Search results for: artificial life
8997 An Artificial Intelligence Supported QUAL2K Model for the Simulation of Various Physiochemical Parameters of Water
Authors: Mehvish Bilal, Navneet Singh, Jasir Mushtaq
Abstract:
Water pollution puts people's health at risk, and it can also impact the ecology. For practitioners of integrated water resources management (IWRM), water quality modelling may be useful for informing decisions about pollution control (such as discharge permitting) or demand management (such as abstraction permitting). To comprehend the current pollutant load, movement of effective load movement of contaminants generates effective relation between pollutants, mathematical simulation, source, and water quality is regarded as one of the best estimating tools. The current study involves the Qual2k model, which includes manual simulation of the various physiochemical characteristics of water. To this end, various sensors could be installed for the automatic simulation of various physiochemical characteristics of water. An artificial intelligence model has been proposed for the automatic simulation of water quality parameters. Models of water quality have become an effective tool for identifying worldwide water contamination, as well as the ultimate fate and behavior of contaminants in the water environment. Water quality model research is primarily conducted in Europe and other industrialized countries in the first world, where theoretical underpinnings and practical research are prioritized.Keywords: artificial intelligence, QUAL2K, simulation, physiochemical parameters
Procedia PDF Downloads 1098996 Effect of Load Ratio on Probability Distribution of Fatigue Crack Propagation Life in Magnesium Alloys
Authors: Seon Soon Choi
Abstract:
It is necessary to predict a fatigue crack propagation life for estimation of structural integrity. Because of an uncertainty and a randomness of a structural behavior, it is also required to analyze stochastic characteristics of the fatigue crack propagation life at a specified fatigue crack size. The essential purpose of this study is to present the good probability distribution fit for the fatigue crack propagation life at a specified fatigue crack size in magnesium alloys under various fatigue load ratio conditions. To investigate a stochastic crack growth behavior, fatigue crack propagation experiments are performed in laboratory air under several conditions of fatigue load ratio using AZ31. By Anderson-Darling test, a goodness-of-fit test for probability distribution of the fatigue crack propagation life is performed and the good probability distribution fit for the fatigue crack propagation life is presented. The effect of load ratio on variability of fatigue crack propagation life is also investigated.Keywords: fatigue crack propagation life, load ratio, magnesium alloys, probability distribution
Procedia PDF Downloads 6508995 An Alternative Semi-Defined Larval Diet for Rearing of Sand Fly Species Phlebotomus argentipes in Laboratory
Authors: Faizan Hassan, Seema Kumari, V. P. Singh, Pradeep Das, Diwakar Singh Dinesh
Abstract:
Phlebotomus argentipes is an established vector for Visceral Leishmaniasis in Indian subcontinent. Laboratory colonization of Sand flies is imperative in research on vectors, which requires a proper diet for their larvae and adult growth that ultimately affects their survival and fecundity. In most of the laboratories, adult Sand flies are reared on rabbit blood feeding/artificial blood feeding and their larvae on fine grinded rabbit faeces as a sole source of food. Rabbit faeces are unhygienic, difficult to handle, high mites infestation as well as owing to bad odour which creates menacing to human users ranging from respiratory problems to eye infection and most importantly it does not full fill all the nutrients required for proper growth and development. It is generally observed that the adult emergence is very low in comparison to egg hatched, which may be due to insufficient food nutrients provided to growing larvae. To check the role of food nutrients on larvae survival and adult emergence, a high protein rich artificial diet for sand fly larvae were used in this study. The composition of artificial diet to be tested includes fine grinded (9 gm each) Rice, Pea nuts & Soyabean balls. These three food ingredients are rich source of all essential amino acids along with carbohydrate and minerals which is essential for proper metabolism and growth. In this study artificial food was found significantly more effective for larval development and adult emergence than rabbit faeces alone (P value >0.05). The weight of individual larvae was also found higher in test pots than the control. This study suggest that protein plays an important role in insect larvae development and adding carbohydrate will also enhances the fecundity of insects larvae.Keywords: artificial food, nutrients, Phlebotomus argentipes, sand fly
Procedia PDF Downloads 3068994 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network
Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You
Abstract:
With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.Keywords: artificial neural network (ANN), chromatic dispersion (CD), delay-tap sampling (DTS), optical signal-to-noise ratio (OSNR)
Procedia PDF Downloads 1148993 Impact of Design Choices on the Life Cycle Energy of Modern Buildings
Authors: Mahsa Karimpour, Martin Belusko, Ke Xing, Frank Bruno
Abstract:
Traditionally the embodied energy of design choices which reduce operational energy were assumed to have a negligible impact on the life cycle energy of buildings. However with new buildings having considerably lower operational energy, the significance of embodied energy increases. A life cycle assessment of a population of house designs was conducted in a mild and mixed climate zone. It was determined not only that embodied energy dominates life cycle energy, but that the impact on embodied of design choices was of equal significance to the impact on operational energy.Keywords: building life cycle energy, embodied energy, energy design measures, low energy buildings
Procedia PDF Downloads 7718992 Death Anxiety and Life Expectancy among Older Adults in Iran
Authors: Vahid Rashedi, Banafsheh Ebrahimi, Mahtab Sharif Mohseni, Mohammadali Hosseini
Abstract:
Introduction: One of the metrics used to evaluate health status is life expectancy. This index alters as people age as a result of several events, illnesses, stress, and anxiety. One of the issues that might develop into a lethal phobia is death anxiety. This study looked at older persons in Tehran, Iran, to see if there was any correlation between life expectancy and fear of dying. Methods: Cluster random sampling was used to select 208 older persons (age 60) who had been sent to adult daycare facilities in Tehran for this correlational descriptive study. A demographic questionnaire, Temper's death anxiety scale, and Snyder's life expectancy scale were used to gather the data. Statistical Package for the Social Sciences softwear version 22 was used to conduct the data analysis. Results: The average age of the senior citizens was 66.60 (6.58) years. With a mean life expectancy of 24.94, it was discovered that the average death anxiety was 12.21. Additionally, Pearson's correlation coefficient demonstrated a bad correlation between fear of dying and life expectancy. Age, residential status, and death fear were the three primary predictors of a decline in life expectancy, according to multiple regression analysis. Conclusion: The findings suggest that there is a link between death fear and a lower life expectancy, which calls for the use of appropriate strategies to increase older individuals' life expectancies as well as the teaching of anxiety coping mechanisms.Keywords: aged, frailty, death, anxiety, life
Procedia PDF Downloads 858991 Artificial Intelligence as a Policy Response to Teaching and Learning Issues in Education in Ghana
Authors: Joshua Osondu
Abstract:
This research explores how Artificial Intelligence (AI) can be utilized as a policy response to address teaching and learning (TL) issues in education in Ghana. The dual (AI and human) instructor model is used as a theoretical framework to examine how AI can be employed to improve teaching and learning processes and to equip learners with the necessary skills in the emerging AI society. A qualitative research design was employed to assess the impact of AI on various TL issues, such as teacher workloads, a lack of qualified educators, low academic performance, unequal access to education and educational resources, a lack of participation in learning, and poor access and participation based on gender, place of origin, and disability. The study concludes that AI can be an effective policy response to TL issues in Ghana, as it has the potential to increase students’ participation in learning, increase access to quality education, reduce teacher workloads, and provide more personalized instruction. The findings of this study are significant for filling in the gaps in AI research in Ghana and other developing countries and for motivating the government and educational institutions to implement AI in TL, as this would ensure quality, access, and participation in education and help Ghana industrialize.Keywords: artificial intelligence, teacher, learner, students, policy response
Procedia PDF Downloads 928990 Determinant Elements for Useful Life in Airports
Authors: Marcelo Müller Beuren, José Luis Duarte Ribeiro
Abstract:
Studies point that Brazilian large airports are not managing their assets efficiently. Therefore, organizations seek improvements to raise their asset’s productivity. Hence, identification of assets useful life in airports becomes an important subject, since its accuracy leads to better maintenance plans and technological substitution, contribution to airport services management. However, current useful life prediction models do not converge in terms of determinant elements used, as they are particular to the studied situation. For that reason, the main objective of this paper is to identify the determinant elements for a useful life of major assets in airports. With that purpose, a case study was held in the key airport of the south of Brazil trough historical data analysis and specialist interview. This paper concluded that most of the assets useful life are determined by technical elements, maintenance cost, and operational costs, while few presented influence of technological obsolescence. As a highlight, it was possible to identify the determinant elements to be considered by a model which objective is to identify the useful life of airport’s major assets.Keywords: airports, asset management, asset useful life
