Search results for: De minimis rule
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 796

Search results for: De minimis rule

436 FISCEAPP: FIsh Skin Color Evaluation APPlication

Authors: J. Urban, Á. S. Botella, L. E. Robaina, A. Bárta, P. Souček, P. Císař, Š. Papáček, L. M. Domínguez

Abstract:

Skin coloration in fish is of great physiological, behavioral and ecological importance and can be considered as an index of animal welfare in aquaculture as well as an important quality factor in the retail value. Currently, in order to compare color in animals fed on different diets, biochemical analysis, and colorimetry of fished, mildly anesthetized or dead body, are very accurate and meaningful measurements. The noninvasive method using digital images of the fish body was developed as a standalone application. This application deals with the computation burden and memory consumption of large input files, optimizing piece wise processing and analysis with the memory/computation time ratio. For the comparison of color distributions of various experiments and different color spaces (RGB, CIE L*a*b*) the comparable semi-equidistant binning of multi channels representation is introduced. It is derived from the knowledge of quantization levels and Freedman-Diaconis rule. The color calibrations and camera responsivity function were necessary part of the measurement process.

Keywords: color distribution, fish skin color, piecewise transformation, object to background segmentation

Procedia PDF Downloads 262
435 Social Accountability: Persuasion and Debate to Contain Corruption

Authors: A. Lambert-Mogiliansky

Abstract:

In this paper, we investigate the properties of simple rules for reappointment aimed at holding a public official accountable and monitor his activity. The public official allocates budget resources to various activities which results in the delivery of public services to citizens. He has discretion over the use of resource so he can divert some of them for private ends. Because of a liability constraint, zero diversion can never be secured in all states. The optimal reappointment mechanism under complete information is shown to exhibit some leniency thus departing from the zero tolerance principle. Under asymmetric information (about the state), a rule with random verification in a pre-announced subset is shown to be optimal in a class of common rules. Surprisingly, those common rules make little use of hard information about service delivery when available. Similarly, PO's claim about his record is of no value to improve the performance of the examined rules. In contrast requesting that the PO defends his records publicly can be very useful if the service users are given the chance to refute false claims with cheap talk complaints: the first best complete information outcome can be approached in the absence of any observation by the manager of the accountability mechanism.

Keywords: accountability, corruption, persuasion, debate

Procedia PDF Downloads 380
434 MEIOSIS: Museum Specimens Shed Light In Biodiversity Shrinkage

Authors: Zografou Konstantina, Anagnostellis Konstantinos, Brokaki Marina, Kaltsouni Eleftheria, Dimaki Maria, Kati Vassiliki

Abstract:

Body size is crucial to ecology, influencing everything from individual reproductive success to the dynamics of communities and ecosystems. Understanding how temperature affects variations in body size is vital for both theoretical and practical purposes, as changes in size can modify trophic interactions by altering predator-prey size ratios and changing the distribution and transfer of biomass, which ultimately impacts food web stability and ecosystem functioning. Notably, a decrease in body size is frequently mentioned as the third ‘universal’ response to climate warming, alongside shifts in distribution and changes in phenology. This trend is backed by ecological theories like the temperature-size rule (TSR) and Bergmann's rule, which have been observed in numerous species, indicating that many species are likely to shrink in size as temperatures rise. However, the thermal responses related to body size are still contradictory and further exploration is needed. To tackle this challenge, we developed the MEIOSIS project, aimed at providing valuable insights into the relationship between the body size of species, species’ traits, environmental factors and their response to climate change. We combined a digitized collection of butterflies from the Swiss Federal Institute of Technology in Zürich with our newly digitized butterfly collection from Goulandris Natural History Museum in Greece to analyze trends in time. For a total of 23868 images, the length of the right forewing was measured using ImageJ software. Each forewing was measured from the point at which the wing meets the thorax to the apex of the wing. The forewing length of museum specimens has been shown to have a strong correlation with wing surface area and has been utilized in prior studies as a proxy for overall body size. Temperature data corresponding to the years of collection were also incorporated into the datasets. A second dataset was generated when a custom computer vision tool was implemented for the automated morphological measuring of samples for the digitized collection in Zürich. Using the second dataset, we corrected manual measurements with ImageJ and a final dataset containing 31922 samples was used in analysis. Setting time as a smoother variable, species identity as a random factor and the length of right-wing size (as a proxy for body size) as the response variable, we ran a global model for a maximum period of 170 years (1840 – 2010). We also constructed individual models for each family (Pieridae, Lycaenidae, Hesperiidae, Nymphalidae, Papilionidae). All models confirmed our initial hypothesis and resulted in a decreasing trend of the wing length over the years. We expect that this first output can be provided as basic data for the next challenge, i.e., to identify the ecological traits that influence species' temperature-size responses, enabling us to predict the direction and intensity of a species' reaction to rising temperatures more accurately.

