Search results for: statistical interrogation
285 Motives for Reshoring from China to Europe: A Hierarchical Classification of Companies
Authors: Fabienne Fel, Eric Griette
Abstract:
Reshoring, whether concerning back-reshoring or near-reshoring, is a quite recent phenomenon. Despite the economic and political interest of this topic, academic research questioning determinants of reshoring remains rare. Our paper aims at contributing to fill this gap. In order to better understand the reasons for reshoring, we conducted a study among 280 French firms during spring 2016, three-quarters of which sourced, or source, in China. 105 firms in the sample have reshored all or part of their Chinese production or supply in recent years, and we aimed to establish a typology of the motives that drove them to this decision. We asked our respondents about the history of their Chinese supplies, their current reshoring strategies, and their motivations. Statistical analysis was performed with SPSS 22 and SPAD 8. Our results show that change in commercial and financial terms with China is the first motive explaining the current reshoring movement from this country (it applies to 54% of our respondents). A change in corporate strategy is the second motive (30% of our respondents); the reshoring decision follows a change in companies’ strategies (upgrading, implementation of a CSR policy, or a 'lean management' strategy). The third motive (14% of our sample) is a mere correction of the initial offshoring decision, considered as a mistake (under-estimation of hidden costs, non-quality and non-responsiveness problems). Some authors emphasize that developing a short supply chain, involving geographic proximity between design and production, gives a competitive advantage to companies wishing to offer innovative products. Admittedly 40% of our respondents indicate that this motive could have played a part in their decision to reshore, but this reason was not enough for any of them and is not an intrinsic motive leading to leaving Chinese suppliers. Having questioned our respondents about the importance given to various problems leading them to reshore, we then performed a Principal Components Analysis (PCA), associated with an Ascending Hierarchical Classification (AHC), based on Ward criterion, so as to point out more specific motivations. Three main classes of companies should be distinguished: -The 'Cost Killers' (23% of the sample), which reshore their supplies from China only because of higher procurement costs and so as to find lower costs elsewhere. -The 'Realists' (50% of the sample), giving equal weight or importance to increasing procurement costs in China and to the quality of their supplies (to a large extend). Companies being part of this class tend to take advantage of this changing environment to change their procurement strategy, seeking suppliers offering better quality and responsiveness. - The 'Voluntarists' (26% of the sample), which choose to reshore their Chinese supplies regardless of higher Chinese costs, to obtain better quality and greater responsiveness. We emphasize that if the main driver for reshoring from China is indeed higher local costs, it is should not be regarded as an exclusive motivation; 77% of the companies in the sample, are also seeking, sometimes exclusively, more reactive suppliers, liable to quality, respect for the environment and intellectual property.Keywords: China, procurement, reshoring, strategy, supplies
Procedia PDF Downloads 329284 Moderate Electric Field and Ultrasound as Alternative Technologies to Raspberry Juice Pasteurization Process
Authors: Cibele F. Oliveira, Debora P. Jaeschke, Rodrigo R. Laurino, Amanda R. Andrade, Ligia D. F. Marczak
Abstract:
Raspberry is well-known as a good source of phenolic compounds, mainly anthocyanin. Some studies pointed out the importance of these bioactive compounds consumption, which is related to the decrease of the risk of cancer and cardiovascular diseases. The most consumed raspberry products are juices, yogurts, ice creams and jellies and, to ensure the safety of these products, raspberry is commonly pasteurized, for enzyme and microorganisms inactivation. Despite being efficient, the pasteurization process can lead to degradation reactions of the bioactive compounds, decreasing the products healthy benefits. Therefore, the aim of the present work was to evaluate moderate electric field (MEF) and ultrasound (US) technologies application on the pasteurization process of raspberry juice and compare the results with conventional pasteurization process. For this, phenolic compounds, anthocyanin content and physical-chemical parameters (pH, color changes, titratable acidity) of the juice were evaluated before and after the treatments. Moreover, microbiological analyses of aerobic mesophiles microorganisms, molds and yeast were performed in the samples before and after the treatments, to verify the potential of these technologies to inactivate microorganisms. All the pasteurization processes were performed in triplicate for 10 min, using a cylindrical Pyrex® vessel with a water jacket. The conventional pasteurization was performed at 90 °C using a hot water bath connected to the extraction cell. The US assisted pasteurization was performed using 423 and 508 W cm-2 (75 and 90 % of ultrasound intensity). It is important to mention that during US application the temperature was kept below 35 °C; for this, the water jacket of the extraction cell was connected to a water bath with cold water. MEF assisted pasteurization experiments were performed similarly to US experiments, using 25 and 50 V. Control experiments were performed at the maximum temperature of US and MEF experiments (35 °C) to evaluate only the effect of the aforementioned technologies on the pasteurization. The results showed that phenolic compounds concentration in the juice was not affected by US and MEF application. However, it was observed that the US assisted pasteurization, performed at the highest intensity, decreased anthocyanin content in 33 % (compared to in natura juice). This result was possibly due to the cavitation phenomena, which can lead to free radicals formation and accumulation on the medium; these radicals can react with anthocyanin decreasing the content of these antioxidant compounds in the juice. Physical-chemical parameters did not present statistical differences for samples before and after the treatments. Microbiological analyses results showed that all the pasteurization treatments decreased the microorganism content in two logarithmic cycles. However, as values were lower than 1000 CFU mL-1 it was not possible to verify the efficacy of each treatment. Thus, MEF and US were considered as potential alternative technologies for pasteurization process, once in the right conditions the application of the technologies decreased microorganism content in the juice and did not affected phenolic and anthocyanin content, as well as physical-chemical parameters. However, more studies are needed regarding the influence of MEF and US processes on microorganisms’ inactivation.Keywords: MEF, microorganism inactivation, anthocyanin, phenolic compounds