Procedia PDF Downloads 5238989 Application of Signature Verification Models for Document Recognition
Authors: Boris M. Fedorov, Liudmila P. Goncharenko, Sergey A. Sybachin, Natalia A. Mamedova, Ekaterina V. Makarenkova, Saule Rakhimova
Abstract:
In modern economic conditions, the question of the possibility of correct recognition of a signature on digital documents in order to verify the expression of will or confirm a certain operation is relevant. The additional complexity of processing lies in the dynamic variability of the signature for each individual, as well as in the way information is processed because the signature refers to biometric data. The article discusses the issues of using artificial intelligence models in order to improve the quality of signature confirmation in document recognition. The analysis of several possible options for using the model is carried out. The results of the study are given, in which it is possible to correctly determine the authenticity of the signature on small samples.Keywords: signature recognition, biometric data, artificial intelligence, neural networks
Procedia PDF Downloads 1498988 Modelling Soil Inherent Wind Erodibility Using Artifical Intellligent and Hybrid Techniques
Authors: Abbas Ahmadi, Bijan Raie, Mohammad Reza Neyshabouri, Mohammad Ali Ghorbani, Farrokh Asadzadeh
Abstract:
In recent years, vast areas of Urmia Lake in Dasht-e-Tabriz has dried up leading to saline sediments exposure on the surface lake coastal areas being highly susceptible to wind erosion. This study was conducted to investigate wind erosion and its relevance to soil physicochemical properties and also modeling of wind erodibility (WE) using artificial intelligence techniques. For this purpose, 96 soil samples were collected from 0-5 cm depth in 414000 hectares using stratified random sampling method. To measure the WE, all samples (<8 mm) were exposed to 5 different wind velocities (9.5, 11, 12.5, 14.1 and 15 m s-1 at the height of 20 cm) in wind tunnel and its relationship with soil physicochemical properties was evaluated. According to the results, WE varied within the range of 76.69-9.98 (g m-2 min-1)/(m s-1) with a mean of 10.21 and coefficient of variation of 94.5% showing a relatively high variation in the studied area. WE was significantly (P<0.01) affected by soil physical properties, including mean weight diameter, erodible fraction (secondary particles smaller than 0.85 mm) and percentage of the secondary particle size classes 2-4.75, 1.7-2 and 0.1-0.25 mm. Results showed that the mean weight diameter, erodible fraction and percentage of size class 0.1-0.25 mm demonstrated stronger relationship with WE (coefficients of determination were 0.69, 0.67 and 0.68, respectively). This study also compared efficiency of multiple linear regression (MLR), gene expression programming (GEP), artificial neural network (MLP), artificial neural network based on genetic algorithm (MLP-GA) and artificial neural network based on whale optimization algorithm (MLP-WOA) in predicting of soil wind erodibility in Dasht-e-Tabriz. Among 32 measured soil variable, percentages of fine sand, size classes of 1.7-2.0 and 0.1-0.25 mm (secondary particles) and organic carbon were selected as the model inputs by step-wise regression. Findings showed MLP-WOA as the most powerful artificial intelligence techniques (R2=0.87, NSE=0.87, ME=0.11 and RMSE=2.9) to predict soil wind erodibility in the study area; followed by MLP-GA, MLP, GEP and MLR and the difference between these methods were significant according to the MGN test. Based on the above finding MLP-WOA may be used as a promising method to predict soil wind erodibility in the study area.Keywords: wind erosion, erodible fraction, gene expression programming, artificial neural network
Procedia PDF Downloads 738987 Artificial Neural Network Reconstruction of Proton Exchange Membrane Fuel Cell Output Profile under Transient Operation
Abstract:
Unbalanced power output from individual cells of Proton Exchange Membrane Fuel Cell (PEMFC) has direct effects on PEMFC stack performance, in particular under transient operation. In the paper, a multi-layer ANN (Artificial Neural Network) model Radial Basis Functions (RBF) has been developed for predicting cells' output profiles by applying gas supply parameters, cooling conditions, temperature measurement of individual cells, etc. The feed-forward ANN model was validated with experimental data. Influence of relevant parameters of RBF on the network accuracy was investigated. After adequate model training, the modelling results show good correspondence between actual measurements and reconstructed output profiles. Finally, after the model was used to optimize the stack output performance under steady-state and transient operating conditions, it suggested that the developed ANN control model can help PEMFC stack to have obvious improvement on power output under fast acceleration process.Keywords: proton exchange membrane fuel cell, PEMFC, artificial neural network, ANN, cell output profile, transient