Keywords: butterflies, shrinking body size, museum specimens, climate change

Procedia PDF Downloads 10
433 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context

Authors: Nicole Merkle, Stefan Zander

Abstract:

Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.

Keywords: ambient intelligence, machine learning, semantic web, software agents

Procedia PDF Downloads 281
432 Purposes of Urdu Translations of the Meanings of Holy Quran

Authors: Muhammad Saleem

Abstract:

The research paper entitled above would be a comprehensive and critical study of translations of the meanings of the Holy Qur’an. The discussion will deal with the targets & purposes of Urdu (National Language of Pakistan) translators of the meanings of the Holy Qur’an. There are more than 400 translations of the meanings of the Holy Qur’an in the Urdu Language. Muslims, non-Muslims and some organizations have made translations of the meanings of the Holy Qur’an to meet various targets. It is observed that all Urdu translators have not translated the Qur’an with a single objective and motivation; rather, some are biased and strive to discredit the Qur’an. Thus, they have made unauthentic and fabricated translations of the Qur’an. Some optimistically believe that they intend to do a service, whereas others pessimistically hold that they treacherously seek to further their rule. Some of them have been observed to be against Islam, starting their activities with spite, but after perceiving the truths of Islam and the miracle and greatness of the Holy Qur’an, they submitted to Islam, embracing it with pure hearts. Some translators made their translations of the meanings of the Holy Qur’an to serve Allah, and some of them have done their translations to earn only. All these translations vary from one to another due to style, trend, type, method and style. Some Urdu translations have been made to fulfill the lingual requirements. Some translations have been made by Muslim scholars to reduce the influence of Urdu translations of the meanings of the Holy Qur’an by Non-Muslims. The article deals with the various purposes of the translators of the meanings of the Holy Qur’an.

Keywords: Qur'an, translation, urdu, language

Procedia PDF Downloads 39
431 Closed Forms of Trigonometric Series Interms of Riemann’s ζ Function and Dirichlet η, λ, β Functions or the Hurwitz Zeta Function and Harmonic Numbers

Authors: Slobodan B. Tričković

Abstract:

We present the results concerned with trigonometric series that include sine and cosine functions with a parameter appearing in the denominator. We derive two types of closed-form formulas for trigonometric series. At first, for some integer values, as we know that Riemann’s ζ function and Dirichlet η, λ equal zero at negative even integers, whereas Dirichlet’s β function equals zero at negative odd integers, after a certain number of members, the rest of the series vanishes. Thus, a trigonometric series becomes a polynomial with coefficients involving Riemann’s ζ function and Dirichlet η, λ, β functions. On the other hand, in some cases, one cannot immediately replace the parameter with any positive integer because we shall encounter singularities. So it is necessary to take a limit, so in the process, we apply L’Hospital’s rule and, after a series of rearrangements, we bring a trigonometric series to a form suitable for the application of Choi-Srivastava’s theorem dealing with Hurwitz’s zeta function and Harmonic numbers. In this way, we express a trigonometric series as a polynomial over Hurwitz’s zeta function derivative.

Keywords: Dirichlet eta lambda beta functions, Riemann's zeta function, Hurwitz zeta function, Harmonic numbers

Procedia PDF Downloads 103
430 Optimal Bayesian Chart for Controlling Expected Number of Defects in Production Processes

Authors: V. Makis, L. Jafari

Abstract:

In this paper, we develop an optimal Bayesian chart to control the expected number of defects per inspection unit in production processes with long production runs. We formulate this control problem in the optimal stopping framework. The objective is to determine the optimal stopping rule minimizing the long-run expected average cost per unit time considering partial information obtained from the process sampling at regular epochs. We prove the optimality of the control limit policy, i.e., the process is stopped and the search for assignable causes is initiated when the posterior probability that the process is out of control exceeds a control limit. An algorithm in the semi-Markov decision process framework is developed to calculate the optimal control limit and the corresponding average cost. Numerical examples are presented to illustrate the developed optimal control chart and to compare it with the traditional u-chart.

