Search results for: Intelligent Transportation Systems (ITS)
10572 Business Intelligent to a Decision Support Tool for Green Entrepreneurship: Meso and Macro Regions
Authors: Anishur Rahman, Maria Areias, Diogo Simões, Ana Figeuiredo, Filipa Figueiredo, João Nunes
Abstract:
The circular economy (CE) has gained increased awareness among academics, businesses, and decision-makers as it stimulates resource circularity in the production and consumption systems. A large epistemological study has explored the principles of CE, but scant attention eagerly focused on analysing how CE is evaluated, consented to, and enforced using economic metabolism data and business intelligent framework. Economic metabolism involves the ongoing exchange of materials and energy within and across socio-economic systems and requires the assessment of vast amounts of data to provide quantitative analysis related to effective resource management. Limited concern, the present work has focused on the regional flows pilot region from Portugal. By addressing this gap, this study aims to promote eco-innovation and sustainability in the regions of Intermunicipal Communities Região de Coimbra, Viseu Dão Lafões and Beiras e Serra da Estrela, using this data to find precise synergies in terms of material flows and give companies a competitive advantage in form of valuable waste destinations, access to new resources and new markets, cost reduction and risk sharing benefits. In our work, emphasis on applying artificial intelligence (AI) and, more specifically, on implementing state-of-the-art deep learning algorithms is placed, contributing to construction a business intelligent approach. With the emergence of new approaches generally highlighted under the sub-heading of AI and machine learning (ML), the methods for statistical analysis of complex and uncertain production systems are facing significant changes. Therefore, various definitions of AI and its differences from traditional statistics are presented, and furthermore, ML is introduced to identify its place in data science and the differences in topics such as big data analytics and in production problems that using AI and ML are identified. A lifecycle-based approach is then taken to analyse the use of different methods in each phase to identify the most useful technologies and unifying attributes of AI in manufacturing. Most of macroeconomic metabolisms models are mainly direct to contexts of large metropolis, neglecting rural territories, so within this project, a dynamic decision support model coupled with artificial intelligence tools and information platforms will be developed, focused on the reality of these transition zones between the rural and urban. Thus, a real decision support tool is under development, which will surpass the scientific developments carried out to date and will allow to overcome imitations related to the availability and reliability of data.Keywords: circular economy, artificial intelligence, economic metabolisms, machine learning
Procedia PDF Downloads 7210571 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory
Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad
Abstract:
Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.Keywords: GAN, long short-term memory, synthetic data generation, traffic management
Procedia PDF Downloads 2510570 Automatic Motion Trajectory Analysis for Dual Human Interaction Using Video Sequences
Authors: Yuan-Hsiang Chang, Pin-Chi Lin, Li-Der Jeng
Abstract:
Advance in techniques of image and video processing has enabled the development of intelligent video surveillance systems. This study was aimed to automatically detect moving human objects and to analyze events of dual human interaction in a surveillance scene. Our system was developed in four major steps: image preprocessing, human object detection, human object tracking, and motion trajectory analysis. The adaptive background subtraction and image processing techniques were used to detect and track moving human objects. To solve the occlusion problem during the interaction, the Kalman filter was used to retain a complete trajectory for each human object. Finally, the motion trajectory analysis was developed to distinguish between the interaction and non-interaction events based on derivatives of trajectories related to the speed of the moving objects. Using a database of 60 video sequences, our system could achieve the classification accuracy of 80% in interaction events and 95% in non-interaction events, respectively. In summary, we have explored the idea to investigate a system for the automatic classification of events for interaction and non-interaction events using surveillance cameras. Ultimately, this system could be incorporated in an intelligent surveillance system for the detection and/or classification of abnormal or criminal events (e.g., theft, snatch, fighting, etc.).Keywords: motion detection, motion tracking, trajectory analysis, video surveillance
Procedia PDF Downloads 54810569 A Hybrid Data Mining Algorithm Based System for Intelligent Defence Mission Readiness and Maintenance Scheduling
Authors: Shivam Dwivedi, Sumit Prakash Gupta, Durga Toshniwal
Abstract:
It is a challenging task in today’s date to keep defence forces in the highest state of combat readiness with budgetary constraints. A huge amount of time and money is squandered in the unnecessary and expensive traditional maintenance activities. To overcome this limitation Defence Intelligent Mission Readiness and Maintenance Scheduling System has been proposed, which ameliorates the maintenance system by diagnosing the condition and predicting the maintenance requirements. Based on new data mining algorithms, this system intelligently optimises mission readiness for imminent operations and maintenance scheduling in repair echelons. With modified data mining algorithms such as Weighted Feature Ranking Genetic Algorithm and SVM-Random Forest Linear ensemble, it improves the reliability, availability and safety, alongside reducing maintenance cost and Equipment Out of Action (EOA) time. The results clearly conclude that the introduced algorithms have an edge over the conventional data mining algorithms. The system utilizing the intelligent condition-based maintenance approach improves the operational and maintenance decision strategy of the defence force.Keywords: condition based maintenance, data mining, defence maintenance, ensemble, genetic algorithms, maintenance scheduling, mission capability
Procedia PDF Downloads 29710568 Elasticity Model for Easing Peak Hour Demand for Metrorail Transport System
Authors: P. K. Sarkar, Amit Kumar Jain
Abstract:
The demand for Urban transportation is characterised by a large scale temporal and spatial variations which causes heavy congestion inside metro trains in peak hours near Centre Business District (CBD) of the city. The conventional approach to address peak hour congestion, metro trains has been to increase the supply by way of introduction of more trains, increasing the length of the trains, optimising the time table to increase the capacity of the system. However, there is a limitation of supply side measures determined by the design capacity of the systems beyond which any addition in the capacity requires huge capital investments. The demand side interventions are essentially required to actually spread the demand across the time and space. In this study, an attempt has been made to identify the potential Transport Demand Management tools applicable to Urban Rail Transportation systems with a special focus on differential pricing. A conceptual price elasticity model has been developed to analyse the effect of various combinations of peak and nonpeak hoursfares on demands. The elasticity values for peak hour, nonpeak hour and cross elasticity have been assumed from the relevant literature available in the field. The conceptual price elasticity model so developed is based on assumptions which need to be validated with actual values of elasticities for different segments of passengers. Once validated, the model can be used to determine the peak and nonpeak hour fares with an objective to increase overall ridership, revenue, demand levelling and optimal utilisation of assets.Keywords: urban transport, differential fares, congestion, transport demand management, elasticity
Procedia PDF Downloads 30810567 Flexible and Integrated Transport System in India
Authors: Aayushi Patidar, Nishant Parihar
Abstract:
One of the principal causes of failure in existing vehicle brokerage solutions is that they require the introduction of a single trusted third party to whom transport offers and requirements are sent, and which solves the scheduling problem. Advances in planning and scheduling could be utilized to address the scalability issues inherent here, but such refinements do not address the key need to decentralize decision-making. This is not to say that matchmaking of potential transport suppliers to consumers is not essential, but information from such a service should inform rather than determining the transport options for customers. The approach that is proposed, is the use of intelligent commuters that act within the system and to identify options open to users, weighing the evidence for desirability of each option given a model of the user’s priorities, and to drive dialogue among commuters in aiding users to solve their individual (or collective) transport goals. Existing research in commuter support for transport resource management has typically been focused on the provider. Our vision is to explore both the efficient use of limited transport resources and also to support the passengers in the transportation flexibility & integration among various modes in India.Keywords: flexibility, integration, service design, technology
Procedia PDF Downloads 35210566 Energy-Aware Scheduling in Real-Time Systems: An Analysis of Fair Share Scheduling and Priority-Driven Preemptive Scheduling
Authors: Su Xiaohan, Jin Chicheng, Liu Yijing, Burra Venkata Durga Kumar
Abstract:
Energy-aware scheduling in real-time systems aims to minimize energy consumption, but issues related to resource reservation and timing constraints remain challenges. This study focuses on analyzing two scheduling algorithms, Fair-Share Scheduling (FFS) and Priority-Driven Preemptive Scheduling (PDPS), for solving these issues and energy-aware scheduling in real-time systems. Based on research on both algorithms and the processes of solving two problems, it can be found that Fair-Share Scheduling ensures fair allocation of resources but needs to improve with an imbalanced system load, and Priority-Driven Preemptive Scheduling prioritizes tasks based on criticality to meet timing constraints through preemption but relies heavily on task prioritization and may not be energy efficient. Therefore, improvements to both algorithms with energy-aware features will be proposed. Future work should focus on developing hybrid scheduling techniques that minimize energy consumption through intelligent task prioritization, resource allocation, and meeting time constraints.Keywords: energy-aware scheduling, fair-share scheduling, priority-driven preemptive scheduling, real-time systems, optimization, resource reservation, timing constraints
Procedia PDF Downloads 11910565 Revolutionizing Project Management: A Comprehensive Review of Artificial Intelligence and Machine Learning Applications for Smarter Project Execution
Authors: Wenzheng Fu, Yue Fu, Zhijiang Dong, Yujian Fu
Abstract:
The integration of artificial intelligence (AI) and machine learning (ML) into project management is transforming how engineering projects are executed, monitored, and controlled. This paper provides a comprehensive survey of AI and ML applications in project management, systematically categorizing their use in key areas such as project data analytics, monitoring, tracking, scheduling, and reporting. As project management becomes increasingly data-driven, AI and ML offer powerful tools for improving decision-making, optimizing resource allocation, and predicting risks, leading to enhanced project outcomes. The review highlights recent research that demonstrates the ability of AI and ML to automate routine tasks, provide predictive insights, and support dynamic decision-making, which in turn increases project efficiency and reduces the likelihood of costly delays. This paper also examines the emerging trends and future opportunities in AI-driven project management, such as the growing emphasis on transparency, ethical governance, and data privacy concerns. The research suggests that AI and ML will continue to shape the future of project management by driving further automation and offering intelligent solutions for real-time project control. Additionally, the review underscores the need for ongoing innovation and the development of governance frameworks to ensure responsible AI deployment in project management. The significance of this review lies in its comprehensive analysis of AI and ML’s current contributions to project management, providing valuable insights for both researchers and practitioners. By offering a structured overview of AI applications across various project phases, this paper serves as a guide for the adoption of intelligent systems, helping organizations achieve greater efficiency, adaptability, and resilience in an increasingly complex project management landscape.Keywords: artificial intelligence, decision support systems, machine learning, project management, resource optimization, risk prediction
Procedia PDF Downloads 2110564 Enhancing Quality Management Systems through Automated Controls and Neural Networks
Authors: Shara Toibayeva, Irbulat Utepbergenov, Lyazzat Issabekova, Aidana Bodesova
Abstract:
The article discusses the importance of quality assessment as a strategic tool in business and emphasizes the significance of the effectiveness of quality management systems (QMS) for enterprises. The evaluation of these systems takes into account the specificity of quality indicators, the multilevel nature of the system, and the need for optimal selection of the number of indicators and evaluation of the system state, which is critical for making rational management decisions. Methods and models of automated enterprise quality management are proposed, including an intelligent automated quality management system integrated with the Management Information and Control System. These systems make it possible to automate the implementation and support of QMS, increasing the validity, efficiency, and effectiveness of management decisions by automating the functions performed by decision makers and personnel. The paper also emphasizes the use of recurrent neural networks to improve automated quality management. Recurrent neural networks (RNNs) are used to analyze and process sequences of data, which is particularly useful in the context of document quality assessment and non-conformance detection in quality management systems. These networks are able to account for temporal dependencies and complex relationships between different data elements, which improves the accuracy and efficiency of automated decisions. The project was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan under the Zhas Galym project No. AR 13268939, dedicated to research and development of digital technologies to ensure consistency of QMS regulatory documents.Keywords: automated control system, quality management, document structure, formal language
Procedia PDF Downloads 3910563 Proposal for Knowledge-Based Virtual Community System (KBVCS) for Enhancing Knowledge Sharing in Mechatronics System Diagnostic and Repair
Authors: Adetoba B. Tiwalola, Adedeji W. Oyediran, Yekini N. Asafe, Akinwole A. Kikelomo
Abstract:
Mechatronics is synergistic integration of mechanical engineering, with electronics and intelligent computer control in the design and manufacturing of industrial products and processes. Automobile (auto car, motor car or car is a wheeled motor vehicle used for transporting passengers, which also carries its own engine or motor) is a mechatronic system which served as major means of transportation around the world. Virtually all community has a need for automobile. This makes automobile issues as related to diagnostic and repair interesting to all communities. Consequent to the diversification of skill in diagnosing automobile faults and approaches in solving some problems and innovation in automobile industry. It is appropriate to say that repair and diagnostic of automobile will be better enhanced if community has opportunity of sharing knowledge and idea globally. This paper discussed the desirable elements in automobile as mechatronics system and present conceptual framework of virtual community model for knowledge sharing among automobile users.Keywords: automobile, automobile users, knowledge sharing, mechatronics system, virtual community
Procedia PDF Downloads 44010562 Housing Prices and Travel Costs: Insights from Origin-Destination Demand Estimation in Taiwan’s Science Parks
Authors: Kai-Wei Ji, Dung-Ying Lin
Abstract:
This study investigates the impact of transportation on housing prices in regions surrounding Taiwan's science parks. As these parks evolve into crucial economic and population growth centers, they attract an increasing number of residents and workers, significantly influencing local housing markets. This demographic shift raises important questions about the role of transportation in shaping real estate values. Our research examines four major science parks in Taiwan, providing a comparative analysis of how transportation conditions and population dynamics interact to affect housing price premiums. We employ an origin-destination (OD) matrix derived from pervasive traffic data to model travel patterns and their effects on real estate values. The methodology utilizes a bi-level framework: a genetic algorithm optimizes OD demand estimation at the upper level, while a user equilibrium (UE) model simulates traffic flow at the lower level. This approach enables a nuanced exploration of how population growth impacts transportation conditions and housing price premiums. By analyzing the interplay between travel costs based on OD demand estimation and housing prices, we offer valuable insights for urban planners and policymakers. These findings are crucial for informed decision-making in rapidly developing areas, where understanding the relationship between mobility and real estate values is essential for sustainable urban development.Keywords: demand estimation, genetic algorithm, housing price, transportation
Procedia PDF Downloads 2010561 Three Issues for Integrating Artificial Intelligence into Legal Reasoning
Authors: Fausto Morais
Abstract:
Artificial intelligence has been widely used in law. Programs are able to classify suits, to identify decision-making patterns, to predict outcomes, and to formalize legal arguments as well. In Brazil, the artificial intelligence victor has been classifying cases to supreme court’s standards. When those programs act doing those tasks, they simulate some kind of legal decision and legal arguments, raising doubts about how artificial intelligence can be integrated into legal reasoning. Taking this into account, the following three issues are identified; the problem of hypernormatization, the argument of legal anthropocentrism, and the artificial legal principles. Hypernormatization can be seen in the Brazilian legal context in the Supreme Court’s usage of the Victor program. This program generated efficiency and consistency. On the other hand, there is a feasible risk of over standardizing factual and normative legal features. Then legal clerks and programmers should work together to develop an adequate way to model legal language into computational code. If this is possible, intelligent programs may enact legal decisions in easy cases automatically cases, and, in this picture, the legal anthropocentrism argument takes place. Such an argument argues that just humans beings should enact legal decisions. This is so because human beings have a conscience, free will, and self unity. In spite of that, it is possible to argue against the anthropocentrism argument and to show how intelligent programs may work overcoming human beings' problems like misleading cognition, emotions, and lack of memory. In this way, intelligent machines could be able to pass legal decisions automatically by classification, as Victor in Brazil does, because they are binding by legal patterns and should not deviate from them. Notwithstanding, artificial intelligent programs can be helpful beyond easy cases. In hard cases, they are able to identify legal standards and legal arguments by using machine learning. For that, a dataset of legal decisions regarding a particular matter must be available, which is a reality in Brazilian Judiciary. Doing such procedure, artificial intelligent programs can support a human decision in hard cases, providing legal standards and arguments based on empirical evidence. Those legal features claim an argumentative weight in legal reasoning and should serve as references for judges when they must decide to maintain or overcome a legal standard.Keywords: artificial intelligence, artificial legal principles, hypernormatization, legal anthropocentrism argument, legal reasoning
Procedia PDF Downloads 14510560 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach
Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi
Abstract:
Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.
