Search results for: 3D remote sensing images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3911

Search results for: 3D remote sensing images

3551 Planar Plasmonic Terahertz Waveguides for Sensor Applications

Authors: Maidul Islam, Dibakar Roy Chowdhury, Gagan Kumar

Abstract:

We investigate sensing capabilities of a planar plasmonic THz waveguide. The waveguide is comprised of one dimensional array of periodically arranged sub wavelength scale corrugations in the form of rectangular dimples in order to ensure the plasmonic response. The THz waveguide transmission is observed for polyimide (as thin film) substance filling the dimples. The refractive index of the polyimide film is varied to examine various sensing parameters such as frequency shift, sensitivity and Figure of Merit (FoM) of the fundamental plasmonic resonance supported by the waveguide. In efforts to improve sensing characteristics, we also examine sensing capabilities of a plasmonic waveguide having V shaped corrugations and compare results with that of rectangular dimples. The proposed study could be significant in developing new terahertz sensors with improved sensitivity utilizing the plasmonic waveguides.

Keywords: plasmonics, sensors, sub-wavelength structures, terahertz

Procedia PDF Downloads 226
3550 Generative Adversarial Network for Bidirectional Mappings between Retinal Fundus Images and Vessel Segmented Images

Authors: Haoqi Gao, Koichi Ogawara

Abstract:

Retinal vascular segmentation of color fundus is the basis of ophthalmic computer-aided diagnosis and large-scale disease screening systems. Early screening of fundus diseases has great value for clinical medical diagnosis. The traditional methods depend on the experience of the doctor, which is time-consuming, labor-intensive, and inefficient. Furthermore, medical images are scarce and fraught with legal concerns regarding patient privacy. In this paper, we propose a new Generative Adversarial Network based on CycleGAN for retinal fundus images. This method can generate not only synthetic fundus images but also generate corresponding segmentation masks, which has certain application value and challenge in computer vision and computer graphics. In the results, we evaluate our proposed method from both quantitative and qualitative. For generated segmented images, our method achieves dice coefficient of 0.81 and PR of 0.89 on DRIVE dataset. For generated synthetic fundus images, we use ”Toy Experiment” to verify the state-of-the-art performance of our method.

Keywords: retinal vascular segmentations, generative ad-versarial network, cyclegan, fundus images

Procedia PDF Downloads 144
3549 Assessment of Land Use and Land Cover Change in Lake Ol Bolossat Catchment, Nyandarua County, Kenya

Authors: John Wangui, Charles Gachene, Stephen Mureithi, Boniface Kiteme

Abstract:

Land use changes caused by demographic, natural variability, economic, technological and policy factors affect the goods and services derived from an ecosystem. In the past few decades, Lake Ol Bolossat catchment in Nyandarua County Kenya has been facing challenges of land cover changes threatening its capacity to perform ecosystems functions and adversely affecting communities and ecosystems downstream. This study assessed land cover changes in the catchment for a period of twenty eight years (from 1986 to 2014). Analysis of three Landsat images i.e. L5 TM 1986, L5 TM 1995 and L8 OLI/TIRS 2014 was done using ERDAS 9.2 software. The results show that dense forest, cropland and area under water increased by 27%, 29% and 3% respectively. On the other hand, open forest, dense grassland, open grassland, bushland and shrubland decreased by 3%, 3%, 11%, 26% and 1% respectively during the period under assessment. The lake was noted to have increased due to siltation caused by soil erosion causing a reduction in Lake’s depth and consequently causing temporary flooding of the wetland. The study concludes that the catchment is under high demographic pressure which would lead to resource use conflicts and therefore formulation of mitigation measures is highly recommended.

Keywords: land cover, land use change, land degradation, Nyandarua, Remote sensing

Procedia PDF Downloads 369
3548 Classification of Forest Types Using Remote Sensing and Self-Organizing Maps

Authors: Wanderson Goncalves e Goncalves, José Alberto Silva de Sá

Abstract:

Human actions are a threat to the balance and conservation of the Amazon forest. Therefore the environmental monitoring services play an important role as the preservation and maintenance of this environment. This study classified forest types using data from a forest inventory provided by the 'Florestal e da Biodiversidade do Estado do Pará' (IDEFLOR-BIO), located between the municipalities of Santarém, Juruti and Aveiro, in the state of Pará, Brazil, covering an area approximately of 600,000 hectares, Bands 3, 4 and 5 of the TM-Landsat satellite image, and Self - Organizing Maps. The information from the satellite images was extracted using QGIS software 2.8.1 Wien and was used as a database for training the neural network. The midpoints of each sample of forest inventory have been linked to images. Later the Digital Numbers of the pixels have been extracted, composing the database that fed the training process and testing of the classifier. The neural network was trained to classify two forest types: Rain Forest of Lowland Emerging Canopy (Dbe) and Rain Forest of Lowland Emerging Canopy plus Open with palm trees (Dbe + Abp) in the Mamuru Arapiuns glebes of Pará State, and the number of examples in the training data set was 400, 200 examples for each class (Dbe and Dbe + Abp), and the size of the test data set was 100, with 50 examples for each class (Dbe and Dbe + Abp). Therefore, total mass of data consisted of 500 examples. The classifier was compiled in Orange Data Mining 2.7 Software and was evaluated in terms of the confusion matrix indicators. The results of the classifier were considered satisfactory, and being obtained values of the global accuracy equal to 89% and Kappa coefficient equal to 78% and F1 score equal to 0,88. It evaluated also the efficiency of the classifier by the ROC plot (receiver operating characteristics), obtaining results close to ideal ratings, showing it to be a very good classifier, and demonstrating the potential of this methodology to provide ecosystem services, particularly in anthropogenic areas in the Amazon.

Keywords: artificial neural network, computational intelligence, pattern recognition, unsupervised learning

Procedia PDF Downloads 361
3547 A Review on 3D Smart City Platforms Using Remotely Sensed Data to Aid Simulation and Urban Analysis

Authors: Slim Namouchi, Bruno Vallet, Imed Riadh Farah

Abstract:

3D urban models provide powerful tools for decision making, urban planning, and smart city services. The accuracy of this 3D based systems is directly related to the quality of these models. Since manual large-scale modeling, such as cities or countries is highly time intensive and very expensive process, a fully automatic 3D building generation is needed. However, 3D modeling process result depends on the input data, the proprieties of the captured objects, and the required characteristics of the reconstructed 3D model. Nowadays, producing 3D real-world model is no longer a problem. Remotely sensed data had experienced a remarkable increase in the recent years, especially data acquired using unmanned aerial vehicles (UAV). While the scanning techniques are developing, the captured data amount and the resolution are getting bigger and more precise. This paper presents a literature review, which aims to identify different methods of automatic 3D buildings extractions either from LiDAR or the combination of LiDAR and satellite or aerial images. Then, we present open source technologies, and data models (e.g., CityGML, PostGIS, Cesiumjs) used to integrate these models in geospatial base layers for smart city services.

Keywords: CityGML, LiDAR, remote sensing, SIG, Smart City, 3D urban modeling

Procedia PDF Downloads 135
3546 Rb-Modified Few-Layered Graphene for Gas Sensing Application

Authors: Vasant Reddy, Shivani A. Singh, Pravin S. More

Abstract:

In the present investigation, we demonstrated the fabrication of few-layers of graphene sheets with alkali metal i.e. Rb-G using chemical route method. The obtained materials were characterized by means of chemical, structural and electrical techniques, using the ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and 4 points probe, respectively. The XRD studies were carried out to understand the phase of the samples where we found a sharp peak of Rb-G at 26.470. UV-Spectroscopy of Graphene and Rb-modified graphene samples shows the absorption peaks at ~248 nm and ~318 nm respectively. These analyses show that this modified material can be useful for gas sensing applications and to be used in diverse areas.

Keywords: chemical route, graphene, gas sensing, UV-spectroscopy

Procedia PDF Downloads 269
3545 Understanding the Classification of Rain Microstructure and Estimation of Z-R Relationship using a Micro Rain Radar in Tropical Region

Authors: Tomiwa, Akinyemi Clement

Abstract:

Tropical regions experience diverse and complex precipitation patterns, posing significant challenges for accurate rainfall estimation and forecasting. This study addresses the problem of effectively classifying tropical rain types and refining the Z-R (Reflectivity-Rain Rate) relationship to enhance rainfall estimation accuracy. Through a combination of remote sensing, meteorological analysis, and machine learning, the research aims to develop an advanced classification framework capable of distinguishing between different types of tropical rain based on their unique characteristics. This involves utilizing high-resolution satellite imagery, radar data, and atmospheric parameters to categorize precipitation events into distinct classes, providing a comprehensive understanding of tropical rain systems. Additionally, the study seeks to improve the Z-R relationship, a crucial aspect of rainfall estimation. One year of rainfall data was analyzed using a Micro Rain Radar (MRR) located at The Federal University of Technology Akure, Nigeria, measuring rainfall parameters from ground level to a height of 4.8 km with a vertical resolution of 0.16 km. Rain rates were classified into low (stratiform) and high (convective) based on various microstructural attributes such as rain rates, liquid water content, Drop Size Distribution (DSD), average fall speed of the drops, and radar reflectivity. By integrating diverse datasets and employing advanced statistical techniques, the study aims to enhance the precision of Z-R models, offering a more reliable means of estimating rainfall rates from radar reflectivity data. This refined Z-R relationship holds significant potential for improving our understanding of tropical rain systems and enhancing forecasting accuracy in regions prone to heavy precipitation.

