Search results for: teaching and learning empathy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8622

Search results for: teaching and learning empathy

4782 An Investigation into Problems Confronting Pre-Service Teachers of French in South-West Nigeria

Authors: Modupe Beatrice Adeyinka

Abstract:

French, as a foreign language in Nigeria, is pronounced to be the second official language and a compulsory subject in the primary school level; hence, colleges of education across the nation are saddled with the responsibility of training teachers for the subject. However, it has been observed that this policy has not been fully implemented, for French teachers in training, do face many challenges, of which translation is chief. In a bid to investigate the major cause of the perceived translation problem, this study examined French translation problems of pre-service teachers in selected colleges of education in the southwest, Nigeria. This study adopted a descriptive survey research design. The simple random sampling technique was used to select four colleges of education in the southwest, where 100 French students were randomly selected by selecting 25 from each school. The pre-service teachers’ French translation problems’ questionnaire (PTFTPQ) was used as an instrument while four research questions were answered and three null hypotheses were tested. Among others, the findings revealed that students do have problems with false friends, though mainly with its interpretation when attempting French-English translation and vice versa; majority of the students make use of French dictionary as a way out and found the material very useful for their understanding of false friends. Teachers were, therefore, urged to attend in-service training where they would be exposed to new and emerging strategies, approaches and methodologies of French language teaching that will make students overcome the challenge of translation in learning French.

Keywords: false friends, French language, pre-service teachers, source language, target language, translation

Procedia PDF Downloads 166
4781 Outcomes-Based Qualification Design and Vocational Subject Literacies: How Compositional Fallacy Short-Changes School-Leavers’ Literacy Development

Authors: Rose Veitch

Abstract:

Learning outcomes-based qualifications have been heralded as the means to raise vocational education and training (VET) standards, meet the needs of the changing workforce, and establish equivalence with existing academic qualifications. Characterized by explicit, measurable performance statements and atomistically specified assessment criteria, the outcomes model has been adopted by many VET systems worldwide since its inception in the United Kingdom in the 1980s. Debate to date centers on how the outcomes model treats knowledge. Flaws have been identified in terms of the overemphasis of end-points, neglect of process and a failure to treat curricula coherently. However, much of this censure has evaluated the outcomes model from a theoretical perspective; to date, there has been scant empirical research to support these criticisms. Various issues therefore remain unaddressed. This study investigates how the outcomes model impacts the teaching of subject literacies. This is of particular concern for subjects on the academic-vocational boundary such as Business Studies, since many of these students progress to higher education in the United Kingdom. This study also explores the extent to which the outcomes model is compatible with borderline vocational subjects. To fully understand if this qualification model is fit for purpose in the 16-18 year-old phase, it is necessary to investigate how teachers interpret their qualification specifications in terms of curriculum, pedagogy and assessment. Of particular concern is the nature of the interaction between the outcomes model and teachers’ understandings of their subject-procedural knowledge, and how this affects their capacity to embed literacy into their teaching. This present study is part of a broader doctoral research project which seeks to understand if and how content-area, disciplinary literacy and genre approaches can be adapted to outcomes-based VET qualifications. This qualitative research investigates the ‘what’ and ‘how’ of literacy embedding from the perspective of in-service teacher development in the 16-18 phase of education. Using ethnographic approaches, it is based on fieldwork carried out in one Further Education college in the United Kingdom. Emergent findings suggest that the outcomes model is not fit for purpose in the context of borderline vocational subjects. It is argued that the outcomes model produces inferior qualifications due to compositional fallacy; the sum of a subject’s components do not add up to the whole. Findings indicate that procedural knowledge, largely unspecified by some outcomes-based qualifications, is where subject-literacies are situated, and that this often gets lost in ‘delivery’. It seems that the outcomes model provokes an atomistic treatment of knowledge amongst teachers, along with the privileging of propositional knowledge over procedural knowledge. In other words, outcomes-based VET is a hostile environment for subject-literacy embedding. It is hoped that this research will produce useful suggestions for how this problem can be ameliorated, and will provide an empirical basis for the potential reforms required to address these issues in vocational education.

Keywords: literacy, outcomes-based, qualification design, vocational education

Procedia PDF Downloads 20
4780 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.