Procedia PDF Downloads 245283 Safety and Maternal Anxiety in Mother's and Baby's Sleep: Cross-sectional Study
Authors: Rayanne Branco Dos Santos Lima, Lorena Pinheiro Barbosa, Kamila Ferreira Lima, Victor Manuel Tegoma Ruiz, Monyka Brito Lima Dos Santos, Maria Wendiane Gueiros Gaspar, Luzia Camila Coelho Ferreira, Leandro Cardozo Dos Santos Brito, Deyse Maria Alves Rocha
Abstract:
Introduction: The lack of regulation of the baby's sleep-wake pattern in the first years of life affects the health of thousands of women. Maternal sleep deprivation can trigger or aggravate psychosomatic problems such as depression, anxiety and stress that can directly influence maternal safety, with consequences for the baby's and mother's sleep. Such conditions can affect the family's quality of life and child development. Objective: To correlate maternal security with maternal state anxiety scores and the mother's and baby's total sleep time. Method: Cross-sectional study carried out with 96 mothers of babies aged 10 to 24 months, accompanied by nursing professionals linked to a Federal University in Northeast Brazil. Study variables were maternal security, maternal state anxiety scores, infant latency and sleep time, and total nocturnal sleep time of mother and infant. Maternal safety was calculated using a four-point Likert scale (1=not at all safe, 2=somewhat safe, 3=very safe, 4=completely safe). Maternal anxiety was measured by State-Trait Anxiety Inventory, state-anxiety subscale whose scores vary from 20 to 80 points, and the higher the score, the higher the anxiety levels. Scores below 33 are considered mild; from 33 to 49, moderate and above 49, high. As for the total nocturnal sleep time, values between 7-9 hours of sleep were considered adequate for mothers, and values between 9-12 hours for the baby, according to the guidelines of the National Sleep Foundation. For the sleep latency time, a time equal to or less than 20 min was considered adequate. It is noteworthy that the latency time and the time of night sleep of the mother and the baby were obtained by the mother's subjective report. To correlate the data, Spearman's correlation was used in the statistical package R version 3.6.3. Results: 96 women and babies participated, aged 22 to 38 years (mean 30.8) and 10 to 24 months (mean 14.7), respectively. The average of maternal security was 2.89 (unsafe); Mean maternal state anxiety scores were 43.75 (moderate anxiety). The babies' average sleep latency time was 39.6 min (>20 min). The mean sleep times of the mother and baby were, respectively, 6h and 42min and 8h and 19min, both less than the recommended nocturnal sleep time. Maternal security was positively correlated with maternal state anxiety scores (rh=266, p=0.009) and negatively correlated with infant sleep latency (rh= -0.30. P=0.003). Baby sleep time was positively correlated with maternal sleep time. (rh 0.46, p<0.001). Conclusion: The more secure the mothers considered themselves, the higher the anxiety scores and the shorter the baby's sleep latency. Also, the longer the baby sleeps, the longer the mother sleeps. Thus, interventions are needed to promote the quality and efficiency of sleep for both mother and baby.Keywords: sleep, anxiety, infant, mother-child relations
Procedia PDF Downloads 108282 Seismic Response of Reinforced Concrete Buildings: Field Challenges and Simplified Code Formulas
Authors: Michel Soto Chalhoub
Abstract:
Building code-related literature provides recommendations on normalizing approaches to the calculation of the dynamic properties of structures. Most building codes make a distinction among types of structural systems, construction material, and configuration through a numerical coefficient in the expression for the fundamental period. The period is then used in normalized response spectra to compute base shear. The typical parameter used in simplified code formulas for the fundamental period is overall building height raised to a power determined from analytical and experimental results. However, reinforced concrete buildings which constitute the majority of built space in less developed countries pose additional challenges to the ones built with homogeneous material such as steel, or with concrete under stricter quality control. In the present paper, the particularities of reinforced concrete buildings are explored and related to current methods of equivalent static analysis. A comparative study is presented between the Uniform Building Code, commonly used for buildings within and outside the USA, and data from the Middle East used to model 151 reinforced concrete buildings of varying number of bays, number of floors, overall building height, and individual story height. The fundamental period was calculated using eigenvalue matrix computation. The results were also used in a separate regression analysis where the computed period serves as dependent variable, while five building properties serve as independent variables. The statistical analysis shed light on important parameters that simplified code formulas need to account for including individual story height, overall building height, floor plan, number of bays, and concrete properties. Such inclusions are important for reinforced concrete buildings of special conditions due to the level of concrete damage, aging, or materials quality control during construction. Overall results of the present analysis show that simplified code formulas for fundamental period and base shear may be applied but they require revisions to account for multiple parameters. The conclusion above is confirmed by the analytical model where fundamental periods were computed using numerical techniques and eigenvalue solutions. This recommendation is particularly relevant to code upgrades in less developed countries where it is customary to adopt, and mildly adapt international codes. We also note the necessity of further research using empirical data from buildings in Lebanon that were subjected to severe damage due to impulse loading or accelerated aging. However, we excluded this study from the present paper and left it for future research as it has its own peculiarities and requires a different type of analysis.Keywords: seismic behaviour, reinforced concrete, simplified code formulas, equivalent static analysis, base shear, response spectra
Procedia PDF Downloads 233281 Effect of Timing and Contributing Factors for Early Language Intervention in Toddlers with Repaired Cleft Lip and Palate
Authors: Pushpavathi M., Kavya V., Akshatha V.