Keywords: Bayesian u-chart, economic design, optimal stopping, semi-Markov decision process, statistical process control

Procedia PDF Downloads 573
429 Nutrient Foramina in the Shaft of Long Bones of Upper Limb

Authors: Madala Venkateswara Rao

Abstract:

The major blood supply to the long bones occurs through the nutrient arteries, which enters through the nutrient foramina. This is the study of nutrient Foramina in the shaft of upper limb long bones taken from the department of Anatomy at Narayana medical college nellore. Nutrient foramina play an important role in nutrition and growth of the bones. Most of the nutrient arteries follow the rule, 'to the elbow I go, from the knee I flee' but they are very variable in position. Their number, location, direction & its importance in the growing end of long bones were studied in the long bones of upper limb. The present study has variations in the position & direction of long bones especially in the radius & ulna, as most of the nutrient foramina are found in anterior surface of upper 1/3rd and middle 1/3rd of these bones. The study of nutrient foramina is not only of academic interest but also in medico-legal practice in relation to their position. Careful observation has also been made on the position of nutrient foramina in relation to upper end of long bones. This study also gives importance of length long bones to know the height of an individual. With the knowledge of variations in the nutrient foramen, placement of internal fixation devices can be appropriately done.

Keywords: nutrient artery, nutrient foramina, shaft of long bones, upper limb bones

Procedia PDF Downloads 502
428 A Simulation Study of E-Glass Reinforced Polyurethane Footbed and Investigation of Parameters Effecting Elastic Behaviour of Footbed Material

Authors: Berkay Ergene, Çağın Bolat

Abstract:

In this study, we mainly focused on a simulation study regarding composite footbed in order to contribute to shoe industry. As a footbed, e-glass fiber reinforced polyurethane was determined since polyurethane based materials are already used for footbed in shoe manufacturing frequently. Flat, elliptical and rectangular grooved shoe soles were modeled and analyzed separately as TPU, 10% glass fiber reinforced, 30% glass fiber reinforced and 50% glass fiber reinforced materials according to their properties under three point bending and compression situations to determine the relationship between model, material type and mechanical behaviours of composite model. ANSYS 14.0 APDL mechanical structural module is utilized in all simulations and analyzed stress and strain distributions for different footbed models and materials. Furthermore, materials constants like young modulus, shear modulus, Poisson ratio and density of the composites were calculated theoretically by using composite mixture rule and interpreted for mechanical aspects.

Keywords: composite, elastic behaviour, footbed, simulation

Procedia PDF Downloads 268
427 Roadmaps as a Tool of Innovation Management: System View

Authors: Matich Lyubov

Abstract:

Today roadmaps are becoming commonly used tools for detecting and designing a desired future for companies, states and the international community. The growing popularity of this method puts tasks such as identifying basic roadmapping principles, creation of concepts and determination of the characteristics of the use of roadmaps depending on the objectives as well as restrictions and opportunities specific to the study area on the agenda. However, the system approach, e.g. the elements which are recognized to be major for high-quality roadmapping, remains one of the main fields for improving the methodology and practice of their development as limited research was devoted to the detailed analysis of the roadmaps from the view of system approach. Therefore, this article is an attempt to examine roadmaps from the view of the system analysis, to compare areas, where, as a rule, roadmaps and systems analysis are considered the most effective tools. To compare the structure and composition of roadmaps and systems models the identification of common points between construction stages of roadmaps and system modeling and the determination of future directions for research roadmaps from a systems perspective are of special importance.

Keywords: technology roadmap, roadmapping, systems analysis, system modeling, innovation management

Procedia PDF Downloads 310
426 Growth and Development Parameters of Saanen Kids Raised under Intensive Conditions in Konya/Turkey

Authors: Vahdetti̇n Sariyel, Bi̇rol Dağ

Abstract:

In this research, growth and development parameters in Konya, a private company in Saanen kids reared in intensive conditions in the province were examined. Average birth weights were 3.42, 2.96, 3.57, 3.23 and 2.77 kg for male, female, single, twins and triplets kids. Average weaning weights (three months of age) were 12.65, 12.09, 12.80, 12.65 and 11.68 kg for male, female, single, twins and triplets kids. Average body weights at seven months of age were 20.55, 18.98, 20.12, 20.12 and 19.05 kg for male, female, single, twins and triplets kids respectively. Considering the gender of the live weight factors birth control and rule in favor of the first en ( P <0.01), the second control finally it disappeared statistically significant ( P> 0.05). Main age and the effect of birth weight in the first month, while significant (P < 0.01); The effect of the second month following the live weight of the kid was not significant.

Keywords: Saanen kids, growth, development, body weight

Procedia PDF Downloads 272
425 Frequent Itemset Mining Using Rough-Sets

Authors: Usman Qamar, Younus Javed

Abstract:

Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and rough-sets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.