Keywords: remote sensing, precipitation, drop size distribution, micro rain radar

Procedia PDF Downloads 34
3544 An Efficient and Provably Secure Three-Factor Authentication Scheme with Key Agreement

Authors: Mohan Ramasundaram, Amutha Prabakar Muniyandi

Abstract:

Remote user authentication is one of the important tasks for any kind of remote server applications. Several remote authentication schemes are proposed by the researcher for Telecare Medicine Information System (TMIS). Most of the existing techniques have limitations, vulnerable to various kind attacks, lack of functionalities, information leakage, no perfect forward security and ineffectiveness. Authentication is a process of user verification mechanism for allows him to access the resources of a server. Nowadays, most of the remote authentication protocols are using two-factor authentications. We have made a survey of several remote authentication schemes using three factors and this survey shows that the most of the schemes are inefficient and subject to several attacks. We observed from the experimental evaluation; the proposed scheme is very secure against various known attacks that include replay attack, man-in-the-middle attack. Furthermore, the analysis based on the communication cost and computational cost estimation of the proposed scheme with related schemes shows that our proposed scheme is efficient.

Keywords: Telecare Medicine Information System, elliptic curve cryptography, three-factor, biometric, random oracle

Procedia PDF Downloads 219
3543 Morphological Characteristics and Development of the Estuary Area of Lam River, Vietnam

Authors: Hai Nguyen Tien

Abstract:

On the basis of the structure of alluvial sediments explained by echo sounding data and remote sensing images, the following results can be given: The estuary of Lam river (from Ben Thuy bridge to Cua Hoi) is divided into 3 channel (location is calculated according to the river bank on the Nghe An province) : i) channel I (from Ben Thuy bridge to Hung Hoa) is the branching river; ii) channel II (from Hung Hoa to Nghi Thai is a channel develops in a meandering direction with a concave side toward Ha Tinh province; iii) channel III, from Nghi Thai to Cua Hoi is a channel develops in a meandering direction with a concave side toward Nghe An province. This estuary area is formed in the period from after the sea level dropped below 0m (current water level) to the present: i) Chanel II developed moving towards Ha Tinh provnce; ii) Chanel III developed moving towards Nghe An province; iii) In chanel I, a second river branch is formed because the flow of river cuts through the Hong Lam- Hong Nhat mudflat, at the same time creating an island. Morphological characteristics of the estuary area of Lam River are the main result of erosion and deposition activities corresponding to two water levels: low water level below 0 m and water level 0 m (current water level). Characteristics of the sediment layers on the riverbed in the estuary can be used to determine the sea levels in Late Holocene–Present.

Keywords: Lam River, development, Cua Hoi, river morphology

Procedia PDF Downloads 126
3542 Research on the Spatial Evolution of Tourism-Oriented Rural Settlements: Take the Xiaochanfangyu Village, Dongshuichang Village, Maojiayu Village in Jixian County, Tianjin City as Examples

Authors: Yu Zhang, Jie Wu, Li Dong

Abstract:

Rural tourism is the service industry which regards the agricultural production, rural life, rural nature and cultural landscape as the tourist attraction. It aims to meet the needs of the city tourists such as country sightseeing, vacation, and leisure. According to the difference of the tourist resources, the rural settlements can be divided into different types: The type of tourism resources, scenic spot, and peri-urban. In the past ten years, the rural tourism has promoted the industrial transformation and economic growth in rural areas of China. And it is conducive to the coordinated development of urban and rural areas and has greatly improved the ecological environment and the standard of living for farmers in rural areas. At the same time, a large number of buildings and sites are built in the countryside in order to enhance the tourist attraction and the ability of tourist reception and also to increase the travel comfort and convenience, which has significant influence on the spatial evolution of the village settlement. This article takes the XiangYing Subdistrict, which is in JinPu District of Dalian in China as the exemplification and uses the technology of Remote Sensing (RS), Geographic Information System (GIS) and the technology of Landscape Spatial Analysis to study the influence of the rural tourism development in the rural settlement spaces in four steps. First, acquiring the remote sensing image data at different times of 8 administrative villages in the XiangYing Subdistrict, by using the remote sensing application EDRAS8.6; second, vectoring basic maps of XiangYing Subdistrict including its land-use map with the application of ArcGIS 9.3, associating with social and economic attribute data of rural settlements and analyzing on the rural evolution visually; third, quantifying the comparison of these patches in rural settlements by using the landscape spatial calculation application Fragstats 3.3 and analyzing on the evolution of the spatial structure of settlement in macro and medium scale; finally, summarizing the evolution characteristics and internal reasons of tourism-oriented rural settlements. The main findings of this article include: first of all, there is difference in the evolution of the spatial structure between the developing rural settlements and undeveloped rural settlements among the eight administrative villages; secondly, the villages relying on the surrounding tourist attractions, the villages developing agricultural ecological garden and the villages with natural or historical and cultural resources have different laws of development; then, the rural settlements whose tourism development in germination period, development period and mature period have different characteristics of spatial evolution; finally, the different evolution modes of the tourism-oriented rural settlement space have different influences on the protection and inheritance of the village scene. The development of tourism has a significant impact on the spatial evolution of rural settlement. The intensive use of rural land and natural resources is the fundamental principle to protect the rural cultural landscape and ecological environment as well as the critical way to improve the attraction of rural tourism and promote the sustainable development of countryside.