Keywords: apartment complex, big data, life-cycle building value analysis, machine learning

Procedia PDF Downloads 375
4779 Investigation of Organisational Culture and Its Impacts on Job Satisfaction among Language Teachers at a Language School

Authors: Davut Uysal

Abstract:

Turkish higher education system has experienced some structural changes in recent decades, which resulted in the concentration on English language teaching as a foreign language at high education institutions. However, the number of studies examining the relationship between organizational culture and job satisfaction among language teachers at higher education institutions, who are the key elements of the teaching process, is very limited in the country. The main objective of this study is to find out the perceptions of English language instructors regarding organizational culture and its impact on their job satisfaction at School of Foreign Language, Anadolu University in Turkey. Questionnaire technique was used in data collection, and the collected data was analysed with the help of SPSS data analysis program. The findings of the study revealed that the respondents of the study had positive perceptions regarding current organizational culture indicating satisfaction with co-worker relations and administration, supervision support and the work itself, as well as their satisfaction with the available professional development opportunities provided by their institution. A significant relationship between overall organizational culture and job satisfaction was found in the study. This study also presents some key elements to increase the job satisfaction levels of the language teachers by managing corporate communication and to improve the organisational culture based on the findings of the study as they are two interrelated issues.

Keywords: corporate communication, English teacher, organizational culture, job satisfaction

Procedia PDF Downloads 173
4778 A Study on the Application of Generative AI Tools for Chinese Writing Feedback in Non-Fiction Writing Instruction

Authors: Stephanie Liu Lu

Abstract:

The course "University Chinese," an essential component of the curriculum in Hong Kong's higher education institutions, plays a crucial role in enhancing students' creative expression, narrative construction, argumentative prowess, and literary skills through its focus on non-fiction writing. Despite its significance, the comprehensive syllabus, coupled with limited classroom time, often restricts adequate practice opportunities and leads to delayed feedback, negatively impacting students' preparation for assessments. This paper investigates the potential of generative artificial intelligence (AI) tools, such as ChatGPT and POE, to provide personalized and immediate feedback for writing tasks. The primary goal of this research is to evaluate student receptiveness to AI-generated feedback and compare it to traditional feedback provided solely by human instructors. To achieve this, participants will be systematically divided into two groups: one receiving feedback from both instructors and AI tools, and a control group that receives feedback exclusively from instructors. The study will thoroughly analyze the revisions made to texts after receiving feedback, focusing particularly on enhancements in the quality of content and language proficiency across three dimensions: content/theme, language, and structural logic. This investigation aims to determine whether AI tools can enhance the efficiency of teaching practices, encourage autonomous learning, and significantly improve the overall quality of students' written work.

Keywords: AI-generated feedback, Chinese writing, non-fiction writing, student receptiveness

Procedia PDF Downloads 9
4777 A Framework of Dynamic Rule Selection Method for Dynamic Flexible Job Shop Problem by Reinforcement Learning Method

Authors: Rui Wu

Abstract:

In the volatile modern manufacturing environment, new orders randomly occur at any time, while the pre-emptive methods are infeasible. This leads to a real-time scheduling method that can produce a reasonably good schedule quickly. The dynamic Flexible Job Shop problem is an NP-hard scheduling problem that hybrid the dynamic Job Shop problem with the Parallel Machine problem. A Flexible Job Shop contains different work centres. Each work centre contains parallel machines that can process certain operations. Many algorithms, such as genetic algorithms or simulated annealing, have been proposed to solve the static Flexible Job Shop problems. However, the time efficiency of these methods is low, and these methods are not feasible in a dynamic scheduling problem. Therefore, a dynamic rule selection scheduling system based on the reinforcement learning method is proposed in this research, in which the dynamic Flexible Job Shop problem is divided into several parallel machine problems to decrease the complexity of the dynamic Flexible Job Shop problem. Firstly, the features of jobs, machines, work centres, and flexible job shops are selected to describe the status of the dynamic Flexible Job Shop problem at each decision point in each work centre. Secondly, a framework of reinforcement learning algorithm using a double-layer deep Q-learning network is applied to select proper composite dispatching rules based on the status of each work centre. Then, based on the selected composite dispatching rule, an available operation is selected from the waiting buffer and assigned to an available machine in each work centre. Finally, the proposed algorithm will be compared with well-known dispatching rules on objectives of mean tardiness, mean flow time, mean waiting time, or mean percentage of waiting time in the real-time Flexible Job Shop problem. The result of the simulations proved that the proposed framework has reasonable performance and time efficiency.

Keywords: dynamic scheduling problem, flexible job shop, dispatching rules, deep reinforcement learning

Procedia PDF Downloads 112
4776 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning

Authors: Richard O’Riordan, Saritha Unnikrishnan

Abstract:

Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.

Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection

Procedia PDF Downloads 109
4775 Leave or Remain Silent: A Study of Parents’ Views on Social-Emotional Learning in Chinese Schools

Authors: Pei Wang

Abstract:

The concept of social-emotional learning (SEL) is becoming increasingly popular in both research and practical applications worldwide. However, there is a lack of empirical studies and implementation of SEL in China, particularly from the perspective of parents. This qualitative study examined how Chinese parents perceived SEL, how their views on SEL were shaped, and how these views affected their decisions regarding their children’s education programs. Using the Collaborative for Academic Social and Emotional Learning Interactive Wheel framework and Bronfenbrenner's bioecological theory, the study conducted interviews with eight parents whose children attended public, international, and private schools in China. All collected data were conducted a thematic analysis involving three coding phases. The findings revealed that interviewees perceived SEL as significant to children’s development but held diverse understandings and perspectives on SEL at school depending on the amount and the quality of SEL resources available in their children’s schools. Additionally, parents’ attitudes towards the exam-oriented education system and Chinese culture influenced their views on SEL in school. Nevertheless, their socioeconomic status (SES) was the most significant factor in their perspectives on SEL, which significantly impacted their choices in their children's educational programs. High-SES families had more options to pursue SEL resources by sending their children to international schools or Western countries, while lower middle-class SES families had limited SEL resources in public schools. This highlighted educational inequality in China and emphasized the need for greater attention and investment in SEL programs in Chinese public schools.

Keywords: Chinese, inequality, parent, school, social-emotional learning

Procedia PDF Downloads 69
4774 Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys

Authors: Hexiong Liu

Abstract:

Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model.

Keywords: sintered density, machine learning, interpretable descriptors, W(Mo) alloy

Procedia PDF Downloads 85
4773 Modeling and Mapping of Soil Erosion Risk Using Geographic Information Systems, Remote Sensing, and Deep Learning Algorithms: Case of the Oued Mikkes Watershed, Morocco

Authors: My Hachem Aouragh, Hind Ragragui, Abdellah El-Hmaidi, Ali Essahlaoui, Abdelhadi El Ouali

Abstract:

This study investigates soil erosion susceptibility in the Oued Mikkes watershed, located in the Meknes-Fez region of northern Morocco, utilizing advanced techniques such as deep learning algorithms and remote sensing integrated within Geographic Information Systems (GIS). Spanning approximately 1,920 km², the watershed is characterized by a semi-arid Mediterranean climate with irregular rainfall and limited water resources. The waterways within the watershed, especially the Oued Mikkes, are vital for agricultural irrigation and potable water supply. The research assesses the extent of erosion risk upstream of the Sidi Chahed dam while developing a spatial model of soil loss. Several important factors, including topography, land use/land cover, and climate, were analyzed, with data on slope, NDVI, and rainfall erosivity processed using deep learning models (DLNN, CNN, RNN). The results demonstrated excellent predictive performance, with AUC values of 0.92, 0.90, and 0.88 for DLNN, CNN, and RNN, respectively. The resulting susceptibility maps provide critical insights for soil management and conservation strategies, identifying regions at high risk for erosion across 24% of the study area. The most high-risk areas are concentrated on steep slopes, particularly near the Ifrane district and the surrounding mountains, while low-risk areas are located in flatter regions with less rugged topography. The combined use of remote sensing and deep learning offers a powerful tool for accurate erosion risk assessment and resource management in the Mikkes watershed, highlighting the implications of soil erosion on dam siltation and operational efficiency.

Keywords: soil erosion, GIS, remote sensing, deep learning, Mikkes Watershed, Morocco

Procedia PDF Downloads 26
4772 Probing Syntax Information in Word Representations with Deep Metric Learning

Authors: Bowen Ding, Yihao Kuang

Abstract:

In recent years, with the development of large-scale pre-trained lan-guage models, building vector representations of text through deep neural network models has become a standard practice for natural language processing tasks. From the performance on downstream tasks, we can know that the text representation constructed by these models contains linguistic information, but its encoding mode and extent are unclear. In this work, a structural probe is proposed to detect whether the vector representation produced by a deep neural network is embedded with a syntax tree. The probe is trained with the deep metric learning method, so that the distance between word vectors in the metric space it defines encodes the distance of words on the syntax tree, and the norm of word vectors encodes the depth of words on the syntax tree. The experiment results on ELMo and BERT show that the syntax tree is encoded in their parameters and the word representations they produce.

Keywords: deep metric learning, syntax tree probing, natural language processing, word representations

Procedia PDF Downloads 72
4771 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images

Authors: Masood Varshosaz, Kamyar Hasanpour

Abstract:

In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.