Procedia PDF Downloads 7210559 Engineering Packaging for a Sustainable Food Chain
Authors: Ezekiel Olukayode Akintunde
Abstract:
There is a high level of inadequate methods at all levels of food supply in the global food industry. The inadequacies have led to vast wastages of food. Hence there is a need to curb the wastages that can later affect natural resources, water resources, and energy to avoid negative impacts on the climate and the environment. There is a need to engage multifaceted engineering packaging approaches for a sustainable food chain to ensure active packaging, intelligent packaging, new packaging materials, and a sustainable packaging system. Packaging can be regarded as an indispensable component approach that can be applied to solve major problems of sustainable food consumption globally; this is about controlling the environmental impact of packed food. The creative innovation will ensure that packaged foods are free from food-borne diseases and food chemical pollution. This paper evaluates the key shortcomings that must be addressed by innovative food packaging to ensure a safe, natural environment that will preserve energy and sustain water resources. Certain solutions, including fabricating microbial biodegradable chemical compounds/polymers from agro-food waste remnants, appear a bright path to ensure a strong and innovative waste-based food packaging system. Over the years, depletion in the petroleum reserves has brought about the emergence of biodegradable polymers as a proper replacement for traditional plastics; moreover, the increase in the production of traditional plastics has raised serious concerns about environmental threats. Biodegradable polymers have proven to be biocompatible, which can also be processed for other useful applications. Therefore, this study will showcase a workable guiding framework for designing a sustainable food packaging system that will not constitute a danger to our present society and that will surely preserve natural water resources. Various assessment methods will be deployed at different stages of the packaging design to enhance the package's sustainability. Every decision that will be made must be facilitated with methods that will be engaged per stage to allow for corrective measures throughout the cycle of the design process. Basic performance appraisal of packaging innovations. Food wastage can result in inimical environmental impacts, and ethical practices must be carried out for food loss at home. An examination in West Africa quantified preventable food wastage over the entire food value chain at almost 180kg per person per year. That is preventable food wastage, 35% of which originated at the household level. Many food losses reported, which happened at the harvesting, storage, transportation, and processing stages, are not preventable and are without much environmental impact because such wastage can be used for feeding. Other surveys have shown that 15%-20% of household food losses can be traced to food packaging. Therefore, new innovative packaging systems can lessen the environmental effect of food wastage to extend shelf‐life to lower food loss in the process distribution chain and at the household level.Keywords: food packaging, biodegradable polymer, intelligent packaging, shelf-life
Procedia PDF Downloads 5710558 Factors Affecting Bus Use as a Sustainable Mode of Transportation: Insights from Kerman, Iran
Authors: Fatemeh Rahmani, Navid Nadimi, Vahid Khalifeh
Abstract:
In the near future, cities with medium populations will face traffic congestion, air pollution, high fuel consumption, and noise pollution. It is possible to improve the sustainability of cities by utilizing public transportation. A study of the factors that influence citizens' bus usage in medium-sized cities is presented in this paper. For this purpose, Kerman's citizens were surveyed online. The model was based on a binary logistic regression. A descriptive analysis revealed that simple measures like renewing the fleet, upgrading the stations, establishing a schedule program, and cleaning the buses could improve passenger satisfaction. In addition, the modeling results showed that future traffic congestion can be prevented by implementing road and parking lot pricing plans. Further, as the number and length of trips increases, the probability of citizens taking the bus increases. In conclusion, Kerman's bus system is both secure and fast, but these two characteristics can be improved to increase bus ridership.Keywords: sustainability, transportation, bus, congestion, satisfaction
Procedia PDF Downloads 1010557 The Effect of Socio-Economic Factors on Electric Vehicle Charging Behavior: An Investigation
Authors: Judith Mwakalonge, Geophrey Mbatta, Cuthbert Ruseruka, Gurcan Comert, Saidi Siuhi
Abstract:
Recent advancements in technology have fostered the development of Electric Vehicles (EVs) that provides relief from transportation dependence on natural fossil fuels as sources of energy. It is estimated that more than 50% of petroleum is used for transportation, which accounts for 28% of annual energy use. Vehicles make up about 82% of all transportation energy use. It is also estimated that about 22% of global Carbon dioxide (CO2) emissions are produced by the transportation sector, therefore, it raises environmental concerns. Governments worldwide, including the United States, are investing in developing EVs to resolve the issues related to the use of natural fossil fuels, such as air pollution due to emissions. For instance, the Bipartisan Infrastructure Law (BIL) that was signed by President Biden on November 15th, 2021, sets aside about $5 billion to be apportioned to all 50 states, the District of Columbia, and Puerto Rico for the development of EV chargers. These chargers should be placed in a way that maximizes their utility. This study aims at studying the charging behaviors of Electric Vehicle (EV) users to establish factors to be considered in the selection of charging locations. The study will focus on social-economic and land use data by studying the relationship between charging time and charging locations. Local factors affecting the charging time and the chargers’ utility will be investigated.Keywords: electric vehicles, EV charging stations, social economic factors, charging networks