Procedia PDF Downloads 1708986 Life Cycle Assessment of Residential Buildings: A Case Study in Canada
Authors: Venkatesh Kumar, Kasun Hewage, Rehan Sadiq
Abstract:
Residential buildings consume significant amounts of energy and produce a large amount of emissions and waste. However, there is a substantial potential for energy savings in this sector which needs to be evaluated over the life cycle of residential buildings. Life Cycle Assessment (LCA) methodology has been employed to study the primary energy uses and associated environmental impacts of different phases (i.e., product, construction, use, end of life, and beyond building life) for residential buildings. Four different alternatives of residential buildings in Vancouver (BC, Canada) with a 50-year lifespan have been evaluated, including High Rise Apartment (HRA), Low Rise Apartment (LRA), Single family Attached House (SAH), and Single family Detached House (SDH). Life cycle performance of the buildings is evaluated for embodied energy, embodied environmental impacts, operational energy, operational environmental impacts, total life-cycle energy, and total life cycle environmental impacts. Estimation of operational energy and LCA are performed using DesignBuilder software and Athena Impact estimator software respectively. The study results revealed that over the life span of the buildings, the relationship between the energy use and the environmental impacts are identical. LRA is found to be the best alternative in terms of embodied energy use and embodied environmental impacts; while, HRA showed the best life-cycle performance in terms of minimum energy use and environmental impacts. Sensitivity analysis has also been carried out to study the influence of building service lifespan over 50, 75, and 100 years on the relative significance of embodied energy and total life cycle energy. The life-cycle energy requirements for SDH is found to be a significant component among the four types of residential buildings. The overall disclose that the primary operations of these buildings accounts for 90% of the total life cycle energy which far outweighs minor differences in embodied effects between the buildings.Keywords: building simulation, environmental impacts, life cycle assessment, life cycle energy analysis, residential buildings
Procedia PDF Downloads 4758985 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality
Authors: Sirilak Areerachakul
Abstract:
Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.Keywords: artificial neural network, geographic information system, water quality, computer science
Procedia PDF Downloads 3448984 Meaning in Life, Hope, and Mental Health: Relation between Meaning in Life, Hope, Depression, Anxiety, and Stress among Afghan Refugees in Iran
Authors: Mustafa Jahanara
Abstract:
The present research was carried out in order to investigate the relationship between meaning in life and hope with depression, anxiety and stress in Afghan Refugees in Alborz province in Iran. In this research, method of study is a descriptive correlation type. One hundred and fifty-eight Afghan refugees (64 male, 94 female) participated in this study. All participants completed the Meaning in Life Questionnaires (MLQ), Hope Scale (HS), and The Depression Anxiety Stress Scales (DASS-21). The results revealed that Meaning in Life was positively associated with hope, presence of meaning, search of meaning, and negatively associated with depression and anxiety. Hope was positively associated with presence of meaning and search of meaning, and hope was negatively associated with depression, anxiety, and stress. Depression, anxiety, and stress were positively correlated with each other. Meaning in life and hope could influence on mental health.Keywords: Afghan refugees, meaning of life, hope, depression, anxiety and stress
Procedia PDF Downloads 4178983 Opinion Mining to Extract Community Emotions on Covid-19 Immunization Possible Side Effects
Authors: Yahya Almurtadha, Mukhtar Ghaleb, Ahmed M. Shamsan Saleh
Abstract:
The world witnessed a fierce attack from the Covid-19 virus, which affected public life socially, economically, healthily and psychologically. The world's governments tried to confront the pandemic by imposing a number of precautionary measures such as general closure, curfews and social distancing. Scientists have also made strenuous efforts to develop an effective vaccine to train the immune system to develop antibodies to combat the virus, thus reducing its symptoms and limiting its spread. Artificial intelligence, along with researchers and medical authorities, has accelerated the vaccine development process through big data processing and simulation. On the other hand, one of the most important negatives of the impact of Covid 19 was the state of anxiety and fear due to the blowout of rumors through social media, which prompted governments to try to reassure the public with the available means. This study aims to proposed using Sentiment Analysis (AKA Opinion Mining) and deep learning as efficient artificial intelligence techniques to work on retrieving the tweets of the public from Twitter and then analyze it automatically to extract their opinions, expression and feelings, negatively or positively, about the symptoms they may feel after vaccination. Sentiment analysis is characterized by its ability to access what the public post in social media within a record time and at a lower cost than traditional means such as questionnaires and interviews, not to mention the accuracy of the information as it comes from what the public expresses voluntarily.Keywords: deep learning, opinion mining, natural language processing, sentiment analysis