Keywords: human recognition, deep learning, drones, disaster mitigation

Procedia PDF Downloads 101
4770 Constructivist Design Approaches to Video Production for Distance Education in Business and Economics

Authors: C. von Essen

Abstract:

This study outlines and evaluates a constructivist design approach to the creation of educational video on postgraduate business degree programmes. Many online courses are tapping into the educational affordances of video, as this form of online learning has the potential to create rich, multimodal experiences. And yet, in many learning contexts video is still being used to transmit instruction to passive learners, rather than promote learner engagement and knowledge creation. Constructivism posits the notion that learning is shaped as students make connections between their experiences and ideas. This paper pivots on the following research question: how can we design educational video in ways which promote constructivist learning and stimulate analytic viewing? By exploring and categorizing over two thousand educational videos created since 2014 for over thirty postgraduate courses in business, economics, mathematics and statistics, this paper presents and critically reflects on a taxonomy of video styles and features. It links the pedagogical intent of video – be it concept explanation, skill demonstration, feedback, real-world application of ideas, community creation, or the cultivation of course narrative – to specific presentational characteristics such as visual effects including diagrammatic and real-life graphics and aminations, commentary and sound options, chronological sequencing, interactive elements, and presenter set-up. The findings of this study inform a framework which captures the pedagogical, technological and production considerations instructional designers and educational media specialists should be conscious of when planning and preparing the video. More broadly, the paper demonstrates how learning theory and technology can coalesce to produce informed and pedagogical grounded instructional design choices. This paper reveals how crafting video in a more conscious and critical manner can produce powerful, new educational design.

Keywords: educational video, constructivism, instructional design, business education

Procedia PDF Downloads 241
4769 Spontaneous Message Detection of Annoying Situation in Community Networks Using Mining Algorithm

Authors: P. Senthil Kumari

Abstract:

Main concerns in data mining investigation are social controls of data mining for handling ambiguity, noise, or incompleteness on text data. We describe an innovative approach for unplanned text data detection of community networks achieved by classification mechanism. In a tangible domain claim with humble secrecy backgrounds provided by community network for evading annoying content is presented on consumer message partition. To avoid this, mining methodology provides the capability to unswervingly switch the messages and similarly recover the superiority of ordering. Here we designated learning-centered mining approaches with pre-processing technique to complete this effort. Our involvement of work compact with rule-based personalization for automatic text categorization which was appropriate in many dissimilar frameworks and offers tolerance value for permits the background of comments conferring to a variety of conditions associated with the policy or rule arrangements processed by learning algorithm. Remarkably, we find that the choice of classifier has predicted the class labels for control of the inadequate documents on community network with great value of effect.

Keywords: text mining, data classification, community network, learning algorithm

Procedia PDF Downloads 513
4768 Working with Interpreters: Using Role Play to Teach Social Work Students

Authors: Yuet Wah Echo Yeung

Abstract:

Working with people from minority ethnic groups, refugees and asylum seeking communities who have limited proficiency in the language of the host country often presents a major challenge for social workers. Because of language differences, social workers need to work with interpreters to ensure accurate information is collected for their assessment and intervention. Drawing from social learning theory, this paper discusses how role play was used as an experiential learning exercise in a training session to help social work students develop skills when working with interpreters. Social learning theory posits that learning is a cognitive process that takes place in a social context when people observe, imitate and model others’ behaviours. The roleplay also helped students understand the role of the interpreter and the challenges they may face when they rely on interpreters to communicate with service users and their family. The first part of the session involved role play. A tutor played the role of social worker and deliberately behaved in an unprofessional manner and used inappropriate body language when working alongside the interpreter during a home visit. The purpose of the roleplay is not to provide a positive role model for students to ‘imitate’ social worker’s behaviours. Rather it aims to active and provoke internal thinking process and encourages students to critically consider the impacts of poor practice on relationship building and the intervention process. Having critically reflected on the implications for poor practice, students were then asked to play the role of social worker and demonstrate what good practice should look like. At the end of the session, students remarked that they learnt a lot by observing the good and bad example; it showed them what not to do. The exercise served to remind students how practitioners can easily slip into bad habits and of the importance of respect for the cultural difference when working with people from different cultural backgrounds.

Keywords: role play, social learning theory, social work practice, working with interpreters

Procedia PDF Downloads 183
4767 Assessing the Corporate Identity of Malaysia Universities in the East Coast Region with the Market Conditions in Ensuring Self-Sustainability: A Study on Universiti Sultan Zainal Abidin

Authors: Suffian Hadi Ayub, Mohammad Rezal Hamzah, Nor Hafizah Abdullah, Sharipah Nur Mursalina Syed Azmy, Hishamuddin Salim

Abstract:

The liberalisation of the education industry has exposed the institute of higher learning (IHL) in Malaysia to the financial challenges. Without good financial standing, public institution will rely on the government funding. Ostensibly, this contradicts with the government’s aspiration to make universities self-sufficient. With stiff competition from private institutes of higher learning, IHL need to be prepared at the forefront level. The corporate identity itself is the entrance to the world of higher learning and it is in this uniqueness, it will be able to distinguish itself from competitors. This paper examined the perception of the stakeholders at one of the public universities in the east coast region in Malaysia on the perceived reputation and how the university communicate its preparedness for self-sustainability through corporate identity. The findings indicated while the stakeholders embraced the challenges in facing the stiff competition and struggling market conditions, most of them felt the university should put more efforts in mobilising the corporate identity to its constituencies.