Keywords: rough-sets, classification, feature selection, entropy, outliers, frequent itemset mining

Procedia PDF Downloads 437
424 A Theoretical Model for Pattern Extraction in Large Datasets

Authors: Muhammad Usman

Abstract:

Pattern extraction has been done in past to extract hidden and interesting patterns from large datasets. Recently, advancements are being made in these techniques by providing the ability of multi-level mining, effective dimension reduction, advanced evaluation and visualization support. This paper focuses on reviewing the current techniques in literature on the basis of these parameters. Literature review suggests that most of the techniques which provide multi-level mining and dimension reduction, do not handle mixed-type data during the process. Patterns are not extracted using advanced algorithms for large datasets. Moreover, the evaluation of patterns is not done using advanced measures which are suited for high-dimensional data. Techniques which provide visualization support are unable to handle a large number of rules in a small space. We present a theoretical model to handle these issues. The implementation of the model is beyond the scope of this paper.

Keywords: association rule mining, data mining, data warehouses, visualization of association rules

Procedia PDF Downloads 223
423 Unreality of Real: Debordean Reading of Gillian Flynn's Gone Girl

Authors: Sahand Hamed Moeel Ardebil, Zohreh Taebi Noghondari, Mahmood Reza Ghorban Sabbagh

Abstract:

Gillian Flynn’s Gone Girl, depicts a society in which, as a result of media dominance, the reality is very precarious and difficult to grasp. In Gone Girl, reality and image of reality represented on TV, are challenging to differentiate. Along with reality, individuals’ agency and independence before media and the capitalist rule are called in to question in the novel. In order to expose the unstable nature of reality and an individual’s complicated relationship with media, this study has deployed the ideas of Marxist-media theorist Guy Debord (1931-1992). In his book Society of the Spectacle (1966), Debord delineates a society in which images replace the objective reality, and people are incapable of making real changes. The results of the current study show that despite their efforts, Nick and Amy, the two main characters of the novel, are no more than spectators with very little agency before the media. Moreover, following Debord’s argument about the replacement of reality with images, everyone and every institution in Gone Girl projects an image that does not necessarily embody the objective reality, a fact that makes it very hard to differentiate the real from unreal.

Keywords: agency, Debord, Gone Girl, media studies, society of spectacle, reality

Procedia PDF Downloads 122
422 Non-Population Search Algorithms for Capacitated Material Requirement Planning in Multi-Stage Assembly Flow Shop with Alternative Machines

Authors: Watcharapan Sukkerd, Teeradej Wuttipornpun

Abstract:

This paper aims to present non-population search algorithms called tabu search (TS), simulated annealing (SA) and variable neighborhood search (VNS) to minimize the total cost of capacitated MRP problem in multi-stage assembly flow shop with two alternative machines. There are three main steps for the algorithm. Firstly, an initial sequence of orders is constructed by a simple due date-based dispatching rule. Secondly, the sequence of orders is repeatedly improved to reduce the total cost by applying TS, SA and VNS separately. Finally, the total cost is further reduced by optimizing the start time of each operation using the linear programming (LP) model. Parameters of the algorithm are tuned by using real data from automotive companies. The result shows that VNS significantly outperforms TS, SA and the existing algorithm.

Keywords: capacitated MRP, tabu search, simulated annealing, variable neighborhood search, linear programming, assembly flow shop, application in industry

Procedia PDF Downloads 233
421 Remote Sensing of Urban Land Cover Change: Trends, Driving Forces, and Indicators

Authors: Wei Ji

Abstract:

This study was conducted in the Kansas City metropolitan area of the United States, which has experienced significant urban sprawling in recent decades. The remote sensing of land cover changes in this area spanned over four decades from 1972 through 2010. The project was implemented in two stages: the first stage focused on detection of long-term trends of urban land cover change, while the second one examined how to detect the coupled effects of human impact and climate change on urban landscapes. For the first-stage study, six Landsat images were used with a time interval of about five years for the period from 1972 through 2001. Four major land cover types, built-up land, forestland, non-forest vegetation land, and surface water, were mapped using supervised image classification techniques. The study found that over the three decades the built-up lands in the study area were more than doubled, which was mainly at the expense of non-forest vegetation lands. Surprisingly and interestingly, the area also saw a significant gain in surface water coverage. This observation raised questions: How have human activities and precipitation variation jointly impacted surface water cover during recent decades? How can we detect such coupled impacts through remote sensing analysis? These questions led to the second stage of the study, in which we designed and developed approaches to detecting fine-scale surface waters and analyzing coupled effects of human impact and precipitation variation on the waters. To effectively detect urban landscape changes that might be jointly shaped by precipitation variation, our study proposed “urban wetscapes” (loosely-defined urban wetlands) as a new indicator for remote sensing detection. The study examined whether urban wetscape dynamics was a sensitive indicator of the coupled effects of the two driving forces. To better detect this indicator, a rule-based classification algorithm was developed to identify fine-scale, hidden wetlands that could not be appropriately detected based on their spectral differentiability by a traditional image classification. Three SPOT images for years 1992, 2008, and 2010, respectively were classified with this technique to generate the four types of land cover as described above. The spatial analyses of remotely-sensed wetscape changes were implemented at the scales of metropolitan, watershed, and sub-watershed, as well as based on the size of surface water bodies in order to accurately reveal urban wetscape change trends in relation to the driving forces. The study identified that urban wetscape dynamics varied in trend and magnitude from the metropolitan, watersheds, to sub-watersheds in response to human impacts at different scales. The study also found that increased precipitation in the region in the past decades swelled larger wetlands in particular while generally smaller wetlands decreased mainly due to human development activities. These results confirm that wetscape dynamics can effectively reveal the coupled effects of human impact and climate change on urban landscapes. As such, remote sensing of this indicator provides new insights into the relationships between urban land cover changes and driving forces.

Keywords: urban land cover, human impact, climate change, rule-based classification, across-scale analysis

Procedia PDF Downloads 308
420 Effect of Traffic Composition on Delay and Saturation Flow at Signal Controlled Intersections

Authors: Arpita Saha, Apoorv Jain, Satish Chandra, Indrajit Ghosh

Abstract:

Level of service at a signal controlled intersection is directly measured from the delay. Similarly, saturation flow rate is a fundamental parameter to measure the intersection capacity. The present study calculates vehicle arrival rate, departure rate, and queue length for every five seconds interval in each cycle. Based on the queue lengths, the total delay of the cycle has been calculated using Simpson’s 1/3rd rule. Saturation flow has been estimated in terms of veh/hr of green/lane for every five seconds interval of the green period until at least three vehicles are left to cross the stop line. Vehicle composition shows an immense effect on total delay and saturation flow rate. The increase in two-wheeler proportion increases the saturation flow rate and reduces the total delay per vehicle significantly. Additionally, an increase in the heavy vehicle proportion reduces the saturation flow rate and increases the total delay for each vehicle.

Keywords: delay, saturation flow, signalised intersection, vehicle composition

Procedia PDF Downloads 464
419 Knowledge Reactor: A Contextual Computing Work in Progress for Eldercare

Authors: Scott N. Gerard, Aliza Heching, Susann M. Keohane, Samuel S. Adams

Abstract:

The world-wide population of people over 60 years of age is growing rapidly. The explosion is placing increasingly onerous demands on individual families, multiple industries and entire countries. Current, human-intensive approaches to eldercare are not sustainable, but IoT and AI technologies can help. The Knowledge Reactor (KR) is a contextual, data fusion engine built to address this and other similar problems. It fuses and centralizes IoT and System of Record/Engagement data into a reactive knowledge graph. Cognitive applications and services are constructed with its multiagent architecture. The KR can scale-up and scaledown, because it exploits container-based, horizontally scalable services for graph store (JanusGraph) and pub-sub (Kafka) technologies. While the KR can be applied to many domains that require IoT and AI technologies, this paper describes how the KR specifically supports the challenging domain of cognitive eldercare. Rule- and machine learning-based analytics infer activities of daily living from IoT sensor readings. KR scalability, adaptability, flexibility and usability are demonstrated.

Keywords: ambient sensing, AI, artificial intelligence, eldercare, IoT, internet of things, knowledge graph

Procedia PDF Downloads 175
418 Determination of Material Constants and Zener-Hollomon Parameter of AA2017 Aluminium Alloy under Hot Compression Test

Authors: C. H. Shashikanth, M. J. Davidson, V. Suresh Babu

Abstract:

The formability of metals depends on a number of variables such as strain, strain rate, and temperature. Though most of the metals are formable at room temperature, few are not. To evaluate the workability of such metals at elevated temperatures, thermomechanical experiments should be carried out to find out the forming temperatures and strain rates. Though a number of constitutive relations are available to correlate the material parameters and the corresponding formability at elevated temperatures, the constitutive rule proposed by Arrhenius has been used in this work. Thus, in the present work, the material constants such as A (constant), α (stress multiplier), β (constant), and n (stress exponent) of AA 2017 has been found by conducting a series of hot compression tests at different temperatures such as 400°C, 450°C, 500°C, and 550°C and at different strain rates such as 0.16, 0.18, and 0.2. True stress (σt), true strains (εt) deformation activation energy (Q), and the Zener-Hollomon parameter (Z value) were also calculated. The results indicate that the value of ln (Z) decreases as the temperature increases and it increases as the strain rate increases.