Procedia PDF Downloads 1728982 Covid-19, Diagnosis with Computed Tomography and Artificial Intelligence, in a Few Simple Words
Authors: Angelis P. Barlampas
Abstract:
Target: The (SARS-CoV-2) is still a threat. AI software could be useful, categorizing the disease into different severities and indicate the extent of the lesions. Materials and methods: AI is a new revolutionary technique, which uses powered computerized systems, to do what a human being does more rapidly, more easily, as accurate and diagnostically safe as the original medical report and, in certain circumstances, even better, saving time and helping the health system to overcome problems, such as work overload and human fatigue. Results: It will be given an effort to describe to the inexperienced reader (see figures), as simple as possible, how an artificial intelligence system diagnoses computed tomography pictures. First, the computerized machine learns the physiologic motives of lung parenchyma by being feeded with normal structured images of the lung tissue. Having being used to recognizing normal structures, it can then easily indentify the pathologic ones, as their images do not fit to known normal picture motives. It is the same way as when someone spends his free time in reading magazines with quizzes, such as <Keywords: covid-19, artificial intelligence, automated imaging, CT, chest imaging
Procedia PDF Downloads 538981 An Explanatory Study Approach Using Artificial Intelligence to Forecast Solar Energy Outcome
Authors: Agada N. Ihuoma, Nagata Yasunori
Abstract:
Artificial intelligence (AI) techniques play a crucial role in predicting the expected energy outcome and its performance, analysis, modeling, and control of renewable energy. Renewable energy is becoming more popular for economic and environmental reasons. In the face of global energy consumption and increased depletion of most fossil fuels, the world is faced with the challenges of meeting the ever-increasing energy demands. Therefore, incorporating artificial intelligence to predict solar radiation outcomes from the intermittent sunlight is crucial to enable a balance between supply and demand of energy on loads, predict the performance and outcome of solar energy, enhance production planning and energy management, and ensure proper sizing of parameters when generating clean energy. However, one of the major problems of forecasting is the algorithms used to control, model, and predict performances of the energy systems, which are complicated and involves large computer power, differential equations, and time series. Also, having unreliable data (poor quality) for solar radiation over a geographical location as well as insufficient long series can be a bottleneck to actualization. To overcome these problems, this study employs the anaconda Navigator (Jupyter Notebook) for machine learning which can combine larger amounts of data with fast, iterative processing and intelligent algorithms allowing the software to learn automatically from patterns or features to predict the performance and outcome of Solar Energy which in turns enables the balance of supply and demand on loads as well as enhance production planning and energy management.Keywords: artificial Intelligence, backward elimination, linear regression, solar energy
Procedia PDF Downloads 1588980 Relation between Initial Stability of the Dental Implant and Bone-Implant Contact Level
Authors: Jui-Ting Hsu, Heng-Li Huang, Ming-Tzu Tsai, Kuo-Chih Su, Lih-Jyh Fuh
Abstract:
The objectives of this study were to measure the initial stability of the dental implant (ISQ and PTV) in the artificial foam bone block with three different quality levels. In addition, the 3D bone to implant contact percentage (BIC%) was measured based on the micro-computed tomography images. Furthermore, the relation between the initial stability of dental implant (ISQ and PTV) and BIC% were calculated. The experimental results indicated that enhanced the material property of the artificial foam bone increased the initial stability of the dental implant. The Pearson’s correlation coefficient between the BIC% and the two approaches (ISQ and PTV) were 0.652 and 0.745.Keywords: dental implant, implant stability quotient, peak insertion torque, bone-implant contact, micro-computed tomography
Procedia PDF Downloads 5808979 Quality of Life of Patients on Oral Anticoagulant Therapy in Outpatient Cardiac Department Dr. Hasan Sadikin Central General Hospital Bandung