Keywords: communication, corporate identity, market conditions, universities

Procedia PDF Downloads 319
4766 Machine Learning Invariants to Detect Anomalies in Secure Water Treatment

Authors: Jonathan Heng, Yoong Cheah Huei

Abstract:

A strategic model that does not trigger any false alarms to detect anomalies in Secure Water Treatment (SWaT) test bed is presented. This model uses machine learning invariants formulated from streamlining the general form of Auto-Regressive models with eXogenous input. A creative generalized CUSUM algorithm to integrate the invariants and the detection strategy technique is successfully developed and tested in the SWaT Programmable Logic Controllers (PLCs). Three steps to fine-tune parameters, b and τ in the generalized algorithm are stated and an example used to demonstrate the tuning process is discussed. This approach can swiftly and effectively detect various scopes of cyber-attacks such as multiple points single stage and multiple points multiple stages in SWaT. This technique can be applied in water treatment plants and other cyber physical systems like power and gas plants too.

Keywords: machine learning invariants, generalized CUSUM algorithm with invariants and detection strategy, scope of cyber attacks, strategic model, tuning parameters

Procedia PDF Downloads 186
4765 Promoting Non-Formal Learning Mobility in the Field of Youth

Authors: Juha Kettunen

Abstract:

The purpose of this study is to develop a framework for the assessment of research and development projects. The assessment map is developed in this study based on the strategy map of the balanced scorecard approach. The assessment map is applied in a project that aims to reduce the inequality and risk of exclusion of young people from disadvantaged social groups. The assessment map denotes that not only funding but also necessary skills and qualifications should be carefully assessed in the implementation of the project plans so as to achieve the objectives of projects and the desired impact. The results of this study are useful for those who want to develop the implementation of the Erasmus+ Programme and the project teams of research and development projects.

Keywords: non-formal learning, youth work, social inclusion, innovation

Procedia PDF Downloads 302
4764 Partial Knowledge Transfer Between the Source Problem and the Target Problem in Genetic Algorithms

Authors: Terence Soule, Tami Al Ghamdi

Abstract:

To study how the partial knowledge transfer may affect the Genetic Algorithm (GA) performance, we model the Transfer Learning (TL) process using GA as the model solver. The objective of the TL is to transfer the knowledge from one problem to another related problem. This process imitates how humans think in their daily life. In this paper, we proposed to study a case where the knowledge transferred from the S problem has less information than what the T problem needs. We sampled the transferred population using different strategies of TL. The results showed transfer part of the knowledge is helpful and speeds the GA process of finding a solution to the problem.

Keywords: transfer learning, partial transfer, evolutionary computation, genetic algorithm

Procedia PDF Downloads 136
4763 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing

Authors: Tolulope Aremu

Abstract:

This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.

Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving

Procedia PDF Downloads 42
4762 Inclusive Practices in Physical Education: A Survey of Pre-Service Teachers' Attitudes and Self-Efficacy in the Context of Teachers' Training

Authors: Teresa M. Odipo

Abstract:

Inclusive physical education and an inclusive educational approach in German schools have received much attention in recent years due to the UN Convention on the rights of persons with disabilities proposals, which came into force in Germany in 2009. The aim of inclusive PE is to include children with disabilities and able bodied children, based on the idea, that all children should attend school together. While PE mostly took place in a heterogeneous environment, introducing children with all kinds of disabilities posed more challenges to the teachers, when children with disabilities were included. Therefore it is important that the educational approach should include pre-service teachers’ (PST) self-efficacy for and their attitudes towards inclusive practices. The PSTs’ self-efficacy for inclusive practices is one of the strongest predictors of the success of the inclusion reforms introduced in 2009, in order to improve PSTs’ ability to handle these very new challenges. PE stands out because the very nature of sport involves the body which means that all children, especially those with special needs should be treated in an appropriate manner. Up till now, it has been mostly English-speaking countries that have been assessed for inclusive practices in PE. Due to the lack of research in Germany, there is a strong need to question PSTs’ prepared-ness. This paper presents results from the 2016 survey conducted on around 100 PSTs by the German University of Sports in Cologne and opens up new directions within PSTs’ education, concerning their attitudes and self-efficacy towards inclusive PE. These new aspects will be included in the construction of new learning and teaching tools to improve pre-service teachers’ education for inclusive Physical Education.

Keywords: attitudes, inclusive physical education, pre-service teachers, self-efficacy

Procedia PDF Downloads 356
4761 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters

Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu

Abstract:

Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.

Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning

Procedia PDF Downloads 205
4760 From Bureaucracy to Organizational Learning Model: An Organizational Change Process Study

Authors: Vania Helena Tonussi Vidal, Ester Eliane Jeunon

Abstract:

This article aims to analyze the change processes of management related bureaucracy and learning organization model. The theoretical framework was based on Beer and Nohria (2001) model, identified as E and O Theory. Based on this theory the empirical research was conducted in connection with six key dimensions: goal, leadership, focus, process, reward systems and consulting. We used a case study of an educational Institution located in Barbacena, Minas Gerais. This traditional center of technical knowledge for long time adopted the bureaucratic way of management. After many changes in a business model, as the creation of graduate and undergraduate courses they decided to make a deep change in management model that is our research focus. The data were collected through semi-structured interviews with director, managers and courses supervisors. The analysis were processed by the procedures of Collective Subject Discourse (CSD) method, develop by Lefèvre & Lefèvre (2000), Results showed the incremental growing of management model toward a learning organization. Many impacts could be seeing. As negative factors we have: people resistance; poor information about the planning and implementation process; old politics inside the new model and so on. Positive impacts are: new procedures in human resources, mainly related to manager skills and empowerment; structure downsizing, open discussions channel; integrated information system. The process is still under construction and now great stimulus is done to managers and employee commitment in the process.

Keywords: bureaucracy, organizational learning, organizational change, E and O theory

Procedia PDF Downloads 436
4759 The Use of Computers in Improving the Academic Performance of Students in Mathematics

Authors: Uwaruile Austin Obuh

Abstract:

This research work focuses on the use of computers in improving the academic performance of students in mathematics in Benin City, Edo State. To guide this study, two research questions were raised, and two corresponding hypotheses were formulated. A total of one hundred and twenty (120) respondents were randomly selected from four schools in the city (60 boys and 60 girls). The instrument employed for the collation of data for the study was the multiple-choice test items on geometry (MCTIOG), drawn from past senior school certificate examinations (SSCE) questions. The instrument was validated by an expert in mathematics and measurement and evaluation. The data obtained from the pre and post-test were analysed using the mean, standard deviation, and T-test. The study revealed a non-significant difference between the experimental and control group in the pre-test, and the two groups were found to be the same before treatment began. The study also revealed that the experimental group performed better than the control group. One can, therefore, conclude that the use of computers for mathematics instruction has improved the performance of students in Geometry. Therefore, the hypothesis was rejected. The study finally revealed that there was no significant difference between the boys and girls taught mathematics using a computer. Therefore, the hypothesis which states there will be no significant difference in the performance of boys and girls taught mathematics using the computer was not rejected. Consequent upon the findings of this study, a number of recommendations were postulated that would enhance the performance of teachers in the use of computer-aided instruction.

Keywords: computer, teaching, learning, mathematics

Procedia PDF Downloads 130
4758 Reflective Thinking and Experiential Learning – A Quasi-Experimental Quanti-Quali Response to Greater Diversification of Activities, Greater Integration of Student Profiles

Authors: Paulo Sérgio Ribeiro de Araújo Bogas

Abstract:

Although several studies have assumed (at least implicitly) that learners' approaches to learning develop into deeper approaches to higher education, there appears to be no clear theoretical basis for this assumption and no empirical evidence. As a scientific contribution to this discussion, a pedagogical intervention of a quasi-experimental nature was developed, with a mixed methodology, evaluating the intervention within a single curricular unit of Marketing, using cases based on real challenges of brands, business simulation, and customer projects. Primary and secondary experiences were incorporated in the intervention: the primary experiences are the experiential activities themselves; the secondary experiences result from the primary experience, such as reflection and discussion in work teams. A diversified learning relationship was encouraged through the various connections between the different members of the learning community. The present study concludes that in the same context, the student's responses can be described as students who reinforce the initial deep approach, students who maintain the initial deep approach level, and others who change from an emphasis on the deep approach to one closer to superficial. This typology did not always confirm studies reported in the literature, namely, whether the initial level of deep processing would influence the superficial and the opposite. The result of this investigation points to the inclusion of pedagogical and didactic activities that integrate different motivations and initial strategies, leading to the possible adoption of deep approaches to learning since it revealed statistically significant differences in the difference in the scores of the deep/superficial approach and the experiential level. In the case of real challenges, the categories of “attribution of meaning and meaning of studied” and the possibility of “contact with an aspirational context” for their future professional stand out. In this category, the dimensions of autonomy that will be required of them were also revealed when comparing the classroom context of real cases and the future professional context and the impact they may have on the world. Regarding the simulated practice, two categories of response stand out: on the one hand, the motivation associated with the possibility of measuring the results of the decisions taken, an awareness of oneself, and, on the other hand, the additional effort that this practice required for some of the students.