Keywords: landscape pattern, rural settlement, spatial evolution, tourism-oriented, Xiangying Subdistrict

Procedia PDF Downloads 291
3541 Timescape-Based Panoramic View for Historic Landmarks

Authors: H. Ali, A. Whitehead

Abstract:

Providing a panoramic view of famous landmarks around the world offers artistic and historic value for historians, tourists, and researchers. Exploring the history of famous landmarks by presenting a comprehensive view of a temporal panorama merged with geographical and historical information presents a unique challenge of dealing with images that span a long period, from the 1800’s up to the present. This work presents the concept of temporal panorama through a timeline display of aligned historic and modern images for many famous landmarks. Utilization of this panorama requires a collection of hundreds of thousands of landmark images from the Internet comprised of historic images and modern images of the digital age. These images have to be classified for subset selection to keep the more suitable images that chronologically document a landmark’s history. Processing of historic images captured using older analog technology under various different capturing conditions represents a big challenge when they have to be used with modern digital images. Successful processing of historic images to prepare them for next steps of temporal panorama creation represents an active contribution in cultural heritage preservation through the fulfillment of one of UNESCO goals in preservation and displaying famous worldwide landmarks.

Keywords: cultural heritage, image registration, image subset selection, registered image similarity, temporal panorama, timescapes

Procedia PDF Downloads 165
3540 WO₃-SnO₂ Sensors for Selective Detection of Volatile Organic Compounds for Breath Analysis

Authors: Arpan Kumar Nayak, Debabrata Pradhan

Abstract:

A simple, single-step and one-pot hydrothermal method was employed to synthesize WO₃-SnO₂ mixed nanostructured metal oxides at 200°C in 12h. The SnO₂ nanoparticles were found to be uniformly decorated on the WO₃ nanoplates. Though it is widely known that noble metals such as Pt, Pd doping or decoration on metal oxides improve the sensing response and sensitivity, we varied the SnO₂ concentration in the WO₃-SnO₂ mixed oxide and demonstrated their performance in ammonia, ethanol and acetone sensing. The sensing performance of WO₃-(x)SnO₂ [x = 0.27, 0.54, 1.08] mixed nanostructured oxides was found to be not only superior to that of pristine oxides but also higher/better than that of reported noble metal-based sensors. The sensing properties (selectivity, limit of detection, response and recovery times) are measured as a function of operating temperature (150-350°C). In particular, the gas selectivity is found to be highly temperature-dependent with optimum performance obtained at 200°C, 300°C and 350°C for ammonia, ethanol, and acetone, respectively. The present results on cost effective WO₃-SnO₂ sensors can find potential application in human breath analysis by noninvasive detection.

Keywords: gas sensing, mixed oxides, nanoplates, ammonia, ethanol, acetone

Procedia PDF Downloads 240
3539 Deep Learning for SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network

Procedia PDF Downloads 67
3538 Security Analysis and Implementation of Achterbahn-128 for Images Encryption

Authors: Aissa Belmeguenai, Oulaya Berrak, Khaled Mansouri

Abstract:

In this work, efficiency implementation and security evaluation of the keystream generator of Achterbahn-128 for images encryption and decryption was introduced. The implementation for this simulated project is written with MATLAB.7.5. First of all, two different original images are used to validate the proposed design. The developed program is used to transform the original images data into digital image file. Finally, the proposed program is implemented to encrypt and decrypt images data. Several tests are done to prove the design performance, including visual tests and security evaluation.

Keywords: Achterbahn-128, keystream generator, stream cipher, image encryption, security analysis

Procedia PDF Downloads 315
3537 Application of Multilayer Perceptron and Markov Chain Analysis Based Hybrid-Approach for Predicting and Monitoring the Pattern of LULC Using Random Forest Classification in Jhelum District, Punjab, Pakistan

Authors: Basit Aftab, Zhichao Wang, Feng Zhongke

Abstract:

Land Use and Land Cover Change (LULCC) is a critical environmental issue that has significant effects on biodiversity, ecosystem services, and climate change. This study examines the spatiotemporal dynamics of land use and land cover (LULC) across a three-decade period (1992–2022) in a district area. The goal is to support sustainable land management and urban planning by utilizing the combination of remote sensing, GIS data, and observations from Landsat satellites 5 and 8 to provide precise predictions of the trajectory of urban sprawl. In order to forecast the LULCC patterns, this study suggests a hybrid strategy that combines the Random Forest method with Multilayer Perceptron (MLP) and Markov Chain analysis. To predict the dynamics of LULC change for the year 2035, a hybrid technique based on multilayer Perceptron and Markov Chain Model Analysis (MLP-MCA) was employed. The area of developed land has increased significantly, while the amount of bare land, vegetation, and forest cover have all decreased. This is because the principal land types have changed due to population growth and economic expansion. The study also discovered that between 1998 and 2023, the built-up area increased by 468 km² as a result of the replacement of natural resources. It is estimated that 25.04% of the study area's urbanization will be increased by 2035. The performance of the model was confirmed with an overall accuracy of 90% and a kappa coefficient of around 0.89. It is important to use advanced predictive models to guide sustainable urban development strategies. It provides valuable insights for policymakers, land managers, and researchers to support sustainable land use planning, conservation efforts, and climate change mitigation strategies.

Keywords: land use land cover, Markov chain model, multi-layer perceptron, random forest, sustainable land, remote sensing.

Procedia PDF Downloads 33
3536 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 90
3535 Development of Star Tracker for Satellite

Authors: S. Yelubayev, V. Ten, B. Albazarov, E. Sarsenbayev, К. Аlipbayev, A. Shamro, Т. Bopeyev, А. Sukhenko

Abstract:

Currently in Kazakhstan much attention is paid to the development of space branch. Successful launch of two Earth remote sensing satellite is carried out, projects on development of components for satellite are being carried out. In particular, the project on development of star tracker experimental model is completed. In the future it is planned to use this experimental model for development of star tracker prototype. Main stages of star tracker experimental model development are considered in this article.

Keywords: development, prototype, satellite, star tracker

Procedia PDF Downloads 477
3534 A Review on the Future Canadian RADARSAT Constellation Mission and Its Capabilities

Authors: Mohammed Dabboor

Abstract:

Spaceborne Synthetic Aperture Radar (SAR) systems are active remote sensing systems independent of weather and sun illumination, two factors which usually inhibit the use of optical satellite imagery. A SAR system could acquire single, dual, compact or fully polarized SAR imagery. Each SAR imagery type has its advantages and disadvantages. The sensitivity of SAR images is a function of the: 1) band, polarization, and incidence angle of the transmitted electromagnetic signal, and 2) geometric and dielectric properties of the radar target. The RADARSAT-1 (launched on November 4, 1995), RADARSAT-2 ((launched on December 14, 2007) and RADARSAT Constellation Mission (to be launched in July 2018) are three past, current, and future Canadian SAR space missions. Canada is developing the RADARSAT Constellation Mission (RCM) using small satellites to further maximize the capability to carry out round-the-clock surveillance from space. The Canadian Space Agency, in collaboration with other government-of-Canada departments, is leading the design, development and operation of the RADARSAT Constellation Mission to help addressing key priorities. The purpose of our presentation is to give an overview of the future Canadian RCM SAR mission with its satellites. Also, the RCM SAR imaging modes along with the expected SAR products will be described. An emphasis will be given to the mission unique capabilities and characteristics, such as the new compact polarimetry SAR configuration. In this presentation, we will summarize the RCM advancement from previous RADARSAT satellite missions. Furthermore, the potential of the RCM mission for different Earth observation applications will be outlined.

Keywords: compact polarimetry, RADARSAT, SAR mission, SAR applications

Procedia PDF Downloads 185
3533 Crop Classification using Unmanned Aerial Vehicle Images

Authors: Iqra Yaseen

Abstract:

One of the well-known areas of computer science and engineering, image processing in the context of computer vision has been essential to automation. In remote sensing, medical science, and many other fields, it has made it easier to uncover previously undiscovered facts. Grading of diverse items is now possible because of neural network algorithms, categorization, and digital image processing. Its use in the classification of agricultural products, particularly in the grading of seeds or grains and their cultivars, is widely recognized. A grading and sorting system enables the preservation of time, consistency, and uniformity. Global population growth has led to an increase in demand for food staples, biofuel, and other agricultural products. To meet this demand, available resources must be used and managed more effectively. Image processing is rapidly growing in the field of agriculture. Many applications have been developed using this approach for crop identification and classification, land and disease detection and for measuring other parameters of crop. Vegetation localization is the base of performing these task. Vegetation helps to identify the area where the crop is present. The productivity of the agriculture industry can be increased via image processing that is based upon Unmanned Aerial Vehicle photography and satellite. In this paper we use the machine learning techniques like Convolutional Neural Network, deep learning, image processing, classification, You Only Live Once to UAV imaging dataset to divide the crop into distinct groups and choose the best way to use it.