Abstract:
Introduction: Cleft lip and palate (CLP) is a congenital condition which hinders effectual communication due to associated speech and language difficulties. Expressive language delay (ELD) is a feature seen in this population which is influenced by factors such as type and severity of CLP, age at surgical and linguistic intervention and also the type and intensity of speech and language therapy (SLT). Since CLP is the most common congenital abnormality seen in Indian children, early intervention is a necessity which plays a critical role in enhancing their speech and language skills. The interaction between the timing of intervention and factors which contribute to effective intervention by caregivers is an area which needs to be explored. Objectives: The present study attempts to determine the effect of timing of intervention on the contributing maternal factors for effective linguistic intervention in toddlers with repaired CLP with respect to the awareness, home training patterns, speech and non-speech behaviors of the mothers. Participants: Thirty six toddlers in the age range of 1 to 4 years diagnosed as ELD secondary to repaired CLP, along with their mothers served as participants. Group I (Early Intervention Group, EIG) included 19 mother-child pairs who came to seek SLT soon after corrective surgery and group II (Delayed Intervention Group, DIG) included 16 mother-child pairs who received SLT after the age of 3 years. Further, the groups were divided into group A, and group B. Group ‘A’ received SLT for 60 sessions by Speech Language Pathologist (SLP), while Group B received SLT for 30 sessions by SLP and 30 sessions only by mother without supervision of SLP. Method: The mothers were enrolled for the Early Language Intervention Program and following this, their awareness about CLP was assessed through the Parental awareness questionnaire. The quality of home training was assessed through Mohite’s Inventory. Subsequently, the speech and non-speech behaviors of the mothers were assessed using a Mother’s behavioral checklist. Detailed counseling and orientation was done to the mothers, and SLT was initiated for toddlers. After 60 sessions of intensive SLT, the questionnaire and checklists were re-administered to find out the changes in scores between the pre- and posttest measurements. Results: The scores obtained under different domains in the awareness questionnaire, Mohite’s inventory and Mothers behavior checklist were tabulated and subjected to statistical analysis. Since the data did not follow normal distribution (i.e. p > 0.05), Mann-Whitney U test was conducted which revealed that there was no significant difference between groups I and II as well as groups A and B. Further, Wilcoxon Signed Rank test revealed that mothers had better awareness regarding issues related to CLP and improved home-training abilities post-orientation (p ≤ 0.05). A statistically significant difference was also noted for speech and non-speech behaviors of the mothers (p ≤ 0.05). Conclusions: Extensive orientation and counseling helped mothers of both EI and DI groups to improve their knowledge about CLP. Intensive SLT using focused stimulation and a parent-implemented approach enabled them to carry out the intervention in an effectual manner.Keywords: awareness, cleft lip and palate, early language intervention program, home training, orientation, timing of intervention
Procedia PDF Downloads 126280 Sensor and Sensor System Design, Selection and Data Fusion Using Non-Deterministic Multi-Attribute Tradespace Exploration
Authors: Matthew Yeager, Christopher Willy, John Bischoff
Abstract:
The conceptualization and design phases of a system lifecycle consume a significant amount of the lifecycle budget in the form of direct tasking and capital, as well as the implicit costs associated with unforeseeable design errors that are only realized during downstream phases. Ad hoc or iterative approaches to generating system requirements oftentimes fail to consider the full array of feasible systems or product designs for a variety of reasons, including, but not limited to: initial conceptualization that oftentimes incorporates a priori or legacy features; the inability to capture, communicate and accommodate stakeholder preferences; inadequate technical designs and/or feasibility studies; and locally-, but not globally-, optimized subsystems and components. These design pitfalls can beget unanticipated developmental or system alterations with added costs, risks and support activities, heightening the risk for suboptimal system performance, premature obsolescence or forgone development. Supported by rapid advances in learning algorithms and hardware technology, sensors and sensor systems have become commonplace in both commercial and industrial products. The evolving array of hardware components (i.e. sensors, CPUs, modular / auxiliary access, etc…) as well as recognition, data fusion and communication protocols have all become increasingly complex and critical for design engineers during both concpetualization and implementation. This work seeks to develop and utilize a non-deterministic approach for sensor system design within the multi-attribute tradespace exploration (MATE) paradigm, a technique that incorporates decision theory into model-based techniques in order to explore complex design environments and discover better system designs. Developed to address the inherent design constraints in complex aerospace systems, MATE techniques enable project engineers to examine all viable system designs, assess attribute utility and system performance, and better align with stakeholder requirements. Whereas such previous work has been focused on aerospace systems and conducted in a deterministic fashion, this study addresses a wider array of system design elements by incorporating both traditional tradespace elements (e.g. hardware components) as well as popular multi-sensor data fusion models and techniques. Furthermore, statistical performance features to this model-based MATE approach will enable non-deterministic techniques for various commercial systems that range in application, complexity and system behavior, demonstrating a significant utility within the realm of formal systems decision-making.Keywords: multi-attribute tradespace exploration, data fusion, sensors, systems engineering, system design
Procedia PDF Downloads 191279 Advancements in Electronic Sensor Technologies for Tea Quality Evaluation
Authors: Raana Babadi Fathipour
Abstract:
Tea, second only to water in global consumption rates, holds a significant place as the beverage of choice for many around the world. The process of fermenting tea leaves plays a crucial role in determining its ultimate quality, traditionally assessed through meticulous observation by tea tasters and laboratory analysis. However, advancements in technology have paved the way for innovative electronic sensing platforms like the electronic nose (e-nose), electronic tongue (e-tongue), and electronic eye (e-eye). These cutting-edge tools, coupled with sophisticated data processing algorithms, not only expedite the assessment of tea's sensory qualities based on consumer preferences but also establish new benchmarks for this esteemed bioactive product to meet burgeoning market demands worldwide. By harnessing intricate data sets derived from electronic signals and deploying multivariate statistical techniques, these technological marvels can enhance accuracy in predicting and distinguishing tea quality with unparalleled precision. In this contemporary exploration, a comprehensive overview is provided of the most recent breakthroughs and viable solutions aimed at addressing forthcoming challenges in the realm of tea analysis. Utilizing bio-mimicking Electronic Sensory Perception systems (ESPs), researchers have developed innovative technologies that enable precise and instantaneous evaluation of the sensory-chemical attributes inherent in tea and its derivatives. These sophisticated sensing mechanisms are adept at deciphering key elements such as aroma, taste, and color profiles, transitioning valuable data into intricate mathematical algorithms for classification purposes. Through their adept capabilities, these cutting-edge devices exhibit remarkable proficiency in discerning various teas with respect to their distinct pricing structures, geographic origins, harvest epochs, fermentation processes, storage durations, quality classifications, and potential adulteration levels. While voltammetric and fluorescent sensor arrays have emerged as promising tools for constructing electronic tongue systems proficient in scrutinizing tea compositions, potentiometric electrodes continue to serve as reliable instruments for meticulously monitoring taste dynamics within different tea varieties. By implementing a feature-level fusion strategy within predictive models, marked enhancements can be achieved regarding efficiency and accuracy levels. Moreover, by establishing intrinsic linkages through pattern recognition methodologies between sensory traits and biochemical makeup found within tea samples, further strides are made toward enhancing our understanding of this venerable beverage's complex nature.Keywords: classifier system, tea, polyphenol, sensor, taste sensor
Procedia PDF Downloads 10278 Threats to the Business Value: The Case of Mechanical Engineering Companies in the Czech Republic
Authors: Maria Reznakova, Michala Strnadova, Lukas Reznak
Abstract:
Successful achievement of strategic goals requires an effective performance management system, i.e. determining the appropriate indicators measuring the rate of goal achievement. Assuming that the goal of the owners is to grow the assets they invested in, it is vital to identify the key performance indicators, which contribute to value creation. These indicators are known as value drivers. Based on the undertaken literature search, a value driver is defined as any factor that affects the value of an enterprise. The important factors are then monitored by both financial and non-financial indicators. Financial performance indicators are most useful in strategic management, since they indicate whether a company's strategy implementation and execution are contributing to bottom line improvement. Non-financial indicators are mainly used for short-term decisions. The identification of value drivers, however, is problematic for companies which are not publicly traded. Therefore financial ratios continue to be used to measure the performance of companies, despite their considerable criticism. The main drawback of such indicators is the fact that they are calculated based on accounting data, while accounting rules may differ considerably across different environments. For successful enterprise performance management it is vital to avoid factors that may reduce (or even destroy) its value. Among the known factors reducing the enterprise value are the lack of capital, lack of strategic management system and poor quality of production. In order to gain further insight into the topic, the paper presents results of the research identifying factors that adversely affect the performance of mechanical engineering enterprises in the Czech Republic. The research methodology focuses on both the qualitative and the quantitative aspect of the topic. The qualitative data were obtained from a questionnaire survey of the enterprises senior management, while the quantitative financial data were obtained from the Analysis Major Database for European Sources (AMADEUS). The questionnaire prompted managers to list factors which negatively affect business performance of their enterprises. The range of potential factors was based on a secondary research – analysis of previously undertaken questionnaire surveys and research of studies published in the scientific literature. The results of the survey were evaluated both in general, by average scores, and by detailed sub-analyses of additional criteria. These include the company specific characteristics, such as its size and ownership structure. The evaluation also included a comparison of the managers’ opinions and the performance of their enterprises – measured by return on equity and return on assets ratios. The comparisons were tested by a series of non-parametric tests of statistical significance. The results of the analyses show that the factors most detrimental to the enterprise performance include the incompetence of responsible employees and the disregard to the customers‘ requirements.Keywords: business value, financial ratios, performance measurement, value drivers
Procedia PDF Downloads 226277 Preparedness is Overrated: Community Responses to Floods in a Context of (Perceived) Low Probability
Authors: Kim Anema, Matthias Max, Chris Zevenbergen
Abstract:
For any flood risk manager the 'safety paradox' has to be a familiar concept: low probability leads to a sense of safety, which leads to more investments in the area, which leads to higher potential consequences: keeping the aggregated risk (probability*consequences) at the same level. Therefore, it is important to mitigate potential consequences apart from probability. However, when the (perceived) probability is so low that there is no recognizable trend for society to adapt to, addressing the potential consequences will always be the lagging point on the agenda. Preparedness programs fail because of lack of interest and urgency, policy makers are distracted by their day to day business and there's always a more urgent issue to spend the taxpayer's money on. The leading question in this study was how to address the social consequences of flooding in a context of (perceived) low probability. Disruptions of everyday urban life, large or small, can be caused by a variety of (un)expected things - of which flooding is only one possibility. Variability like this is typically addressed with resilience - and we used the concept of Community Resilience as the framework for this study. Drawing on face to face interviews, an extensive questionnaire and publicly available statistical data we explored the 'whole society response' to two recent urban flood events; the Brisbane Floods (AUS) in 2011 and the Dresden Floods (GE) in 2013. In Brisbane, we studied how the societal impacts of the floods were counteracted by both authorities and the public, and in Dresden we were able to validate our findings. A large part