Authors: Mochammad Indra Permana, Andhiani Sharfina Arnellya, Dika Pramita Destiani, Budhi Prihartanto
Abstract:
Cardiovascular disease is the cause of the highest mortality rates in the world. The number of cardiovascular disease patients is increasing every year. Data obtained from World Health Organization (WHO) that 17,5 million people died from this disease. The condition of cardiovascular diseases such as atrial fibrillation, myocardial infarction, venous thromboembolism, and several other conditions need anticoagulant therapy. Results of the anticoagulant therapy are measured not only by the effectiveness of International Normalized Ratio (INR) value but also by the quality of life of the patients. The purpose of this study was to determine the quality of life of patients on oral anticoagulant therapy in outpatient cardiac department Dr. Hasan Sadikin central general hospital, Bandung, Indonesia. This is a cross-sectional study with collecting data from the quality of life questionnaire and medical record of the patients. The results of this study showed that 28 patients (46,7%) had a good quality of life, 30 patients (50%) had a moderate quality of life, and 2 patients (3,3%) had a poor quality of life with no significant differences in quality of life based on age, gender, diagnosis, and duration of drug use.Keywords: anticoagulant, cardiovascular diseases, INR, quality of life
Procedia PDF Downloads 3158978 A Reflection of the Contemporary Life of Urban People Through Mixed Media Art
Authors: Van Huong Mai, Kanokwan Nithiratphat, Adool Booncham
Abstract:
The Movement of Contemporary Life consisted of two purposes, which were to study the movement and development of the modern life and to create the visual arts, which were paintings expressed via the form of apartment buildings was used from mixed media (digital printing and acrylic painting on canvas) which conveyed the rapid pace of modern life leading to diverse movements in viewer’s feeling. The operation of this creation was collected field data, documentary data, and influence from creative work. The data analysis was analyzed in order to theme, form, technique, and process to satisfy of concept and special character of the pieces.Keywords: movement, contemporary life, visual art, acrylic painting, digital art, urban space
Procedia PDF Downloads 998977 A Study on the Method of Accelerated Life Test to Electric Rotating System
Authors: Youn-Hwan Kim, Jae-Won Moon, Hae-Joong Kim
Abstract:
This paper introduces the study on the method of accelerated life test to electrical rotating system. In recent years, as well as efficiency for motors and generators, there is a growing need for research on the life expectancy. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. In this paper, the accelerated life test methods of the electrical rotating system are classified according to the application. This paper describes the development of the test procedure for the highly accelerated life test (HALT) of the 100kW permanent magnet synchronous motor (PMSM) of electric vehicle. Finally, it explains how to select acceleration load for vibration, temperature, bearing load, etc. for accelerated life test.Keywords: acceleration coefficient, electric vehicle motor, HALT, life expectancy, vibration
Procedia PDF Downloads 3288976 The Significance of Community Life in Promoting Unity in the Light of Acts 2:42
Authors: Takesure Mahohoma
Abstract:
Community life is an epitome of the African axiom 'I am because we are, since we are therefore I am.' This culminates in the Ubuntu philosophy which is summarized in the Zulu words, 'umuntu ngumuntu ngabantu' (A person is a person through other people). This relationship gives honour to all people. This is the gist of the paper. This paper seeks to demonstrate the impact of community life in promoting unity from an African perspective. Using the proto-community in Acts 2:42, it is argued that community life is a solution to many social problems that divide African society today. The aim is to encourage all Africans and other people to cultivate a sense of belonging and valuing community life in the light of Acts 2:42. Hence we shall trace this theme from Old Testament, New Testament, and Christian history. The other section touches on the essence of community life and obstacles that hinder it. We shall offer spiritual suggestions and an integrative reflection. The nature of the paper is theology in general but spiritual in particular. As a spiritual paper, it is guided by the foundational approach. Thus, it employs the dialogical and integrative reflection method. The expected result is that freedom from all the miseries experienced is brought by living a community life. This is a life that gives greater assurance of enough food, education, health, peace, employment, and increased responsibility that values human dignity. Thus people are neighbours to each other. There is no stranger among them. The basic presumption is that there can be no development in any society without community life.Keywords: community, seged, koinonia, neighbor
Procedia PDF Downloads 2898975 SOM Map vs Hopfield Neural Network: A Comparative Study in Microscopic Evacuation Application