Keywords: hot compression test, aluminium alloy, flow stress, activation energy

Procedia PDF Downloads 620
417 Cases of Violence against Women: Towards a Proposed Plan of Action

Authors: Murphy P. Mohammed, Rita E. Pulmano

Abstract:

This study determined the cases of violence against women in selected barangays of Tarlac City. In this research, the following questions were answered: what is the description of the cases on violence against women?; what are the causes of violence against women?; what support/assistance is provided by the LGUs?; and what plan of action can be proposed to improve the VAW services of the barangays? The methodologies used in the present study are qualitative and descriptive researches. The researchers used documentary analysis and interview to gather data. The subjects of the study are violence against women survivors from the selected ten (10) populous barangays of Tarlac City. Physical abuse, mental abuse, threatening, abandonment of children, child support issues, child custody, psychological abuse, economic abuse, and rape are the other recorded cases among the evaluated barangays. Based on the information, the researchers found out that a VAW desk was established in every respondent barangay. This in compliance with Section 12 D, Rule IV of the Rules and Regulations Implementing the Magna Carta of Women, which provides for the establishment of a VAW desk in every barangay to ensure that violence against women cases are fully addressed in a gender-responsive manner.

Keywords: Barangay VAW desk, cases of violence against women, violence against women, women's studies

Procedia PDF Downloads 323
416 Estimating Occupancy in Residential Context Using Bayesian Networks for Energy Management

Authors: Manar Amayri, Hussain Kazimi, Quoc-Dung Ngo, Stephane Ploix

Abstract:

A general approach is proposed to determine occupant behavior (occupancy and activity) in residential buildings and to use these estimates for improved energy management. Occupant behaviour is modelled with a Bayesian Network in an unsupervised manner. This algorithm makes use of domain knowledge gathered via questionnaires and recorded sensor data for motion detection, power, and hot water consumption as well as indoor CO₂ concentration. Two case studies are presented which show the real world applicability of estimating occupant behaviour in this way. Furthermore, experiments integrating occupancy estimation and hot water production control show that energy efficiency can be increased by roughly 5% over known optimal control techniques and more than 25% over rule-based control while maintaining the same occupant comfort standards. The efficiency gains are strongly correlated with occupant behaviour and accuracy of the occupancy estimates.

Keywords: energy, management, control, optimization, Bayesian methods, learning theory, sensor networks, knowledge modelling and knowledge based systems, artificial intelligence, buildings

Procedia PDF Downloads 370
415 Fuzzy Inference System for Risk Assessment Evaluation of Wheat Flour Product Manufacturing Systems

Authors: Yas Barzegaar, Atrin Barzegar

Abstract:

The aim of this research is to develop an intelligent system to analyze the risk level of wheat flour product manufacturing system. The model consists of five Fuzzy Inference Systems in two different layers to analyse the risk of a wheat flour product manufacturing system. The first layer of the model consists of four Fuzzy Inference Systems with three criteria. The output of each one of the Physical, Chemical, Biological and Environmental Failures will be the input of the final manufacturing systems. The proposed model based on Mamdani Fuzzy Inference Systems gives a performance ranking of wheat flour products manufacturing systems. The first step is obtaining data to identify the failure modes from expert’s opinions. The second step is the fuzzification process to convert crisp input to a fuzzy set., then the IF-then fuzzy rule applied through inference engine, and in the final step, the defuzzification process is applied to convert the fuzzy output into real numbers.

Keywords: failure modes, fuzzy rules, fuzzy inference system, risk assessment

Procedia PDF Downloads 102
414 A Mathematical Model of Blood Perfusion Dependent Temperature Distribution in Transient Case in Human Dermal Region

Authors: Yogesh Shukla

Abstract:

Many attempts have been made to study temperature distribution problem in human tissues under normal environmental and physiological conditions at constant arterial blood temperature. But very few attempts have been made to investigate temperature distribution in human tissues under different arterial blood temperature. In view of above, a finite element model has been developed to unsteady temperature distribution in dermal region in human body. The model has been developed for one dimension unsteady state case. The variation in parameters like thermal conductivity, blood mass flow and metabolic activity with respect to position and time has been incorporated in the model. Appropriate boundary conditions have been framed. The central difference approach has been used in space variable and trapezoidal rule has been employed a long time variable. Numerical results have been obtained to study relationship among temperature and time.