Keywords: image processing, UAV, YOLO, CNN, deep learning, classification

Procedia PDF Downloads 107
3532 Reconnaissance Investigation of Thermal Springs in the Middle Benue Trough, Nigeria by Remote Sensing

Authors: N. Tochukwu, M. Mukhopadhyay, A. Mohamed

Abstract:

It is no new that Nigeria faces a continual power shortage problem due to its vast population power demand and heavy reliance on nonrenewable forms of energy such as thermal power or fossil fuel. Many researchers have recommended using geothermal energy as an alternative; however, Past studies focus on the geophysical & geochemical investigation of this energy in the sedimentary and basement complex; only a few studies incorporated the remote sensing methods. Therefore, in this study, the preliminary examination of geothermal resources in the Middle Benue was carried out using satellite imagery in ArcMap. Landsat 8 scene (TIR, NIR, Red spectral bands) was used to estimate the Land Surface Temperature (LST). The Maximum Likelihood Classification (MLC) technique was used to classify sites with very low, low, moderate, and high LST. The intermediate and high classification happens to be possible geothermal zones, and they occupy 49% of the study area (38077km2). Riverline were superimposed on the LST layer, and the identification tool was used to locate high temperate sites. Streams that overlap on the selected sites were regarded as geothermal springs as. Surprisingly, the LST results show lower temperatures (<36°C) at the famous thermal springs (Awe & Wukari) than some unknown rivers/streams found in Kwande (38°C), Ussa, (38°C), Gwer East (37°C), Yola Cross & Ogoja (36°C). Studies have revealed that temperature increases with depth. However, this result shows excellent geothermal resources potential as it is expected to exceed the minimum geothermal gradient of 25.47 with an increase in depth. Therefore, further investigation is required to estimate the depth of the causative body, geothermal gradients, and the sustainability of the reservoirs by geophysical and field exploration. This method has proven to be cost-effective in locating geothermal resources in the study area. Consequently, the same procedure is recommended to be applied in other regions of the Precambrian basement complex and the sedimentary basins in Nigeria to save a preliminary field survey cost.

Keywords: ArcMap, geothermal resources, Landsat 8, LST, thermal springs, MLC

Procedia PDF Downloads 190
3531 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2

Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk

Abstract:

Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.

Keywords: ecosystem services, grassland management, machine learning, remote sensing

Procedia PDF Downloads 218
3530 Design and Fabrication of Piezoelectric Tactile Sensor by Deposition of PVDF-TrFE with Spin-Coating Method for Minimally Invasive Surgery

Authors: Saman Namvarrechi, Armin A. Dormeny, Javad Dargahi, Mojtaba Kahrizi

Abstract:

Since last two decades, minimally invasive surgery (MIS) has grown significantly due to its advantages compared to the traditional open surgery like less physical pain, faster recovery time and better healing condition around incision regions; however, one of the important challenges in MIS is getting an effective sensing feedback within the patient’s body during operations. Therefore, surgeons need efficient tactile sensing like determining the hardness of contact tissue for investigating the patient’s health condition. In such a case, MIS tactile sensors are preferred to be able to provide force/pressure sensing, force position, lump detection, and softness sensing. Among different pressure sensor technologies, the piezoelectric operating principle is the fittest for MIS’s instruments, such as catheters. Using PVDF with its copolymer, TrFE, as a piezoelectric material, is a common method of design and fabrication of a tactile sensor due to its ease of implantation and biocompatibility. In this research, PVDF-TrFE polymer is deposited via spin-coating method and treated with various post-deposition processes to investigate its piezoelectricity and amount of electroactive β phase. These processes include different post thermal annealing, the effect of spin-coating speed, different layer of deposition, and the presence of additional hydrate salt. According to FTIR spectroscopy and SEM images, the amount of the β phase and porosity of each sample is determined. In addition, the optimum experimental study is established by considering every aspect of the fabrication process. This study clearly shows the effective way of deposition and fabrication of a tactile PVDF-TrFE based sensor and an enhancement methodology to have a higher β phase and piezoelectric constant in order to have a better sense of touch at the end effector of biomedical devices.

Keywords: β phase, minimally invasive surgery, piezoelectricity, PVDF-TrFE, tactile sensor

Procedia PDF Downloads 122
3529 Integral Image-Based Differential Filters

Authors: Kohei Inoue, Kenji Hara, Kiichi Urahama

Abstract:

We describe a relationship between integral images and differential images. First, we derive a simple difference filter from conventional integral image. In the derivation, we show that an integral image and the corresponding differential image are related to each other by simultaneous linear equations, where the numbers of unknowns and equations are the same, and therefore, we can execute the integration and differentiation by solving the simultaneous equations. We applied the relationship to an image fusion problem, and experimentally verified the effectiveness of the proposed method.