Procedia PDF Downloads 8210556 Hidro-IA: An Artificial Intelligent Tool Applied to Optimize the Operation Planning of Hydrothermal Systems with Historical Streamflow
Authors: Thiago Ribeiro de Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite
Abstract:
The area of the electricity sector that deals with energy needs by the hydroelectric in a coordinated manner is called Operation Planning of Hydrothermal Power Systems (OPHPS). The purpose of this is to find a political operative to provide electrical power to the system in a given period, with reliability and minimal cost. Therefore, it is necessary to determine an optimal schedule of generation for each hydroelectric, each range, so that the system meets the demand reliably, avoiding rationing in years of severe drought, and that minimizes the expected cost of operation during the planning, defining an appropriate strategy for thermal complementation. Several optimization algorithms specifically applied to this problem have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. An alternative to these challenges is the development of techniques for simulation optimization and more sophisticated and reliable, it can assist the planning of the operation. Thus, this paper presents the development of a computational tool, namely Hydro-IA for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique is Genetic Algorithm (GA) and programming language is Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The results with the Genetic Algorithms were compared with the optimization technique nonlinear programming (NLP). Tests were conducted with seven hydroelectric plants interconnected hydraulically with historical stream flow from 1953 to 1955. The results of comparison between the GA and NLP techniques shows that the cost of operating the GA becomes increasingly smaller than the NLP when the number of hydroelectric plants interconnected increases. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.Keywords: energy, optimization, hydrothermal power systems, artificial intelligence and genetic algorithms
Procedia PDF Downloads 42010555 2023 Targets of the Republic of Turkey State Railways
Authors: Hicran Açıkel, Hüseyin Arak, D. Ali Açıkel
Abstract:
Train or high-speed train is a land transportation vehicle, which is safe and offers passengers flight-like comfort while it is preferred for busy lines with respect to passengers. In this study, TCDD’s (Turkish State Railroads Company) targets for the year of 2023, the planned high-speed train lines, improvements, which are considered for the existing lines, and achievability of these targets are examined.Keywords: train, high-speed train, TCDD, transportation
Procedia PDF Downloads 24610554 Trends of Public-Private Partnership Infrastructure in Thailand
Authors: Wasaporn Techapeeraparnich
Abstract:
Bringing private investor involving in providing public infrastructure have been increasingly used worldwide, and there is no exception for developing countries like Thailand. Recently, there is a huge investment opportunity for public-private partnership (PPP) in Thailand, especially in the transportation sector. This paper analyses the development of the PPP since the early beginning of PPP in different service sectors. It also summarizes the development of PPP and its application in terms of usage, opportunities and trends particularly in the transport sector. The results are aimed to draw some lessons learned for future development.Keywords: case study, public-private partnership, transportation, Thailand
Procedia PDF Downloads 43410553 Design and Construction of an Intelligent Multiplication Table for Enhanced Education and Increased Student Engagement
Authors: Zahra Alikhani Koopaei
Abstract:
In the fifth lesson of the third-grade mathematics book, students are introduced to the concept of multiplication. However, some students showed a lack of interest in learning this topic. To address this, a simple electronic multiplication table was designed with the aim of making the concept of multiplication entertaining and engaging for students. It provides them with moments of excitement during the learning process. To achieve this goal, a device was created that produced a bell sound when two wire ends were connected. Each wire end was connected to a specific number in the multiplication table, and the other end was linked to the corresponding answer. Consequently, if the answer is correct, the bell will ring. This study employs interactive and engaging methods to teach mathematics, particularly to students who have previously shown little interest in the subject. By integrating game-based learning and critical thinking, we observed an increase in understanding and interest in learning multiplication compared to before using this method. This further motivated the students. As a result, the intelligent multiplication table was successfully designed. Students, under the instructor's supervision, could easily construct the device during the lesson. Through the implementation of these operations, the concept of multiplication was firmly established in the students' minds. Engaging multiple intelligences in each student enhances a more stable and improved understanding of the concept of multiplication.Keywords: intelligent multiplication table, design, construction, education, increased interest, students
Procedia PDF Downloads 6810552 Big Data Applications for Transportation Planning
Authors: Antonella Falanga, Armando Cartenì
Abstract:
"Big data" refers to extremely vast and complex sets of data, encompassing extraordinarily large and intricate datasets that require specific tools for meaningful analysis and processing. These datasets can stem from diverse origins like sensors, mobile devices, online transactions, social media platforms, and more. The utilization of big data is pivotal, offering the chance to leverage vast information for substantial advantages across diverse fields, thereby enhancing comprehension, decision-making, efficiency, and fostering innovation in various domains. Big data, distinguished by its remarkable attributes of enormous volume, high velocity, diverse variety, and significant value, represent a transformative force reshaping the industry worldwide. Their pervasive impact continues to unlock new possibilities, driving innovation and advancements in technology, decision-making processes, and societal progress in an increasingly data-centric world. The use of these technologies is becoming more widespread, facilitating and accelerating operations that were once much more complicated. In particular, big data impacts across multiple sectors such as business and commerce, healthcare and science, finance, education, geography, agriculture, media and entertainment and also mobility and logistics. Within the transportation sector, which is the focus of this study, big data applications encompass a wide variety, spanning across optimization in vehicle routing, real-time traffic management and monitoring, logistics efficiency, reduction of travel times and congestion, enhancement of the overall transportation systems, but also mitigation of pollutant emissions contributing to environmental sustainability. Meanwhile, in public administration and the development of smart cities, big data aids in improving public services, urban planning, and decision-making processes, leading to more efficient and sustainable urban environments. Access to vast data reservoirs enables deeper insights, revealing hidden patterns and facilitating more precise and timely decision-making. Additionally, advancements in cloud computing and artificial intelligence (AI) have further amplified the potential of big data, enabling more sophisticated and comprehensive analyses. Certainly, utilizing big data presents various advantages but also entails several challenges regarding data privacy and security, ensuring data quality, managing and storing large volumes of data effectively, integrating data from diverse sources, the need for specialized skills to interpret analysis results, ethical considerations in data use, and evaluating costs against benefits. Addressing these difficulties requires well-structured strategies and policies to balance the benefits of big data with privacy, security, and efficient data management concerns. Building upon these premises, the current research investigates the efficacy and influence of big data by conducting an overview of the primary and recent implementations of big data in transportation systems. Overall, this research allows us to conclude that big data better provide to enhance rational decision-making for mobility choices and is imperative for adeptly planning and allocating investments in transportation infrastructures and services.Keywords: big data, public transport, sustainable mobility, transport demand, transportation planning
Procedia PDF Downloads 6010551 Applying an Automatic Speech Intelligent System to the Health Care of Patients Undergoing Long-Term Hemodialysis
Authors: Kuo-Kai Lin, Po-Lun Chang
Abstract:
Research Background and Purpose: Following the development of the Internet and multimedia, the Internet and information technology have become crucial avenues of modern communication and knowledge acquisition. The advantages of using mobile devices for learning include making learning borderless and accessible. Mobile learning has become a trend in disease management and health promotion in recent years. End-stage renal disease (ESRD) is an irreversible chronic disease, and patients who do not receive kidney transplants can only rely on hemodialysis or peritoneal dialysis to survive. Due to the complexities in caregiving for patients with ESRD that stem from their advanced age and other comorbidities, the patients’ incapacity of self-care leads to an increase in the need to rely on their families or primary caregivers, although whether the primary caregivers adequately understand and implement patient care is a topic of concern. Therefore, this study explored whether primary caregivers’ health care provisions can be improved through the intervention of an automatic speech intelligent system, thereby improving the objective health outcomes of patients undergoing long-term dialysis. Method: This study developed an automatic speech intelligent system with healthcare functions such as health information voice prompt, two-way feedback, real-time push notification, and health information delivery. Convenience sampling was adopted to recruit eligible patients from a hemodialysis center at a regional teaching hospital as research participants. A one-group pretest-posttest design was adopted. Descriptive and inferential statistics were calculated from the demographic information collected from questionnaires answered by patients and primary caregivers, and from a medical record review, a health care scale (recorded six months before and after the implementation of intervention measures), a subjective health assessment, and a report of objective physiological indicators. The changes in health care behaviors, subjective health status, and physiological indicators before and after the intervention of the proposed automatic speech intelligent system were then compared. Conclusion and Discussion: The preliminary automatic speech intelligent system developed in this study was tested with 20 pretest patients at the recruitment location, and their health care capacity scores improved from 59.1 to 72.8; comparisons through a nonparametric test indicated a significant difference (p < .01). The average score for their subjective health assessment rose from 2.8 to 3.3. A survey of their objective physiological indicators discovered that the compliance rate for the blood potassium level was the most significant indicator; its average compliance rate increased from 81% to 94%. The results demonstrated that this automatic speech intelligent system yielded a higher efficacy for chronic disease care than did conventional health education delivered by nurses. Therefore, future efforts will continue to increase the number of recruited patients and to refine the intelligent system. Future improvements to the intelligent system can be expected to enhance its effectiveness even further.Keywords: automatic speech intelligent system for health care, primary caregiver, long-term hemodialysis, health care capabilities, health outcomes