Keywords: experiential learning, higher education, mixed methods, reflective learning, marketing

Procedia PDF Downloads 88
4757 An Interactive Voice Response Storytelling Model for Learning Entrepreneurial Mindsets in Media Dark Zones

Authors: Vineesh Amin, Ananya Agrawal

Abstract:

In a prolonged period of uncertainty and disruptions in the pre-said normal order, non-cognitive skills, especially entrepreneurial mindsets, have become a pillar that can reform the educational models to inform the economy. Dreamverse Learning Lab’s IVR-based storytelling program -Call-a-Kahaani- is an evolving experiment with an aim to kindle entrepreneurial mindsets in the remotest locations of India in an accessible and engaging manner. At the heart of this experiment is the belief that at every phase in our life’s story, we have a choice which brings us closer to achieving our true potential. This interactive program is thus designed using real-time storytelling principles to empower learners, ages 24 and below, to make choices and take decisions as they become more self-aware, practice grit, try new things through stories, guided activities, and interactions, simply over a phone call. This research paper highlights the framework behind an ongoing scalable, data-oriented, low-tech program to kindle entrepreneurial mindsets in media dark zones supported by iterative design and prototyping to reach 13700+ unique learners who made 59000+ calls for 183900+min listening duration to listen to content pieces of around 3 to 4 min, with the last monitored (March 2022) record of 34% serious listenership, within one and a half years of its inception. The paper provides an in-depth account of the technical development, content creation, learning, and assessment frameworks, as well as mobilization models which have been leveraged to build this end-to-end system.

Keywords: non-cognitive skills, entrepreneurial mindsets, speech interface, remote learning, storytelling

Procedia PDF Downloads 215
4756 Modelling the Impact of Installation of Heat Cost Allocators in District Heating Systems Using Machine Learning

Authors: Danica Maljkovic, Igor Balen, Bojana Dalbelo Basic

Abstract:

Following the regulation of EU Directive on Energy Efficiency, specifically Article 9, individual metering in district heating systems has to be introduced by the end of 2016. These directions have been implemented in member state’s legal framework, Croatia is one of these states. The directive allows installation of both heat metering devices and heat cost allocators. Mainly due to bad communication and PR, the general public false image was created that the heat cost allocators are devices that save energy. Although this notion is wrong, the aim of this work is to develop a model that would precisely express the influence of installation heat cost allocators on potential energy savings in each unit within multifamily buildings. At the same time, in recent years, a science of machine learning has gain larger application in various fields, as it is proven to give good results in cases where large amounts of data are to be processed with an aim to recognize a pattern and correlation of each of the relevant parameter as well as in the cases where the problem is too complex for a human intelligence to solve. A special method of machine learning, decision tree method, has proven an accuracy of over 92% in prediction general building consumption. In this paper, a machine learning algorithms will be used to isolate the sole impact of installation of heat cost allocators on a single building in multifamily houses connected to district heating systems. Special emphasises will be given regression analysis, logistic regression, support vector machines, decision trees and random forest method.

Keywords: district heating, heat cost allocator, energy efficiency, machine learning, decision tree model, regression analysis, logistic regression, support vector machines, decision trees and random forest method

Procedia PDF Downloads 261
4755 Method of Nursing Education: History Review

Authors: Cristina Maria Mendoza Sanchez, Maria Angeles Navarro Perán

Abstract:

Introduction: Nursing as a profession, from its initial formation and after its development in practice, has been built and identified mainly from its technical competence and professionalization within the positivist approach of the XIX century that provides a conception of the disease built on the basis of to the biomedical paradigm, where the care provided is more focused on the physiological processes and the disease than on the suffering person understood as a whole. The main issue that is in need of study here is a review of the nursing profession's history to get to know how the nursing profession was before the XIX century. It is unclear if there were organizations or people with knowledge about looking after others or if many people survived by chance. The holistic care, in which the appearance of the disease directly affects all its dimensions: physical, emotional, cognitive, social and spiritual. It is not a concept from the 21st century. It is common practice, most probably since established life in this world, with the final purpose of covering all these perspectives through quality care. Objective: In this paper, we describe and analyze the history of education in nursing learning in terms of reviewing and analysing theoretical foundations of clinical teaching and learning in nursing, with the final purpose of determining and describing the development of the nursing profession along the history. Method: We have done a descriptive systematic review study, doing a systematically searched of manuscripts and articles in the following health science databases: Pubmed, Scopus, Web of Science, Temperamentvm and CINAHL. The selection of articles has been made according to PRISMA criteria, doing a critical reading of the full text using the CASPe method. A compliment to this, we have read a range of historical and contemporary sources to support the review, such as manuals of Florence Nightingale and John of God as primary manuscripts to establish the origin of modern nursing and her professionalization. We have considered and applied ethical considerations of data processing. Results: After applying inclusion and exclusion criteria in our search, in Pubmed, Scopus, Web of Science, Temperamentvm and CINAHL, we have obtained 51 research articles. We have analyzed them in such a way that we have distinguished them by year of publication and the type of study. With the articles obtained, we can see the importance of our background as a profession before modern times in public health and as a review of our past to face challenges in the near future. Discussion: The important influence of key figures other than Nightingale has been overlooked and it emerges that nursing management and development of the professional body has a longer and more complex history than is generally accepted. Conclusions: There is a paucity of studies on the subject of the review to be able to extract very precise evidence and recommendations about nursing before modern times. But even so, as more representative data, an increase in research about nursing history has been observed. In light of the aspects analyzed, the need for new research in the history of nursing emerges from this perspective; in order to germinate studies of the historical construction of care before the XIX century and theories created then. We can assure that pieces of knowledge and ways of care were taught before the XIX century, but they were not called theories, as these concepts were created in modern times.