Keywords: integral images, differential images, differential filters, image fusion

Procedia PDF Downloads 506
3528 Multimodal Database of Retina Images for Africa: The First Open Access Digital Repository for Retina Images in Sub Saharan Africa

Authors: Simon Arunga, Teddy Kwaga, Rita Kageni, Michael Gichangi, Nyawira Mwangi, Fred Kagwa, Rogers Mwavu, Amos Baryashaba, Luis F. Nakayama, Katharine Morley, Michael Morley, Leo A. Celi, Jessica Haberer, Celestino Obua

Abstract:

Purpose: The main aim for creating the Multimodal Database of Retinal Images for Africa (MoDRIA) was to provide a publicly available repository of retinal images for responsible researchers to conduct algorithm development in a bid to curb the challenges of ophthalmic artificial intelligence (AI) in Africa. Methods: Data and retina images were ethically sourced from sites in Uganda and Kenya. Data on medical history, visual acuity, ocular examination, blood pressure, and blood sugar were collected. Retina images were captured using fundus cameras (Foru3-nethra and Canon CR-Mark-1). Images were stored on a secure online database. Results: The database consists of 7,859 retinal images in portable network graphics format from 1,988 participants. Images from patients with human immunodeficiency virus were 18.9%, 18.2% of images were from hypertensive patients, 12.8% from diabetic patients, and the rest from normal’ participants. Conclusion: Publicly available data repositories are a valuable asset in the development of AI technology. Therefore, is a need for the expansion of MoDRIA so as to provide larger datasets that are more representative of Sub-Saharan data.

Keywords: retina images, MoDRIA, image repository, African database

Procedia PDF Downloads 127
3527 Multi-Analyte Indium Gallium Zinc Oxide-Based Dielectric Electrolyte-Insulator-Semiconductor Sensing Membranes

Authors: Chyuan Haur Kao, Hsiang Chen, Yu Sheng Tsai, Chen Hao Hung, Yu Shan Lee

Abstract:

Dielectric electrolyte-insulator-semiconductor sensing membranes-based biosensors have been intensively investigated because of their simple fabrication, low cost, and fast response. However, to enhance their sensing performance, it is worthwhile to explore alternative materials, distinct processes, and novel treatments. An ISFET can be viewed as a variation of MOSFET with the dielectric oxide layer as the sensing membrane. Then, modulation on the work function of the gate caused by electrolytes in various ion concentrations could be used to calculate the ion concentrations. Recently, owing to the advancement of CMOS technology, some high dielectric materials substrates as the sensing membranes of electrolyte-insulator-semiconductor (EIS) structures. The EIS with a stacked-layer of SiO₂ layer between the sensing membrane and the silicon substrate exhibited a high pH sensitivity and good long-term stability. IGZO is a wide-bandgap (~3.15eV) semiconductor of the III-VI semiconductor group with several preferable properties, including good transparency, high electron mobility, wide band gap, and comparable with CMOS technology. IGZO was sputtered by reactive radio frequency (RF) on a p-type silicon wafer with various gas ratios of Ar:O₂ and was treated with rapid thermal annealing in O₂ ambient. The sensing performance, including sensitivity, hysteresis, and drift rate was measured and XRD, XPS, and AFM analyses were also used to study the material properties of the IGZO membrane. Moreover, IGZO was used as a sensing membrane in dielectric EIS bio-sensor structures. In addition to traditional pH sensing capability, detection for concentrations of Na+, K+, urea, glucose, and creatinine was performed. Moreover, post rapid thermal annealing (RTA) treatment was confirmed to improve the material properties and enhance the multi-analyte sensing capability for various ions or chemicals in solutions. In this study, the IGZO sensing membrane with annealing in O₂ ambient exhibited a higher sensitivity, higher linearity, higher H+ selectivity, lower hysteresis voltage and lower drift rate. Results indicate that the IGZO dielectric sensing membrane on the EIS structure is promising for future bio-medical device applications.

Keywords: dielectric sensing membrane, IGZO, hydrogen ion, plasma, rapid thermal annealing

Procedia PDF Downloads 251
3526 Leveraging Remote Sensing Information for Drought Disaster Risk Management

Authors: Israel Ropo Orimoloye, Johanes A. Belle, Olusola Adeyemi, Olusola O. Ololade

Abstract:

With more than 100,000 orbits during the past 20 years, Terra has significantly improved our knowledge of the Earth's climate and its implications on societies and ecosystems of human activity and natural disasters, including drought events. With Terra instrument's performance and the free distribution of its products, this study utilised Terra MOD13Q1 satellite data to assess drought disaster events and its spatiotemporal patterns over the Free State Province of South Africa between 2001 and 2019 for summer, autumn, winter, and spring seasons. The study also used high-resolution downscaled climate change projections under three representative concentration pathways (RCP). Three future periods comprising the short (the 2030s), medium (2040s), and long term (2050s) compared to the current period are analysed to understand the potential magnitude of projected climate change-related drought. The study revealed that the year 2001 and 2016 witnessed extreme drought conditions where the drought index is between 0 and 20% across the entire province during summer, while the year 2003, 2004, 2007, and 2015 observed severe drought conditions across the region with variation from one part to the another. The result shows that from -24.5 to -25.5 latitude, the area witnessed a decrease in precipitation (80 to 120mm) across the time slice and an increase in the latitude -26° to -28° S for summer seasons, which is more prominent in the year 2041 to 2050. This study emphasizes the strong spatio-environmental impacts within the province and highlights the associated factors that characterise high drought stress risk, especially on the environment and ecosystems. This study contributes to a disaster risk framework to identify areas for specific research and adaptation activities on drought disaster risk and for environmental planning in the study area, which is characterised by both rural and urban contexts, to address climate change-related drought impacts.

Keywords: remote sensing, drought disaster, climate scenario, assessment

Procedia PDF Downloads 187
3525 Level Set and Morphological Operation Techniques in Application of Dental Image Segmentation

Authors: Abdolvahab Ehsani Rad, Mohd Shafry Mohd Rahim, Alireza Norouzi

Abstract:

Medical image analysis is one of the great effects of computer image processing. There are several processes to analysis the medical images which the segmentation process is one of the challenging and most important step. In this paper the segmentation method proposed in order to segment the dental radiograph images. Thresholding method has been applied to simplify the images and to morphologically open binary image technique performed to eliminate the unnecessary regions on images. Furthermore, horizontal and vertical integral projection techniques used to extract the each individual tooth from radiograph images. Segmentation process has been done by applying the level set method on each extracted images. Nevertheless, the experiments results by 90% accuracy demonstrate that proposed method achieves high accuracy and promising result.

Keywords: integral production, level set method, morphological operation, segmentation

Procedia PDF Downloads 317
3524 An Algorithm for Removal of Noise from X-Ray Images

Authors: Sajidullah Khan, Najeeb Ullah, Wang Yin Chai, Chai Soo See

Abstract:

In this paper, we propose an approach to remove impulse and Poisson noise from X-ray images. Many filters have been used for impulse noise removal from color and gray scale images with their own strengths and weaknesses but X-ray images contain Poisson noise and unfortunately there is no intelligent filter which can detect impulse and Poisson noise from X-ray images. Our proposed filter uses the upgraded layer discrimination approach to detect both Impulse and Poisson noise corrupted pixels in X-ray images and then restores only those detected pixels with a simple efficient and reliable one line equation. Our Proposed algorithms are very effective and much more efficient than all existing filters used only for Impulse noise removal. The proposed method uses a new powerful and efficient noise detection method to determine whether the pixel under observation is corrupted or noise free. Results from computer simulations are used to demonstrate pleasing performance of our proposed method.

Keywords: X-ray image de-noising, impulse noise, poisson noise, PRWF

Procedia PDF Downloads 383
3523 Protein Remote Homology Detection and Fold Recognition by Combining Profiles with Kernel Methods

Authors: Bin Liu

Abstract:

Protein remote homology detection and fold recognition are two most important tasks in protein sequence analysis, which is critical for protein structure and function studies. In this study, we combined the profile-based features with various string kernels, and constructed several computational predictors for protein remote homology detection and fold recognition. Experimental results on two widely used benchmark datasets showed that these methods outperformed the competing methods, indicating that these predictors are useful computational tools for protein sequence analysis. By analyzing the discriminative features of the training models, some interesting patterns were discovered, reflecting the characteristics of protein superfamilies and folds, which are important for the researchers who are interested in finding the patterns of protein folds.

Keywords: protein remote homology detection, protein fold recognition, profile-based features, Support Vector Machines (SVMs)

Procedia PDF Downloads 161
3522 An Energy Detection-Based Algorithm for Cooperative Spectrum Sensing in Rayleigh Fading Channel

Authors: H. Bakhshi, E. Khayyamian

Abstract:

Cognitive radios have been recognized as one of the most promising technologies dealing with the scarcity of the radio spectrum. In cognitive radio systems, secondary users are allowed to utilize the frequency bands of primary users when the bands are idle. Hence, how to accurately detect the idle frequency bands has attracted many researchers’ interest. Detection performance is sensitive toward noise power and gain fluctuation. Since signal to noise ratio (SNR) between primary user and secondary users are not the same and change over the time, SNR and noise power estimation is essential. In this paper, we present a cooperative spectrum sensing algorithm using SNR estimation to improve detection performance in the real situation.

Keywords: cognitive radio, cooperative spectrum sensing, energy detection, SNR estimation, spectrum sensing, rayleigh fading channel

Procedia PDF Downloads 451