivity among Singaporean women, it is imperative to develop appropriate lifestyle interventions at recreational centres to enhance both their physical and nutritional knowledge, as well as provide them with the opportunity to develop skills to support behaviour change. To the best of our knowledge, this proposed study is the first physical activity and nutrition cluster randomised controlled trial conducted in Singapore for older women. Findings from this study may provide insights and recommendations for policy makers and key stakeholders to create new healthy living, recreational centres with supportive environments. This 6-month community-based cluster randomised controlled trial will involve the implementation and evaluation of physical activity and nutrition program for community dwelling Singaporean women, who currently attend recreational centres to promote social leisure activities in their local neighbourhood. The intervention will include dietary education and counselling sessions, physical activity classes, and telephone contact by certified fitness instructors and qualified nutritionists. Social Cognitive Theory with Motivational Interviewing will inform the development of strategies to support health behaviour change. Sixty recreational centres located in Singapore will be randomly selected from five major geographical districts and randomly allocated to the intervention (n=30) or control (n=30) cluster. A sample of 600 (intervention n=300; control n=300) women aged 50 years and above will then be recruited from these recreational centres. The control clusters will only undergo pre and post data collection and will not receive the intervention. It is hypothesised that by the end of the intervention, the intervention group participants (n = 300) compared to the control group (n = 300), will show significant improvements in the following variables: lipid profile, body mass index, physical activity and dietary behaviour, anthropometry, mental and physical health. Data collection will be examined and compared via the Statistical Package for the Social Science version 23. Descriptive and summary statistics will be used to quantify participants’ characteristics and outcome variables. Multi-variable mixed regression analyses will be used to confirm the effects of the proposed health intervention, taking into account the repeated measures and the clustering of the observations. The research protocol was approved by the Curtin University Human Research Ethics Committee (approval number: HRE2016-0366). The study has been registered with the Australian and New Zealand Clinical Trial Registry (12617001022358).Keywords: community based, healthy aging, intervention, nutrition, older women, physical activity
Procedia PDF Downloads 1777157 A Coupled Stiffened Skin-Rib Fully Gradient Based Optimization Approach for a Wing Box Made of Blended Composite Materials
Authors: F. Farzan Nasab, H. J. M. Geijselaers, I. Baran, A. De Boer
Abstract:
A method is introduced for the coupled skin-rib optimization of a wing box where mass minimization is the objective and local buckling is the constraint. The structure is made of composite materials where continuity of plies in multiple adjacent panels (blending) has to be satisfied. Blending guarantees the manufacturability of the structure; however, it is a highly challenging constraint to treat and has been under debate in recent research in the same area. To fulfill design guidelines with respect to symmetry, balance, contiguity, disorientation and percentage rule of the layup, a reference for the stacking sequences (stacking sequence table or SST) is generated first. Then, an innovative fully gradient-based optimization approach in relation to a specific SST is introduced to obtain the optimum thickness distribution all over the structure while blending is fulfilled. The proposed optimization approach aims to turn the discrete optimization problem associated with the integer number of plies into a continuous one. As a result of a wing box deflection, a rib is subjected to load values which vary nonlinearly with the amount of deflection. The bending stiffness of a skin affects the wing box deflection and thus affects the load applied to a rib. This indicates the necessity of a coupled skin-rib optimization approach for a more realistic optimized design. The proposed method is examined with the optimization of the layup of a composite stiffened skin and rib of a wing torsion box subjected to in-plane normal and shear loads. Results show that the method can successfully prescribe a valid design with a significantly cheap computation cost.Keywords: blending, buckling optimization, composite panels, wing torsion box
Procedia PDF Downloads 4097156 Multi-Objective Optimization of Combined System Reliability and Redundancy Allocation Problem
Authors: Vijaya K. Srivastava, Davide Spinello
Abstract:
This paper presents established 3n enumeration procedure for mixed integer optimization problems for solving multi-objective reliability and redundancy allocation problem subject to design constraints. The formulated problem is to find the optimum level of unit reliability and the number of units for each subsystem. A number of illustrative examples are provided and compared to indicate the application of the superiority of the proposed method.Keywords: integer programming, mixed integer programming, multi-objective optimization, Reliability Redundancy Allocation
Procedia PDF Downloads 1727155 The Intersection of Artificial Intelligence and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.Keywords: AI, mathematics, machine learning, optimization techniques, image processing
Procedia PDF Downloads 157154 Enhancing the Effectiveness of Witness Examination through Deposition System in Korean Criminal Trials: Insights from the U.S. Evidence Discovery Process
Authors: Qi Wang
Abstract:
With the expansion of trial-centered principles, the importance of witness examination in Korean criminal proceedings has been increasingly emphasized. However, several practical challenges have emerged in courtroom examinations, including concerns about witnesses’ memory deterioration due to prolonged trial periods, the possibility of inaccurate testimony due to courtroom anxiety and tension, risks of testimony retraction, and witnesses’ refusal to appear. These issues have led to a decline in the effective utilization of witness testimony. This study analyzes the deposition system, which is widely used in the U.S. evidence discovery process, and examines its potential implementation within the Korean criminal procedure framework. Furthermore, it explores the scope of application, procedural design, and measures to prevent potential abuse if the system were to be adopted. Under the adversarial litigation structure that has evolved through several amendments to the Criminal Procedure Act, the deposition system, although conducted pre-trial, serves as a preliminary procedure to facilitate efficient and effective witness examination during trial. This system not only aligns with the goal of discovering substantive truth but also upholds the practical ideals of trial-centered principles while promoting judicial economy. Furthermore, with the legal foundation established by Article 266 of the Criminal Procedure Act and related provisions, this study concludes that the implementation of the deposition system is both feasible and appropriate for the Korean criminal justice system. The specific functions of depositions include providing case-related information to refresh witnesses’ memory as a preliminary to courtroom examination, pre-reviewing existing statement documents to enhance trial efficiency, and conducting preliminary examinations on key issues and anticipated questions. The subsequent courtroom witness examination focuses on verifying testimony through public and cross-examination, identifying and analyzing contradictions in testimony, and conducting double verification of testimony credibility under judicial supervision. Regarding operational aspects, both prosecution and defense may request depositions, subject to court approval. The deposition process involves video or audio recording, complete documentation by court reporters, and the preparation of transcripts, with copies provided to all parties and the original included in court records. The admissibility of deposition transcripts is recognized under Article 311 of the Criminal Procedure Act. Given prosecutors’ advantageous position in evidence collection, which may lead to indifference or avoidance of depositions, the study emphasizes the need to reinforce prosecutors’ public interest status and objective duties. Additionally, it recommends strengthening pre-employment ethics education and post-violation disciplinary measures for prosecutors.Keywords: witness examination, deposition system, Korean criminal procedure, evidence discovery, trial-centered principle
Procedia PDF Downloads 67153 Sensor Network Routing Optimization by Simulating Eurygaster Life in Wheat Farms
Authors: Fariborz Ahmadi, Hamid Salehi, Khosrow Karimi
Abstract:
A sensor network is set of sensor nodes that cooperate together to perform a predefined tasks. The important problem in this network is power consumption. So, in this paper one algorithm based on the eurygaster life is introduced to minimize power consumption by the nodes of these networks. In this method the search space of problem is divided into several partitions and each partition is investigated separately. The evaluation results show that our approach is more efficient in comparison to other evolutionary algorithm like genetic algorithm.Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, sensor network optimization
Procedia PDF Downloads 4287152 [Keynote Talk]: From Clinical Practice to Academic Setup, 'Quality Circles' for Quality Outputs in Both
Authors: Vandita Mishra
Abstract:
From the management of patients, reception, record, and assistants in a clinical practice; to the management of ongoing research, clinical cases and department profile in an academic setup, the healthcare provider has to deal with all of it. The victory lies in smooth running of the show in both the above situations with an apt solution of problems encountered and smooth management of crisis faced. Thus this paper amalgamates dental science with health administration by means of introduction of a concept for practice management and problem-solving called 'Quality Circles'. This concept uses various tools for problem solving given by experts from different fields. QC tools can be applied in both clinical and academic settings in dentistry for better productivity and for scientifically approaching the process of continuous improvement in both the categories. When approached through QC, our organization showed better patient outcomes and more patient satisfaction. Introduced in 1962 by Kaoru Ishikawa, this tool has been extensively applied in certain fields outside dentistry and healthcare. By exemplification of some clinical cases and virtual scenarios, the tools of Quality circles will be elaborated and discussed upon.Keywords: academics, dentistry, healthcare, quality
Procedia PDF Downloads 1017151 A Hybrid Multi-Objective Firefly-Sine Cosine Algorithm for Multi-Objective Optimization Problem
Authors: Gaohuizi Guo, Ning Zhang
Abstract:
Firefly algorithm (FA) and Sine Cosine algorithm (SCA) are two very popular and advanced metaheuristic algorithms. However, these algorithms applied to multi-objective optimization problems have some shortcomings, respectively, such as premature convergence and limited exploration capability. Combining the privileges of FA and SCA while avoiding their deficiencies may improve the accuracy and efficiency of the algorithm. This paper proposes a hybridization of FA and SCA algorithms, named multi-objective firefly-sine cosine algorithm (MFA-SCA), to develop a more efficient meta-heuristic algorithm than FA and SCA.Keywords: firefly algorithm, hybrid algorithm, multi-objective optimization, sine cosine algorithm
Procedia PDF Downloads 1697150 Solving the Set Covering Problem Using the Binary Cat Swarm Optimization Metaheuristic
Authors: Broderick Crawford, Ricardo Soto, Natalia Berrios, Eduardo Olguin
Abstract:
In this paper, we present a binary cat swarm optimization for solving the Set covering problem. The set covering problem is a well-known NP-hard problem with many practical applications, including those involving scheduling, production planning and location problems. Binary cat swarm optimization is a recent swarm metaheuristic technique based on the behavior of discrete cats. Domestic cats show the ability to hunt and are curious about moving objects. The cats have two modes of behavior: seeking mode and tracing mode. We illustrate this approach with 65 instances of the problem from the OR-Library. Moreover, we solve this problem with 40 new binarization techniques and we select the technical with the best results obtained. Finally, we make a comparison between results obtained in previous studies and the new binarization technique, that is, with roulette wheel as transfer function and V3 as discretization technique.Keywords: binary cat swarm optimization, binarization methods, metaheuristic, set covering problem
Procedia PDF Downloads 3967149 The Effect of Trans-Cranial Direct Current Stimulation (tDCS) on Cognitive Flexibility and Social Decision-Making in Football Players
Authors: Erfan Izadpanah
Abstract:
The present study was conducted to investigate the effect of the Trans-Cranial Direct Current Stimulation (tDCS) on cognitive flexibility and social decision-making in skilled, semi-skilled and novice football players. The present quasi-experimental pretest-posttest study was conducted on 60 randomly-selected subjects divided into trial and placebo groups (n=30 per group). The trial group received three 20-minute sessions of anodic stimulation at the intensity of 2 mA. The placebo group also received three sessions of sham anodic stimulation. Data were collected using the Wisconsin, Grant and Berg Card-Sorting Test (1948) and the ultimatum game and were then analyzed using the ANCOVA. The results showed significant differences between the skilled, semi-skilled and novice football players in the trial and placebo groups in terms of cognitive flexibility and social decision-making (P<0.01). TDCS appears to be able to improve cognitive flexibility and consequently social decision-making in football players and is recommended to sport psychologists and coaches as a useful intervention to increase cognitive flexibility and improve social decision-making in players.Keywords: TDCS, cognitive flexibility, social decision-making, skilled, semi-skilled and novice football players
Procedia PDF Downloads 1427148 A Cross-Sectional Study on Clinical Self-Efficacy of Final Year School of Nursing Students among Universities of Tigray Region, Northern Ethiopia
Authors: Awole Seid, Yosef Zenebe, Hadgu Gerensea, Kebede Haile Misgina
Abstract:
Background: Clinical competence is one of the ultimate goals of nursing education. Clinical skills are more than successfully performing tasks; it incorporates client assessment, identification of deficits and the ability to critically think to provide solutions. Assessment of clinical competence, particularly identifying gaps that need improvement and determining the educational needs of nursing students have great importance in nursing education. Thus this study aims determining clinical self-efficacy of final year school of nursing students in three universities of Tigray Region. Methods: A cross-sectional study was conducted on 224 final year school of nursing students from department of nursing, psychiatric nursing, and midwifery on three universities of Tigray region. Anonymous self-administered questionnaire was administered to generate data collected on June, 2017. The data were analyzed using SPSS version 20. The result is described using tables and charts as required. Logistic regression was employed to test associations. Result: The mean age of students was 22.94 + 1.44. Generally, 21% of students have been graduated in the department in which they are not interested. The study demonstrated 28.6% had poor and 71.4% had good perceived clinical self-efficacy. Beside this, 43.8% of psychiatric nursing and 32.6% of comprehensive nursing students have poor clinical self-efficacy. Among the four domains, 39.3% and 37.9% have poor clinical self- efficacy with regard to ‘Professional development’ and ‘Management of care’. Place of the institution [AOR=3.480 (1.333 - 9.088), p=0.011], interest during department selection [AOR=2.202 (1.045 - 4.642), p=.038], and theory-practice gap [AOR=0.224 (0.110 - 0.457), p=0.000] were significantly associated with perceived clinical self-efficacy. Conclusion: The magnitude of students with poor clinically self efficacy was high. Place of institution, theory-practice gap, students interest to the discipline were the significant predictors of clinical self-efficacy. Students from youngest universities have good clinical self-efficacy. During department selection, student’s interest should be respected. The universities and other stakeholders should improve the capacity of surrounding affiliate teaching hospitals to set and improve care standards in order to narrow the theory-practice gap. School faculties should provide trainings to hospital staffs and monitor standards of clinical procedures.Keywords: clinical self-efficacy, nursing students, Tigray, northern Ethiopia
Procedia PDF Downloads 1727147 A Robust Optimization Model for Multi-Objective Closed-Loop Supply Chain
Authors: Mohammad Y. Badiee, Saeed Golestani, Mir Saman Pishvaee
Abstract:
In recent years consumers and governments have been pushing companies to design their activities in such a way as to reduce negative environmental impacts by producing renewable product or threat free disposal policy more and more. It is therefore important to focus more accurate to the optimization of various aspect of total supply chain. Modeling a supply chain can be a challenging process due to the fact that there are a large number of factors that need to be considered in the model. The use of multi-objective optimization can lead to overcome those problems since more information is used when designing the model. Uncertainty is inevitable in real world. Considering uncertainty on parameters in addition to use multi-objectives are ways to give more flexibility to the decision making process since the process can take into account much more constraints and requirements. In this paper we demonstrate a stochastic scenario based robust model to cope with uncertainty in a closed-loop multi-objective supply chain. By applying the proposed model in a real world case, the power of proposed model in handling data uncertainty is shown.Keywords: supply chain management, closed-loop supply chain, multi-objective optimization, goal programming, uncertainty, robust optimization
Procedia PDF Downloads 4167146 Multi-Objective Optimization of Intersections
Authors: Xiang Li, Jian-Qiao Sun
Abstract:
As the crucial component of city traffic network, intersections have significant impacts on urban traffic performance. Despite of the rapid development in transportation systems, increasing traffic volumes result in severe congestions especially at intersections in urban areas. Effective regulation of vehicle flows at intersections has always been an important issue in the traffic control system. This study presents a multi-objective optimization method at intersections with cellular automata to achieve better traffic performance. Vehicle conflicts and pedestrian interference are considered. Three categories of the traffic performance are studied including transportation efficiency, energy consumption and road safety. The left-turn signal type, signal timing and lane assignment are optimized for different traffic flows. The multi-objective optimization problem is solved with the cell mapping method. The optimization results show the conflicting nature of different traffic performance. The influence of different traffic variables on the intersection performance is investigated. It is observed that the proposed optimization method is effective in regulating the traffic at the intersection to meet multiple objectives. Transportation efficiency can be usually improved by the permissive left-turn signal, which sacrifices safety. Right-turn traffic suffers significantly when the right-turn lanes are shared with the through vehicles. The effect of vehicle flow on the intersection performance is significant. The display pattern of the optimization results can be changed remarkably by the traffic volume variation. Pedestrians have strong interference with the traffic system.Keywords: cellular automata, intersection, multi-objective optimization, traffic system