Authors: Zouhour Neji Ben Salem
Abstract:
Microscopic evacuation focuses on the evacuee behavior and way of search of safety place in an egress situation. In recent years, several models handled microscopic evacuation problem. Among them, we have proposed Artificial Neural Network (ANN) as an alternative to mathematical models that can deal with such problem. In this paper, we present two ANN models: SOM map and Hopfield Network used to predict the evacuee behavior in a disaster situation. These models are tested in a real case, the second floor of Tunisian children hospital evacuation in case of fire. The two models are studied and compared in order to evaluate their performance.Keywords: artificial neural networks, self-organization map, hopfield network, microscopic evacuation, fire building evacuation
Procedia PDF Downloads 4068974 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation
Authors: Giuseppina Settanni, Antonio Panarese, Raffaele Vaira, Maurizio Galiano
Abstract:
Nowdays, artificial intelligence is used successfully in academia and industry for its ability to learn from a large amount of data. In particular, in recent years the use of machine learning algorithms in the field of e-commerce has spread worldwide. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a chatbot and a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. The recommendation systems perform the important function of automatically filtering and personalizing information, thus allowing to manage with the IT overload to which the user is exposed on a daily basis. Recently, international research has experimented with the use of machine learning technologies with the aim to increase the potential of traditional recommendation systems. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Artificial intelligence algorithms have been implemented and trained on historical data collected from user browsing. Finally, the testing phase allowed to validate the implemented model, which will be further tested by letting customers use it.Keywords: machine learning, recommender system, software platform, support vector machine
Procedia PDF Downloads 1348973 Seismic Hazard Prediction Using Seismic Bumps: Artificial Neural Network Technique
Authors: Belkacem Selma, Boumediene Selma, Tourkia Guerzou, Abbes Labdelli
Abstract:
Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. The Earthquakes prediction to prevent the loss of human lives and even property damage is an important factor; that is why it is crucial to develop techniques for predicting this natural disaster. This present study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 10^4J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines has been analyzed. The results obtained show that the ANN with high accuracy was able to predict earthquake parameters; the classification accuracy through neural networks is more than 94%, and that the models developed are efficient and robust and depend only weakly on the initial database.Keywords: earthquake prediction, ANN, seismic bumps
Procedia PDF Downloads 1288972 The Synergistic Effects of Blockchain and AI on Enhancing Data Integrity and Decision-Making Accuracy in Smart Contracts
Authors: Sayor Ajfar Aaron, Sajjat Hossain Abir, Ashif Newaz, Mushfiqur Rahman
Abstract:
Investigating the convergence of blockchain technology and artificial intelligence, this paper examines their synergistic effects on data integrity and decision-making within smart contracts. By implementing AI-driven analytics on blockchain-based platforms, the research identifies improvements in automated contract enforcement and decision accuracy. The paper presents a framework that leverages AI to enhance transparency and trust while blockchain ensures immutable record-keeping, culminating in significantly optimized operational efficiencies in various industries.Keywords: artificial intelligence, blockchain, data integrity, smart contracts
Procedia PDF Downloads 598971 Impact of Mindfulness on Life Satisfaction among Chinese and Pakistani Students: The Mediating Roles of Resilience and Emotional Intelligence
Authors: Maaza Saeed
Abstract:
The current study examined the mediating roles of emotional intelligence (EI) and resilience in the relationship between mindfulness and life satisfaction among Chinese and Pakistani samples. 450 participants completed the mindful attention awareness scale, resilience scale, wong law emotional intelligence scale, and satisfaction with life scale from both cultures. Path analysis revealed that both emotional intelligence (EI) and resilience fully mediated the relationship between mindfulness and life satisfaction among participants of both cultures. Besides, a multi-group evaluation suggests that Chinese participants with significant EI scores are more likely to sustain greater life satisfaction than their Pakistani counterparts. Insinuation for prospective researches and current study pitfalls are discussed.Keywords: mindfulness, life satisfaction, resilience, emotional intelligence
Procedia PDF Downloads 858970 Producing AI Innovation and Its Value Implications
Authors: Ali Ahmadi, Ambrus Kecskes, Roni Michaely, Phuong-Anh Nguyen