Procedia PDF Downloads 11010550 The Review of Coiled Tubing Intelligent Sidetracking Steering Technology
Authors: Zhao Xueran, Yang Dong
Abstract:
In order to improve the problem that old wells in oilfields are shut down due to low oil recovery, sidetracking has become one of the main technical means to restore the vitality of old wells. A variety of sidetracking technologies have been researched and formed internationally. Among them, coiled tubing sidetracking horizontal wells have significant advantages over conventional sidetracking methods: underbalanced pressure operations; reducing the number of trips of tubing, while drilling and production, saving construction costs, less ground equipment and less floor space, orienter guidance to reduce drilling friction, etc. This paper mainly introduces the steering technology in coiled tubing intelligent sidetracking at home and abroad, including the orienter and the rotary steerable system.Keywords: sidetracking, coiled tubing, orienter, rotary steering system
Procedia PDF Downloads 16810549 Comparative Analysis of Canal Centering Ratio, Apical Transportation, and Remaining Dentin Thickness between Single File System Using Cone Beam Computed Tomography: An in vitro Study
Authors: Aditi Jain
Abstract:
Aim: To compare the canal transportation, centering ability and remaining dentin thickness of OneShape and WaveOne system using CBCT. Objective: To identify rotary system which respects original canal anatomy. Materials and Methods: Forty extracted human single-rooted premolars were used in the present study. Pre-instrumentation scans of all teeth were taken, canal curvatures were calculated, and the samples were randomly divided into two groups with twenty samples in each group, where Group 1 included WaveOne system and Group 2 Protaper rotary system. Post-instrumentation scans were performed, and the two scans were compared to determine canal transportation, centering ability and remaining dentin thickness at 1, 3, and 5 mm from the root apex. Results: Using Student’s unpaired t test results were as follows; for canal transportation Group 1 showed statistical significant difference at 3mm, 6mm and non-significant difference was obtained at 9mm but for Group 2 non-statistical significant difference was obtained at 3mm, 6mm, and 9mm. For centering ability and remaining dentin thickness Group 1 showed non-statistical significant difference at 3mm and 9mm, while statistical significant difference at 6mm was obtained. When comparison of remaining dentin thickness was done at three levels using two groups WaveOne and ProTaper. There was non-statistical significant difference between two groups. Conclusion: WaveOne single reciprocation file respects original canal anatomy better than ProTaper. WaveOne depicted the best centering ability.Keywords: ShapeOne, WaveOne, transportation, centering ability, dentin thickness, CBCT (Cone Beam Computed Tomography)
Procedia PDF Downloads 20510548 Hub Traveler Guidance Signage Evaluation via Panoramic Visualization Using Entropy Weight Method and TOPSIS
Authors: Si-yang Zhang, Chi Zhao
Abstract:
Comprehensive transportation hubs are important nodes of the transportation network, and their internal signage the functions as guidance and distribution assistance, which directly affects the operational efficiency of traffic in and around the hubs. Reasonably installed signage effectively attracts the visual focus of travelers and improves wayfinding efficiency. Among the elements of signage, the visual guidance effect is the key factor affecting the information conveyance, whom should be evaluated during design and optimization process. However, existing evaluation methods mostly focus on the layout, and are not able to fully understand if signage caters travelers’ need. This study conducted field investigations and developed panoramic videos for multiple transportation hubs in China, and designed survey accordingly. Human subjects are recruited to watch panoramic videos via virtual reality (VR) and respond to the surveys. In this paper, Pudong Airport and Xi'an North Railway Station were studied and compared as examples due to their high traveler volume and relatively well-developed traveler service systems. Visual attention was captured by eye tracker and subjective satisfaction ratings were collected through surveys. Entropy Weight Method (EWM) was utilized to evaluate the effectiveness of signage elements and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was used to further rank the importance of the elements. The results show that the degree of visual attention of travelers significantly affects the evaluation results of guidance signage. Key factors affecting visual attention include accurate legibility, obstruction and defacement rates, informativeness, and whether signage is set up in a hierarchical manner.Keywords: traveler guidance signage, panoramic video, visual attention, entropy weight method, TOPSIS
Procedia PDF Downloads 6910547 Safety Status of Stations and Tunnels of Tehran Line 4 Urban and Suburb Railways (Subway) Against Fire Risks
Authors: Yousefi Aryian, Ghanbaripour Amir naser
Abstract:
Record of 2 million trips during a day by subway makes it the most application and the most efficient branch of public transportation. Great safety, energy consumption reduction, appropriate speed, and lower prices for passengers in comparison with private cars or buses, are some reasons for this remarkable statics. This increasing popularity compels the author to evaluate the safety of subway stations and tunnels against fire and fire extinguishing systems in Tehran subway network and then compare some of its safety parameters to other countries. This paper assessed the methods and systems used in different parts of Tehran subway and then by comparing the facilities and equipment necessary to declare and extinguish the fire, the solutions and world standards (NFPA) are explored.Keywords: subway station, tunnel, fire alarm, extinguishing fire, NFPA standards