of the reactions, both public as institutional, to these two urban flood events were not fuelled by preparedness or proper planning. Instead, more important success factors in counteracting social impacts like demographic changes in neighborhoods and (non-)economic losses were dynamics like community action, flexibility and creativity from authorities, leadership, informal connections and a shared narrative. These proved to be the determining factors for the quality and speed of recovery in both cities. The resilience of the community in Brisbane was good, due to (i) the approachability of (local) authorities, (ii) a big group of ‘secondary victims’ and (iii) clear leadership. All three of these elements were amplified by the use of social media and/ or web 2.0 by both the communities and the authorities involved. The numerous contacts and social connections made through the web were fast, need driven and, in their own way, orderly. Similarly in Dresden large groups of 'unprepared', ad hoc organized citizens managed to work together with authorities in a way that was effective and speeded up recovery. The concept of community resilience is better fitted than 'social adaptation' to deal with the potential consequences of an (im)probable flood. Community resilience is built on capacities and dynamics that are part of everyday life and which can be invested in pre-event to minimize the social impact of urban flooding. Investing in these might even have beneficial trade-offs in other policy fields.Keywords: community resilience, disaster response, social consequences, preparedness
Procedia PDF Downloads 354276 Analysis of Overall Thermo-Elastic Properties of Random Particulate Nanocomposites with Various Interphase Models
Authors: Lidiia Nazarenko, Henryk Stolarski, Holm Altenbach
Abstract:
In the paper, a (hierarchical) approach to analysis of thermo-elastic properties of random composites with interphases is outlined and illustrated. It is based on the statistical homogenization method – the method of conditional moments – combined with recently introduced notion of the energy-equivalent inhomogeneity which, in this paper, is extended to include thermal effects. After exposition of the general principles, the approach is applied in the investigation of the effective thermo-elastic properties of a material with randomly distributed nanoparticles. The basic idea of equivalent inhomogeneity is to replace the inhomogeneity and the surrounding it interphase by a single equivalent inhomogeneity of constant stiffness tensor and coefficient of thermal expansion, combining thermal and elastic properties of both. The equivalent inhomogeneity is then perfectly bonded to the matrix which allows to analyze composites with interphases using techniques devised for problems without interphases. From the mechanical viewpoint, definition of the equivalent inhomogeneity is based on Hill’s energy equivalence principle, applied to the problem consisting only of the original inhomogeneity and its interphase. It is more general than the definitions proposed in the past in that, conceptually and practically, it allows to consider inhomogeneities of various shapes and various models of interphases. This is illustrated considering spherical particles with two models of interphases, Gurtin-Murdoch material surface model and spring layer model. The resulting equivalent inhomogeneities are subsequently used to determine effective thermo-elastic properties of randomly distributed particulate composites. The effective stiffness tensor and coefficient of thermal extension of the material with so defined equivalent inhomogeneities are determined by the method of conditional moments. Closed-form expressions for the effective thermo-elastic parameters of a composite consisting of a matrix and randomly distributed spherical inhomogeneities are derived for the bulk and the shear moduli as well as for the coefficient of thermal expansion. Dependence of the effective parameters on the interphase properties is included in the resulting expressions, exhibiting analytically the nature of the size-effects in nanomaterials. As a numerical example, the epoxy matrix with randomly distributed spherical glass particles is investigated. The dependence of the effective bulk and shear moduli, as well as of the effective thermal expansion coefficient on the particle volume fraction (for different radii of nanoparticles) and on the radius of nanoparticle (for fixed volume fraction of nanoparticles) for different interphase models are compared to and discussed in the context of other theoretical predictions. Possible applications of the proposed approach to short-fiber composites with various types of interphases are discussed.Keywords: effective properties, energy equivalence, Gurtin-Murdoch surface model, interphase, random composites, spherical equivalent inhomogeneity, spring layer model
Procedia PDF Downloads 188275 Identification of Text Domains and Register Variation through the Analysis of Lexical Distribution in a Bangla Mass Media Text Corpus
Authors: Mahul Bhattacharyya, Niladri Sekhar Dash
Abstract:
The present research paper is an experimental attempt to investigate the nature of variation in the register in three major text domains, namely, social, cultural, and political texts collected from the corpus of Bangla printed mass media texts. This present study uses a corpus of a moderate amount of Bangla mass media text that contains nearly one million words collected from different media sources like newspapers, magazines, advertisements, periodicals, etc. The analysis of corpus data reveals that each text has certain lexical properties that not only control their identity but also mark their uniqueness across the domains. At first, the subject domains of the texts are classified into two parameters namely, ‘Genre' and 'Text Type'. Next, some empirical investigations are made to understand how the domains vary from each other in terms of lexical properties like both function and content words. Here the method of comparative-cum-contrastive matching of lexical load across domains is invoked through word frequency count to track how domain-specific words and terms may be marked as decisive indicators in the act of specifying the textual contexts and subject domains. The study shows that the common lexical stock that percolates across all text domains are quite dicey in nature as their lexicological identity does not have any bearing in the act of specifying subject domains. Therefore, it becomes necessary for language users to anchor upon certain domain-specific lexical items to recognize a text that belongs to a specific text domain. The eventual findings of this study confirm that texts belonging to different subject domains in Bangla news text corpus clearly differ on the parameters of lexical load, lexical choice, lexical clustering, lexical collocation. In fact, based on these parameters, along with some statistical calculations, it is possible to classify mass media texts into different types to mark their relation with regard to the domains they should actually belong. The advantage of this analysis lies in the proper identification of the linguistic factors which will give language users a better insight into the method they employ in text comprehension, as well as construct a systemic frame for designing text identification strategy for language learners. The availability of huge amount of Bangla media text data is useful for achieving accurate conclusions with a certain amount of reliability and authenticity. This kind of corpus-based analysis is quite relevant for a resource-poor language like Bangla, as no attempt has ever been made to understand how the structure and texture of Bangla mass media texts vary due to certain linguistic and extra-linguistic constraints that are actively operational to specific text domains. Since mass media language is assumed to be the most 'recent representation' of the actual use of the language, this study is expected to show how the Bangla news texts reflect the thoughts of the society and how they leave a strong impact on the thought process of the speech community.Keywords: Bangla, corpus, discourse, domains, lexical choice, mass media, register, variation