Keywords: nursing history, nursing theory, Saint John of God, Florence Nightingale, learning, nursing education

Procedia PDF Downloads 120
4754 Integrating Natural Language Processing (NLP) and Machine Learning in Lung Cancer Diagnosis

Authors: Mehrnaz Mostafavi

Abstract:

The assessment and categorization of incidental lung nodules present a considerable challenge in healthcare, often necessitating resource-intensive multiple computed tomography (CT) scans for growth confirmation. This research addresses this issue by introducing a distinct computational approach leveraging radiomics and deep-learning methods. However, understanding local services is essential before implementing these advancements. With diverse tracking methods in place, there is a need for efficient and accurate identification approaches, especially in the context of managing lung nodules alongside pre-existing cancer scenarios. This study explores the integration of text-based algorithms in medical data curation, indicating their efficacy in conjunction with machine learning and deep-learning models for identifying lung nodules. Combining medical images with text data has demonstrated superior data retrieval compared to using each modality independently. While deep learning and text analysis show potential in detecting previously missed nodules, challenges persist, such as increased false positives. The presented research introduces a Structured-Query-Language (SQL) algorithm designed for identifying pulmonary nodules in a tertiary cancer center, externally validated at another hospital. Leveraging natural language processing (NLP) and machine learning, the algorithm categorizes lung nodule reports based on sentence features, aiming to facilitate research and assess clinical pathways. The hypothesis posits that the algorithm can accurately identify lung nodule CT scans and predict concerning nodule features using machine-learning classifiers. Through a retrospective observational study spanning a decade, CT scan reports were collected, and an algorithm was developed to extract and classify data. Results underscore the complexity of lung nodule cohorts in cancer centers, emphasizing the importance of careful evaluation before assuming a metastatic origin. The SQL and NLP algorithms demonstrated high accuracy in identifying lung nodule sentences, indicating potential for local service evaluation and research dataset creation. Machine-learning models exhibited strong accuracy in predicting concerning changes in lung nodule scan reports. While limitations include variability in disease group attribution, the potential for correlation rather than causality in clinical findings, and the need for further external validation, the algorithm's accuracy and potential to support clinical decision-making and healthcare automation represent a significant stride in lung nodule management and research.

Keywords: lung cancer diagnosis, structured-query-language (SQL), natural language processing (NLP), machine learning, CT scans

Procedia PDF Downloads 108
4753 Literary Imagination and Leadership: Lessons From the Classroom

Authors: Naor Cohen

Abstract:

In recent years, business schools made teaching ethical leadership a higher priority. Greater attention to moral and ethical concepts and reasoning processes may prove beneficial to future business leaders. But with a shift in focus, there is a need for a shift in pedagogy. This paper explores an imaginative literature-based pedagogy in the teaching of ethical leadership. An imaginative literature-based pedagogy uses works of fiction to help students build moral analysis and moral judgment capabilities through a rigorous assessment of the moral soundness of actions, motivations, rationales, and consequences portrayed in works of fiction. Business students enrolled in 4 leadership senior-level courses were assigned the White Tiger: A Novel by Aravind Adiga as their main course reading. Students' engagement was measured as a three-factor construct exploring cognitive engagement, behavioural engagement and emotional engagement. In addition, students' final papers were analyzed using thematic content analysis. This paper will present the results of this analysis and argue that incorporating fiction into the leadership curriculum allows students to explore the dire consequences of avoiding countervailing interests, engaging in dishonesty and engaging in moral puffery-based leadership.

Keywords: ethical leadership, empathetic imagination, business education, pedagogy, fiction

Procedia PDF Downloads 208