Procedia PDF Downloads 47710546 Interactive Solutions for the Multi-Objective Capacitated Transportation Problem with Mixed Constraints under Fuzziness
Authors: Aquil Ahmed, Srikant Gupta, Irfan Ali
Abstract:
In this paper, we study a multi-objective capacitated transportation problem (MOCTP) with mixed constraints. This paper is comprised of the modelling and optimisation of an MOCTP in a fuzzy environment in which some goals are fractional and some are linear. In real life application of the fuzzy goal programming (FGP) problem with multiple objectives, it is difficult for the decision maker(s) to determine the goal value of each objective precisely as the goal values are imprecise or uncertain. Also, we developed the concept of linearization of fractional goal for solving the MOCTP. In this paper, imprecision of the parameter is handled by the concept of fuzzy set theory by considering these parameters as a trapezoidal fuzzy number. α-cut approach is used to get the crisp value of the parameters. Numerical examples are used to illustrate the method for solving MOCTP.Keywords: capacitated transportation problem, multi objective linear programming, multi-objective fractional programming, fuzzy goal programming, fuzzy sets, trapezoidal fuzzy number
Procedia PDF Downloads 43410545 Evaluation of the Electric Vehicle Impact in Distribution System
Authors: Sania Maghsodloo, Sirus Mohammadi
Abstract:
Electric Vehicle (EV) technology is expected to take a major share in the light-vehicle market in the coming decades. Transportation electrification has become an important issue in recent decades and the large scale deployment of EVs has yet to be achieved. The smart coordination of EV demand addresses an improvement in the flexibility of power systems and reduces the costs of power system investment. The uncertainty in EV drivers’ behaviour is one of the main problems to solve to obtain an optimal integration of EVs into power systems Charging of EVs will put an extra burden on the distribution grid and in some cases adjustments will need to be made. The stochastic process of the driving pattern is done to make the outcome of the project more realistic. Based on the stochastic data, the optimization of charging plans is made.Keywords: electric vehicles (PEVs), smart grid, Monticello, distribution system
Procedia PDF Downloads 55210544 Research on the Ecological Impact Evaluation Index System of Transportation Construction Projects
Authors: Yu Chen, Xiaoguang Yang, Lin Lin
Abstract:
Traffic engineering construction is an important infrastructure for economic and social development. In the process of construction and operation, the ability to make a correct evaluation of the project's environmental impact appears to be crucial to the rational operation of existing transportation projects, the correct development of transportation engineering construction and the adoption of corresponding measures to scientifically carry out environmental protection work. Most of the existing research work on ecological and environmental impact assessment is limited to individual aspects of the environment and less to the overall evaluation of the environmental system; in terms of research conclusions, there are more qualitative analyses from the technical and policy levels, and there is a lack of quantitative research results and quantitative and operable evaluation models. In this paper, a comprehensive analysis of the ecological and environmental impacts of transportation construction projects is conducted, and factors such as the accessibility of data and the reliability of calculation results are comprehensively considered to extract indicators that can reflect the essence and characteristics. The qualitative evaluation indicators were screened using the expert review method, the qualitative indicators were measured using the fuzzy statistics method, the quantitative indicators were screened using the principal component analysis method, and the quantitative indicators were measured by both literature search and calculation. An environmental impact evaluation index system with the general objective layer, sub-objective layer and indicator layer was established, dividing the environmental impact of the transportation construction project into two periods: the construction period and the operation period. On the basis of the evaluation index system, the index weights are determined using the hierarchical analysis method, and the individual indicators to be evaluated are dimensionless, eliminating the influence of the original background and meaning of the indicators. Finally, the thesis uses the above research results, combined with the actual engineering practice, to verify the correctness and operability of the evaluation method.Keywords: transportation construction projects, ecological and environmental impact, analysis and evaluation, indicator evaluation system
Procedia PDF Downloads 10510543 Effects of Methods of Confinement during Transportation of Market Pigs on Meat Quality
Authors: Pongchan Na-Lampang
Abstract:
The objective of this study was to compare the results of transport of slaughter pigs to slaughterhouse by 2 methods, i.e. individual confined and group confined on the truck on meat quality. The pigs were transported for 1 h on a distance of 70 km. The stocking densities were 0.35 m2/pig and 0.48 m2 for group and individual crate treatment, respectively. It was found that meat quality of pigs transported by 2 different methods as measured in terms of pH level (at 45 min and 48 hr post mortem), color (brightness, redness and yellowness) and water holding capacity was not significantly different.Keywords: market pig, transportation, meat quality, confinement
Procedia PDF Downloads 389