Procedia PDF Downloads 177274 Business Intelligent to a Decision Support Tool for Green Entrepreneurship: Meso and Macro Regions
Authors: Anishur Rahman, Maria Areias, Diogo Simões, Ana Figeuiredo, Filipa Figueiredo, João Nunes
Abstract:
The circular economy (CE) has gained increased awareness among academics, businesses, and decision-makers as it stimulates resource circularity in the production and consumption systems. A large epistemological study has explored the principles of CE, but scant attention eagerly focused on analysing how CE is evaluated, consented to, and enforced using economic metabolism data and business intelligent framework. Economic metabolism involves the ongoing exchange of materials and energy within and across socio-economic systems and requires the assessment of vast amounts of data to provide quantitative analysis related to effective resource management. Limited concern, the present work has focused on the regional flows pilot region from Portugal. By addressing this gap, this study aims to promote eco-innovation and sustainability in the regions of Intermunicipal Communities Região de Coimbra, Viseu Dão Lafões and Beiras e Serra da Estrela, using this data to find precise synergies in terms of material flows and give companies a competitive advantage in form of valuable waste destinations, access to new resources and new markets, cost reduction and risk sharing benefits. In our work, emphasis on applying artificial intelligence (AI) and, more specifically, on implementing state-of-the-art deep learning algorithms is placed, contributing to construction a business intelligent approach. With the emergence of new approaches generally highlighted under the sub-heading of AI and machine learning (ML), the methods for statistical analysis of complex and uncertain production systems are facing significant changes. Therefore, various definitions of AI and its differences from traditional statistics are presented, and furthermore, ML is introduced to identify its place in data science and the differences in topics such as big data analytics and in production problems that using AI and ML are identified. A lifecycle-based approach is then taken to analyse the use of different methods in each phase to identify the most useful technologies and unifying attributes of AI in manufacturing. Most of macroeconomic metabolisms models are mainly direct to contexts of large metropolis, neglecting rural territories, so within this project, a dynamic decision support model coupled with artificial intelligence tools and information platforms will be developed, focused on the reality of these transition zones between the rural and urban. Thus, a real decision support tool is under development, which will surpass the scientific developments carried out to date and will allow to overcome imitations related to the availability and reliability of data.Keywords: circular economy, artificial intelligence, economic metabolisms, machine learning
Procedia PDF Downloads 77273 Greener Minds: Understanding Students' Perceptions of Environmental Sustainability in Higher Education, Sultan Qaboos University
Authors: Aisha Alshdefat, Lina Shakman
Abstract:
Objective: With environmental sustainability (ES) emerging as a critical concern due to its global impact, higher education institutions play a vital role in promoting ES through curricula and campus operations. This study examines the perceptions, attitudes, and behaviors related to ES among students at Sultan Qaboos University, aiming to identify areas for improved integration of sustainability practices in higher education. Design: A descriptive cross-sectional study, conducted via an online questionnaire, examines perceptions and attitudes toward environmental sustainability among students at Sultan Qaboos University, Muscat, Oman. The survey instrument employs a 5-point Likert scale to assess six key areas: awareness, concern, attitude, willingness to participate, current behaviors, and recommendations for enhancing campus sustainability initiatives. A convenience sample of 200 students was initially targeted, with 157 students ultimately responding between September and November 2024. Eligible participants included Undergraduate and graduate students who consented after being fully informed of the study objectives and design were included, while those who withdrew or refused participation were excluded. Following ethical approval, data collection was carried out through Google Forms. SPSS Version 23 was used for descriptive and inferential analyses, including Pearson’s correlation, chi-square, and Fisher's exact test, to explore associations among key variables. Findings: Preliminary analysis indicates that 68% of participants are familiar with core environmental sustainability (ES) concepts, including the Sustainable Development Goals (SDGs), and express high concern regarding environmental issues. However, only 47% report active involvement in campus-led ES initiatives, underscoring an engagement gap. Over 70% of respondents believe that sustainability should be prioritized as a university policy, and 62% expressed willingness to participate in additional ES-related programs. Despite this interest, 58% advocated for more sustainability-focused courses in their curriculum, suggesting current offerings are insufficient. Statistical analysis revealed a significant positive correlation between ES awareness and willingness to engage in sustainable practices (p < 0.05). These findings highlight the need for expanded institutional efforts, including targeted programs and curriculum integration, to cultivate a more sustainability-centered culture among students. Conclusion: The results emphasize that while students demonstrate a strong foundational awareness of ES, greater institutional support is essential to transform this awareness into active engagement. More comprehensive integration of sustainability within academic programs and campus life could substantially enhance students’ involvement and commitment to environmental stewardship.Keywords: environmental sustainability, higher education, students, perceptions, Sultan Qaboos University.