Procedia PDF Downloads 5807145 Active Victim Participation in the Criminal Justice System: The Indian Scenario
Authors: Narayani Sepaha
Abstract:
In earlier days, the sufferer was burdened to prove the offence as well as to put the offender to punishment. The adversary system of legal procedure was characterized simply by two parties: the prosecution and the defence. With the onset of this system, firstly the judge started acting as a neutral arbitrator, and secondly, the state inadvertently started assuming the lead role and thereby relegated the victims to the position of oblivion. In this process, with the increasing role of police forces and the government, the victims got systematically excluded from the key stages of the case proceedings and were reduced to the stature of a prosecution witness. This paper tries to emphasise the increasing control over the various stages of the trial, by other stakeholders, leading to the marginalization of victims in the trial process. This monopolization has signalled the onset of an era of gross neglect of victims in the whole criminal justice system. This consciousness led some reformists to raise their concerns over the issue, during the early part of the 20th century. They started supporting the efforts which advocated giving prominence to the participation of victims in the trial process. This paved the way for the evolution of the science of victimology. Markedly the innovativeness to work out facts, seek opinions and statements of the victims and reassure that their voice is also heard has ensured the revival of their rightful roles in the justice delivery system. Many countries, like the US, have set an example by acknowledging the advantages of participation of victims in trials like in the proceedings of the Ariel Castro Kidnappings of Cleveland, Ohio and enacting laws for protecting their rights within the framework of the legal system to ensure speedy and righteous delivery of justice in some of the most complicated cases. An attempt has been made to flag that the accused have several rights in contrast to the near absence of separate laws for victims of crime, in India. It is sad to note that, even in the initial process of registering a crime the victims are subjected to the mercy of the officers in charge and thus begins the silent suffering of these victims, which continues throughout the process of their trial. The paper further contends, that the degree of victim participation in trials and its impact on the outcomes, can be debated and evaluated, but its potential to alter their position and make them regain their lost status cannot be ignored. Victim participation in trial proceedings will help the court in perceiving the facts of the case in a better manner and in arriving at a balanced view of the case. This will not only serve to protect the overall interest of the victims but will act to reinforce the faith in the criminal justice delivery system. It is pertinent to mention that there is an urgent need to review the accused centric prosecution system and introduce appropriate amendments so that the marginalization of victims comes to an end.Keywords: victim participation, criminal justice, India, trial, marginalised
Procedia PDF Downloads 1597144 Particle Swarm Optimization Based Method for Minimum Initial Marking in Labeled Petri Nets
Authors: Hichem Kmimech, Achref Jabeur Telmoudi, Lotfi Nabli
Abstract:
The estimation of the initial marking minimum (MIM) is a crucial problem in labeled Petri nets. In the case of multiple choices, the search for the initial marking leads to a problem of optimization of the minimum allocation of resources with two constraints. The first concerns the firing sequence that could be legal on the initial marking with respect to the firing vector. The second deals with the total number of tokens that can be minimal. In this article, the MIM problem is solved by the meta-heuristic particle swarm optimization (PSO). The proposed approach presents the advantages of PSO to satisfy the two previous constraints and find all possible combinations of minimum initial marking with the best computing time. This method, more efficient than conventional ones, has an excellent impact on the resolution of the MIM problem. We prove through a set of definitions, lemmas, and examples, the effectiveness of our approach.Keywords: marking, production system, labeled Petri nets, particle swarm optimization
Procedia PDF Downloads 1797143 Analysis of Decentralized on Demand Cross Layer in Cognitive Radio Ad Hoc Network
Authors: A. Sri Janani, K. Immanuel Arokia James
Abstract:
Cognitive radio ad hoc networks different unlicensed users may acquire different available channel sets. This non-uniform spectrum availability imposes special design challenges for broadcasting in CR ad hoc networks. Cognitive radio automatically detects available channels in wireless spectrum. This is a form of dynamic spectrum management. Cross-layer optimization is proposed, using this can allow far away secondary users can also involve into channel work. So it can increase the throughput and it will overcome the collision and time delay.Keywords: cognitive radio, cross layer optimization, CR mesh network, heterogeneous spectrum, mesh topology, random routing optimization technique
Procedia PDF Downloads 3597142 Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems
Authors: Abdulbaset Saad, Adel Younis, Zuomin Dong
Abstract:
For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge.Keywords: differential evolution, engineering design, expensive computations, meta-modeling, radial basis function, optimization
Procedia PDF Downloads 3967141 The Interdisciplinary Synergy Between Computer Engineering and Mathematics
Authors: Mitat Uysal, Aynur Uysal
Abstract:
Computer engineering and mathematics share a deep and symbiotic relationship, with mathematics providing the foundational theories and models for computer engineering advancements. From algorithm development to optimization techniques, mathematics plays a pivotal role in solving complex computational problems. This paper explores key mathematical principles that underpin computer engineering, illustrating their significance through a case study that demonstrates the application of optimization techniques using Python code. The case study addresses the well-known vehicle routing problem (VRP), an extension of the traveling salesman problem (TSP), and solves it using a genetic algorithm.Keywords: VRP, TSP, genetic algorithm, computer engineering, optimization
Procedia PDF Downloads 147140 Resistance of Mycobacterium tuberculosis to Daptomycin
Authors: Ji-Chan Jang
Abstract:
Tuberculosis is still major health problem because there is an increase of multidrug-resistant and extensively drug-resistant forms of the disease. Therefore, the most urgent clinical need is to discover potent agents and develop novel drug combination capable of reducing the duration of MDR and XDR tuberculosis therapy. Three reference strains H37Rv, CDC1551, W-Beijing GC1237 and six clinical isolates of MDRTB were tested to daptomycin in the range of 0.013 to 256 mg/L. Daptomycin is resistant to all tested M. tuberculosis strains not only laboratory strains but also clinical MDR strains that were isolated at different source. Daptomycin will not be an antibiotic of choice for treating infection of Gram positive atypical slowly growing M. tuberculosis.Keywords: tuberculosis, daptomycin, resistance, Mycobacterium tuberculosis
Procedia PDF Downloads 3857139 Acupuncture in the Treatment of Parkinson's Disease-Related Fatigue: A Pilot Randomized, Controlled Study
Authors: Keng H. Kong, Louis C. Tan, Wing L. Aw, Kay Y. Tay
Abstract:
Background: Fatigue is a common problem in patients with Parkinson's disease, with reported prevalence of up to 70%. Fatigue can be disabling and has adverse effects on patients' quality of life. There is currently no satisfactory treatment of fatigue. Acupuncture is effective in the treatment of fatigue, especially that related to cancer. Its role in Parkinson's disease-related fatigue is uncertain. Aims: To evaluate the clinical efficacy of acupuncture treatment in Parkinson's disease-related fatigue. Hypothesis: We hypothesize that acupuncture is effective in alleviating Parkinson's disease-related fatigue. Design: A single center, randomized, controlled study with two parallel arms. Participants: Forty participants with idiopathic Parkinson's disease will be enrolled. Interventions: Participants will be randomized to receive verum (real) acupuncture or placebo acupuncture. The retractable non-invasive sham needle will be used in the placebo group. The intervention will be administered twice a week for five weeks. Main outcome measures: The primary outcome will be the change in general fatigue score of the multidimensional fatigue inventory at week 5. Secondary outcome measures include other subscales of the multidimensional fatigue inventory, movement disorders society-unified Parkinson's disease rating scale, Parkinson's disease questionnaire-39 and geriatric depression scale. All outcome measures will be assessed at baseline (week 0), completion of intervention (week 5) and 4 weeks after completion of intervention (week 9). Results: To date, 23 participants have been recruited and nine have completed the study. The mean age is 63.5±14.2 years, mean duration of Parkinson’s disease is 6.4±1.8 years and mean MDS-UPDRS score is 8.3±2.8. The mean general fatigue score of the multidimensional fatigue inventory is 13.5±4.6. No significant adverse event related to acupuncture is noted. Potential significance: If the results are as expected, this study will provide preliminary scientific evidence for the efficacy of acupuncture in Parkinson's Disease-related fatigue, and opens the door for a larger multicentre trial to be performed. In the longer term, it may lead to the integration of acupuncture in the care of patients with Parkinson's disease.Keywords: acupuncture, fatigue, Parkinson's disease, trial
Procedia PDF Downloads 306