Keywords: rate of metabolism, blood mass flow rate, thermal conductivity, heat generation, finite element method

Procedia PDF Downloads 353
413 An Evaluation of 6th Grade History Curriculum in Ghana

Authors: Abigail Amoako Kayser, Brian Kayser

Abstract:

This study aimed to examine Ghana's 6th-grade Basic School history curriculum to determine how Ghanaian history is taught. We used qualitative methods and document analysis. The document analysis served two primary purposes: (1) To gain insight into what the curriculum materials covered and from whom's perspectives, and (2) To triangulate with teacher interview data. Documents obtained included: (1) Textbooks used by 6th-grade students, (2) Teacher pacing guide provided by the Department of Education in Ghana, and (3) Student work samples. This study was guided through Post-colonial theory and criticisms to explore the remnants of colonial power and hegemony that persist in history curricula used in public schools in Ghana. We also applied African Feminist Thought and Black Feminist Thought to unpack the extent to which issues of patriarchy, race, traditions, underdevelopment, and sexuality impact how we see the experiences of people on the continent. The findings indicated that the remnant of colonial rule persisted in the contents of the history curriculum, and the atrocities of slavery were overlooked or eliminated from the curriculum. The findings also indicated that Ghana's history centered on men's experiences.

Keywords: history, curriculum, decolonialization, culturally relevant pedagogy

Procedia PDF Downloads 76
412 Online Learning for Modern Business Models: Theoretical Considerations and Algorithms

Authors: Marian Sorin Ionescu, Olivia Negoita, Cosmin Dobrin

Abstract:

This scientific communication reports and discusses learning models adaptable to modern business problems and models specific to digital concepts and paradigms. In the PAC (probably approximately correct) learning model approach, in which the learning process begins by receiving a batch of learning examples, the set of learning processes is used to acquire a hypothesis, and when the learning process is fully used, this hypothesis is used in the prediction of new operational examples. For complex business models, a lot of models should be introduced and evaluated to estimate the induced results so that the totality of the results are used to develop a predictive rule, which anticipates the choice of new models. In opposition, for online learning-type processes, there is no separation between the learning (training) and predictive phase. Every time a business model is approached, a test example is considered from the beginning until the prediction of the appearance of a model considered correct from the point of view of the business decision. After choosing choice a part of the business model, the label with the logical value "true" is known. Some of the business models are used as examples of learning (training), which helps to improve the prediction mechanisms for future business models.

Keywords: machine learning, business models, convex analysis, online learning

Procedia PDF Downloads 140
411 Global Position of Gender Equality in India: A Comparative Study

Authors: Mangesh Govindrao Acharya

Abstract:

It’s a matter of regret that rule began by causing social divisions in slave India. Even after independence, gender inequality persisted in Indian society; however, as social consciousness, awareness of governance, and political participation increased, this disparity gradually decreased. Technological advancement played an important role in awakening women. Today, a large number of women are able to address their problems in relevant places. The sense of honour for women in the family has also increased. Education, health, and food are indispensable for a strong society. Society's attitude towards the education of women and girls has become positive. Today, women have set their records in many important places. Women still face many challenges. Health awareness among rural women is a big challenge. Equality between men and women is the biggest social reform campaign implemented in our country. It has been going on endlessly for years, but the expected success does not seem to have been achieved. On the contrary, the issue of equality between men and women keeps coming before society in a new form. An attempt has been made in the present research essay to give an account of India's performance in this regard at the global level.

Keywords: gender sensitization, gender equality, women's dignity, women's safety

Procedia PDF Downloads 136
410 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul

Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini

Abstract:

The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.

Keywords: decision tree, breast cancer, probability, data mining

Procedia PDF Downloads 138
409 Chatbots vs. Websites: A Comparative Analysis Measuring User Experience and Emotions in Mobile Commerce

Authors: Stephan Boehm, Julia Engel, Judith Eisser

Abstract:

During the last decade communication in the Internet transformed from a broadcast to a conversational model by supporting more interactive features, enabling user generated content and introducing social media networks. Another important trend with a significant impact on electronic commerce is a massive usage shift from desktop to mobile devices. However, a presentation of product- or service-related information accumulated on websites, micro pages or portals often remains the pivot and focal point of a customer journey. A more recent change of user behavior –especially in younger user groups and in Asia– is going along with the increasing adoption of messaging applications supporting almost real-time but asynchronous communication on mobile devices. Mobile apps of this type cannot only provide an alternative for traditional one-to-one communication on mobile devices like voice calls or short messaging service. Moreover, they can be used in mobile commerce as a new marketing and sales channel, e.g., for product promotions and direct marketing activities. This requires a new way of customer interaction compared to traditional mobile commerce activities and functionalities provided based on mobile web-sites. One option better aligned to the customer interaction in mes-saging apps are so-called chatbots. Chatbots are conversational programs or dialog systems simulating a text or voice based human interaction. They can be introduced in mobile messaging and social media apps by using rule- or artificial intelligence-based imple-mentations. In this context, a comparative analysis is conducted to examine the impact of using traditional websites or chatbots for promoting a product in an impulse purchase situation. The aim of this study is to measure the impact on the customers’ user experi-ence and emotions. The study is based on a random sample of about 60 smartphone users in the group of 20 to 30-year-olds. Participants are randomly assigned into two groups and participate in a traditional website or innovative chatbot based mobile com-merce scenario. The chatbot-based scenario is implemented by using a Wizard-of-Oz experimental approach for reasons of sim-plicity and to allow for more flexibility when simulating simple rule-based and more advanced artificial intelligence-based chatbot setups. A specific set of metrics is defined to measure and com-pare the user experience in both scenarios. It can be assumed, that users get more emotionally involved when interacting with a system simulating human communication behavior instead of browsing a mobile commerce website. For this reason, innovative face-tracking and analysis technology is used to derive feedback on the emotional status of the study participants while interacting with the website or the chatbot. This study is a work in progress. The results will provide first insights on the effects of chatbot usage on user experiences and emotions in mobile commerce environments. Based on the study findings basic requirements for a user-centered design and implementation of chatbot solutions for mobile com-merce can be derived. Moreover, first indications on situations where chatbots might be favorable in comparison to the usage of traditional website based mobile commerce can be identified.

Keywords: chatbots, emotions, mobile commerce, user experience, Wizard-of-Oz prototyping

Procedia PDF Downloads 458
408 Controlling the Expense of Political Contests Using a Modified N-Players Tullock’s Model

Authors: C. Cohen, O. Levi

Abstract:

This work introduces a generalization of the classical Tullock’s model of one-stage contests under complete information with multiple unlimited numbers of contestants. In classical Tullock’s model, the contest winner is not necessarily the highest bidder. Instead, the winner is determined according to a draw in which the winning probabilities are the relative contestants’ efforts. The Tullock modeling fits well political contests, in which the winner is not necessarily the highest effort contestant. This work presents a modified model which uses a simple non-discriminating rule, namely, a parameter to influence the total costs planned for an election, for example, the contest designer can control the contestants' efforts. The winner pays a fee, and the losers are reimbursed the same amount. Our proposed model includes a mechanism that controls the efforts exerted and balances competition, creating a tighter, less predictable and more interesting contest. Additionally, the proposed model follows the fairness criterion in the sense that it does not alter the contestants' probabilities of winning compared to the classic Tullock’s model. We provide an analytic solution for the contestant's optimal effort and expected reward.

Keywords: contests, Tullock's model, political elections, control expenses

Procedia PDF Downloads 145
407 A Neural Network Approach to Evaluate Supplier Efficiency in a Supply Chain

Authors: Kishore K. Pochampally

Abstract:

The success of a supply chain heavily relies on the efficiency of the suppliers involved. In this paper, we propose a neural network approach to evaluate the efficiency of a supplier, which is being considered for inclusion in a supply chain, using the available linguistic (fuzzy) data of suppliers that already exist in the supply chain. The approach is carried out in three phases, as follows: In phase one, we identify criteria for evaluation of the supplier of interest. Then, in phase two, we use performance measures of already existing suppliers to construct a neural network that gives weights (importance values) of criteria identified in phase one. Finally, in phase three, we calculate the overall rating of the supplier of interest. The following are the major findings of the research conducted for this paper: (i) linguistic (fuzzy) ratings of suppliers such as 'good', 'bad', etc., can be converted (defuzzified) to numerical ratings (1 – 10 scale) using fuzzy logic so that those ratings can be used for further quantitative analysis; (ii) it is possible to construct and train a multi-level neural network in order to determine the weights of the criteria that are used to evaluate a supplier; and (iii) Borda’s rule can be used to group the weighted ratings and calculate the overall efficiency of the supplier.

Keywords: fuzzy data, neural network, supplier, supply chain

Procedia PDF Downloads 113