Abstract:
We quantify the proliferation of artificial intelligence innovation since 1990. Then, studying publicly traded firms, we find that they direct their production of innovation toward AI, motivated by their own and their customers, labor's exposure to AI technology. We instrument actual AI production by interacting with exogenously measured innovation capacity and AI exposure. We find that consistently during the past three decades, producing AI transitorily increases profitability, durably decreases risk (both systematic and idiosyncratic), and increases a firm's future stock returns. We can empirically distinguish the production of AI innovation from AI adoption, automation, and other potential confounds. The results suggest that AI innovation is a firm value increase that is underestimated by investors.Keywords: artificial intelligence, innovation, technology, labor, firm value, corporate investment, asset pricing
Procedia PDF Downloads 178969 Control of Belts for Classification of Geometric Figures by Artificial Vision
Authors: Juan Sebastian Huertas Piedrahita, Jaime Arturo Lopez Duque, Eduardo Luis Perez Londoño, Julián S. Rodríguez
Abstract:
The process of generating computer vision is called artificial vision. The artificial vision is a branch of artificial intelligence that allows the obtaining, processing, and analysis of any type of information especially the ones obtained through digital images. Actually the artificial vision is used in manufacturing areas for quality control and production, as these processes can be realized through counting algorithms, positioning, and recognition of objects that can be measured by a single camera (or more). On the other hand, the companies use assembly lines formed by conveyor systems with actuators on them for moving pieces from one location to another in their production. These devices must be previously programmed for their good performance and must have a programmed logic routine. Nowadays the production is the main target of every industry, quality, and the fast elaboration of the different stages and processes in the chain of production of any product or service being offered. The principal base of this project is to program a computer that recognizes geometric figures (circle, square, and triangle) through a camera, each one with a different color and link it with a group of conveyor systems to organize the mentioned figures in cubicles, which differ from one another also by having different colors. This project bases on artificial vision, therefore the methodology needed to develop this project must be strict, this one is detailed below: 1. Methodology: 1.1 The software used in this project is QT Creator which is linked with Open CV libraries. Together, these tools perform to realize the respective program to identify colors and forms directly from the camera to the computer. 1.2 Imagery acquisition: To start using the libraries of Open CV is necessary to acquire images, which can be captured by a computer’s web camera or a different specialized camera. 1.3 The recognition of RGB colors is realized by code, crossing the matrices of the captured images and comparing pixels, identifying the primary colors which are red, green, and blue. 1.4 To detect forms it is necessary to realize the segmentation of the images, so the first step is converting the image from RGB to grayscale, to work with the dark tones of the image, then the image is binarized which means having the figure of the image in a white tone with a black background. Finally, we find the contours of the figure in the image to detect the quantity of edges to identify which figure it is. 1.5 After the color and figure have been identified, the program links with the conveyor systems, which through the actuators will classify the figures in their respective cubicles. Conclusions: The Open CV library is a useful tool for projects in which an interface between a computer and the environment is required since the camera obtains external characteristics and realizes any process. With the program for this project any type of assembly line can be optimized because images from the environment can be obtained and the process would be more accurate.Keywords: artificial intelligence, artificial vision, binarized, grayscale, images, RGB
Procedia PDF Downloads 3808968 A Study on the Application of Accelerated Life Test to Electric Motor for Machine Tools
Authors: Youn-Hwan Kim, Jae-Won Moon, Hae-Joong Kim
Abstract:
This paper introduces the results of the study on the development of accelerated life test methods for the motor used in machine tools. In recent years, as well as efficiency for motors, there is a growing need for research on life expectancy of motors. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. This paper describes the equipment development procedure for the highly accelerated life test (HALT) of the 12kW three-phase squirrel-cage induction motors (SCIMs). After the test, the lifetime analysis was carried out, and it is compared with the life expectancy by finite element method (FEM) and bearing theory.Keywords: acceleration coefficient, bearing, HALT, life expectancy, motor
Procedia PDF Downloads 281