Procedia PDF Downloads 19272 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping
Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo
Abstract:
Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping
Procedia PDF Downloads 76271 Deficient Multisensory Integration with Concomitant Resting-State Connectivity in Adult Attention Deficit/Hyperactivity Disorder (ADHD)
Authors: Marcel Schulze, Behrem Aslan, Silke Lux, Alexandra Philipsen
Abstract:
Objective: Patients with Attention Deficit/Hyperactivity Disorder (ADHD) often report that they are being flooded by sensory impressions. Studies investigating sensory processing show hypersensitivity for sensory inputs across the senses in children and adults with ADHD. Especially the auditory modality is affected by deficient acoustical inhibition and modulation of signals. While studying unimodal signal-processing is relevant and well-suited in a controlled laboratory environment, everyday life situations occur multimodal. A complex interplay of the senses is necessary to form a unified percept. In order to achieve this, the unimodal sensory modalities are bound together in a process called multisensory integration (MI). In the current study we investigate MI in an adult ADHD sample using the McGurk-effect – a well-known illusion where incongruent speech like phonemes lead in case of successful integration to a new perceived phoneme via late top-down attentional allocation . In ADHD neuronal dysregulation at rest e.g., aberrant within or between network functional connectivity may also account for difficulties in integrating across the senses. Therefore, the current study includes resting-state functional connectivity to investigate a possible relation of deficient network connectivity and the ability of stimulus integration. Method: Twenty-five ADHD patients (6 females, age: 30.08 (SD:9,3) years) and twenty-four healthy controls (9 females; age: 26.88 (SD: 6.3) years) were recruited. MI was examined using the McGurk effect, where - in case of successful MI - incongruent speech-like phonemes between visual and auditory modality are leading to a perception of a new phoneme. Mann-Whitney-U test was applied to assess statistical differences between groups. Echo-planar imaging-resting-state functional MRI was acquired on a 3.0 Tesla Siemens Magnetom MR scanner. A seed-to-voxel analysis was realized using the CONN toolbox. Results: Susceptibility to McGurk was significantly lowered for ADHD patients (ADHDMdn:5.83%, ControlsMdn:44.2%, U= 160.5, p=0.022, r=-0.34). When ADHD patients integrated phonemes, reaction times were significantly longer (ADHDMdn:1260ms, ControlsMdn:582ms, U=41.0, p<.000, r= -0.56). In functional connectivity medio temporal gyrus (seed) was negatively associated with primary auditory cortex, inferior frontal gyrus, precentral gyrus, and fusiform gyrus. Conclusion: MI seems to be deficient for ADHD patients for stimuli that need top-down attentional allocation. This finding is supported by stronger functional connectivity from unimodal sensory areas to polymodal, MI convergence zones for complex stimuli in ADHD patients.Keywords: attention-deficit hyperactivity disorder, audiovisual integration, McGurk-effect, resting-state functional connectivity
Procedia PDF Downloads 129270 The ‘Fun, Move, Play’ Project: Qualitative and Quantitative Findings from Irish Primary School Children (6-8 Years), Parents and Teachers
Authors: Jemma McGourty, Brid Delahunt, Fiona Hackett, Sharon Courtney, Richard English, Graham Russell, Sinéad O’Connor
Abstract:
Fundamental Movement Skills (FMS) mastery is considered essential for children’s ongoing, meaningful engagement in Physical Activity (PA). There has been a dearth of Irish research on baseline FMS and their development by means of intervention in young primary school children. In addition, as children’s participation in PA is heavily influenced by both parents and teachers, it is imperative to understand their attitudes and perceptions towards PA participation and its’ promotion in children. The ‘Fun, Move, Play’ Project investigated the effect of a 6-week play based PA intervention on primary school children’s (aged 6-8 years) FMS while also exploring the attitudes and perceptions of their parents and teachers towards PA participation. The FMS intervention utilised a pre-post quasi-experimental design to determine the effect of a 6-week play based PA intervention (devised from the iCoach Kids Programme) on 176 primary school children’s FMS (N = 176: 90 girls and 86 boys; M = 7.2 years; SD = 0.48). Objective measures of 7 FMS (run, skip, vertical jump, static balance, stationary dribble, catch, kick) were made using a combination of the TGMD2 and Get Skilled, Get Active resources. One hundred parents (87 mothers; 13 fathers; M=36 years; SD=5.45) and 90 teachers (67 females; 23 males) completed surveys investigating their attitudes and perceptions towards PA participation. In addition, 19 of these parents and 9 of these teachers participated in semi-structured qualitative interviews to explore, in more depth, their views and perceptions of PA participation. Both the FMS data set and survey responses were analysed using SPSS version 23, using appropriate statistical analysis. A thematic analysis framework was used to analyse the qualitative findings. A significant improvement was observed in the children’s overall FMS score pre-post intervention (t = 16.67; df = 175; p < 0.001), while there were also significant improvements in each of the seven individual FMS measured in the children, pre-post intervention. Findings from the parent surveys and interviews indicated that parents had positive attitudes towards PA, viewed it as important and supported their child’s PA participation. However, a lack of knowledge regarding the amount and intensity of PA that children should participate in emerged as a recurrent finding. Also, there was a significant positive correlation between the PA levels of parents’ and their children (r = .41; n = 100; p < .001). Arising from the teachers’ surveys and interviews was a positive attitude towards PA and the impact that it has on a child’s health and well-being. They also reported feeling more confident teaching certain aspects of the PE curriculum (games and sports) compared to others (gymnastics, dance), where they appreciate working with specialist practitioners. Conclusion: A short-term PA intervention has a positive effect on children’s FMS. While parents are supportive of their child’s PA participation, there is a knowledge gap regarding National PA guidelines for children. Teachers appreciate the importance of PA in children, but face a number of challenges in its implementation and promotion.Keywords: fundamental movement skills, parents attitudes to physical activity, short-term intervention, teachers attitudes to physical activity
Procedia PDF Downloads 184269 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection
Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa
Abstract:
Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.Keywords: classification, airborne LiDAR, parameters selection, support vector machine
Procedia PDF Downloads 151268 Strategies for Synchronizing Chocolate Conching Data Using Dynamic Time Warping
Authors: Fernanda A. P. Peres, Thiago N. Peres, Flavio S. Fogliatto, Michel J. Anzanello
Abstract:
Batch processes are widely used in food industry and have an important role in the production of high added value products, such as chocolate. Process performance is usually described by variables that are monitored as the batch progresses. Data arising from these processes are likely to display a strong correlation-autocorrelation structure, and are usually monitored using control charts based on multiway principal components analysis (MPCA). Process control of a new batch is carried out comparing the trajectories of its relevant process variables with those in a reference set of batches that yielded products within specifications; it is clear that proper determination of the reference set is key for the success of a correct signalization of non-conforming batches in such quality control schemes. In chocolate manufacturing, misclassifications of non-conforming batches in the conching phase may lead to significant financial losses. In such context, the accuracy of process control grows in relevance. In addition to that, the main assumption in MPCA-based monitoring strategies is that all batches are synchronized in duration, both the new batch being monitored and those in the reference set. Such assumption is often not satisfied in chocolate manufacturing process. As a consequence, traditional techniques as MPCA-based charts are not suitable for process control and monitoring. To address that issue, the objective of this work is to compare the performance of three dynamic time warping (DTW) methods in the alignment and synchronization of chocolate conching process variables’ trajectories, aimed at properly determining the reference distribution for multivariate statistical process control. The power of classification of batches in two categories (conforming and non-conforming) was evaluated using the k-nearest neighbor (KNN) algorithm. Real data from a milk chocolate conching process was collected and the following variables were monitored over time: frequency of soybean lecithin dosage, rotation speed of the shovels, current of the main motor of the conche, and chocolate temperature. A set of 62 batches with durations between 495 and 1,170 minutes was considered; 53% of the batches were known to be conforming based on lab test results and experts’ evaluations. Results showed that all three DTW methods tested were able to align and synchronize the conching dataset. However, synchronized datasets obtained from these methods performed differently when inputted in the KNN classification algorithm. Kassidas, MacGregor and Taylor’s (named KMT) method was deemed the best DTW method for aligning and synchronizing a milk chocolate conching dataset, presenting 93.7% accuracy, 97.2% sensitivity and 90.3% specificity in batch classification, being considered the best option to determine the reference set for the milk chocolate dataset. Such method was recommended due to the lowest number of iterations required to achieve convergence and highest average accuracy in the testing portion using the KNN classification technique.Keywords: batch process monitoring, chocolate conching, dynamic time warping, reference set distribution, variable duration
Procedia PDF Downloads 169267 Effects of Macro and Micro Nutrients on Growth and Yield Performances of Tomato (Lycopersicon esculentum MILL.)
Authors: K. M. S. Weerasinghe, A. H. K. Balasooriya, S. L. Ransingha, G. D. Krishantha, R. S. Brhakamanagae, L. C. Wijethilke
Abstract:
Tomato (Lycopersicon esculentum Mill.) is a major horticultural crop with an estimated global production of over 120 million metric tons and ranks first as a processing crop. The average tomato productivity in Sri Lanka (11 metric tons/ha) is much lower than the world average (24 metric tons/ha).To meet the tomato demand for the increasing population the productivity has to be intensified through the agronomic-techniques. Nutrition is one of the main factors which govern the growth and yield of tomato and the main nutrient source soil affect the plant growth and quality of the produce. Continuous cropping, improper fertilizer usage etc., cause widespread nutrient deficiencies. Therefore synthetic fertilizers and organic manures were introduced to enhance plant growth and maximize the crop yields. In this study, effects of macro and micronutrient supplementations on improvement of growth and yield of tomato were investigated. Selected tomato variety is Maheshi and plants were grown in Regional Agricultural and Research Centre Makadura under the Department of Agriculture recommended (DOA) macro nutrients and various combination of Ontario recommended dosages of secondary and micro fertilizer supplementations. There were six treatments in this experiment and each treatment was replicated in three times and each replicate consisted of six plants. Other than the DOA recommendation, five combinations of Ontario recommended dosage of secondary and micronutrients for tomato were also used as treatments. The treatments were arranged in a Randomized Complete Block Design. All cultural practices were carried out according to the DOA recommendations. The mean data was subjected to the statistical analysis using SAS package and mean separation (Duncan’s Multiple Range test at 5% probability level) procedures. Secondary and micronutrients containing treatments significantly increased most of the growth parameters. Plant height, plant girth, number of leaves, leaf area index etc. Fruits harvested from pots amended with macro, secondary and micronutrients performed best in terms of total yield; yield quality; to pots amended with DOA recommended dosage of fertilizer for tomato. It could be due to the application of all essential macro and micro nutrients that rise in photosynthetic activity, efficient translocation and utilization of photosynthates causing rapid cell elongation and cell division in actively growing region of the plant leading to stimulation of growth and yield were caused. The experiment revealed and highlighted the requirements of essential macro, secondary and micro nutrient fertilizer supplementations for tomato farming. The study indicated that, macro and micro nutrient supplementation practices can influence growth and yield performances of tomato fruits and it is a promising approach to get potential tomato yields.Keywords: macro and micronutrients, tomato, SAS package, photosynthates
Procedia PDF Downloads 479266 New Media and the Personal Vote in General Elections: A Comparison of Constituency Level Candidates in the United Kingdom and Japan
Authors: Sean Vincent
Abstract:
Within the academic community, there is a consensus that political parties in established liberal democracies are facing a myriad of organisational challenges as a result of falling membership, weakening links to grass-roots support and rising voter apathy. During the same period of party decline and growing public disengagement political parties have become increasingly professionalised. The professionalisation of political parties owes much to changes in technology, with television becoming the dominant medium for political communication. In recent years, however, it has become clear that a new medium of communication is becoming utilised by political parties and candidates – New Media. New Media, a term hard to define but related to internet based communication, offers a potential revolution in political communication. It can be utilised by anyone with access to the internet and its most widely used platforms of communication such as Facebook and Twitter, are free to use. The advent of Web 2.0 has dramatically changed what can be done with the Internet. Websites now allow candidates at the constituency level to fundraise, organise and set out personalised policies. Social media allows them to communicate with supporters and potential voters practically cost-free. As such candidate dependency on the national party for resources and image now lies open to debate. Arguing that greater candidate independence may be a natural next step in light of the contemporary challenges faced by parties, this paper examines how New Media is being used by candidates at the constituency level to increase their personal vote. The paper will present findings from research carried out during two elections – the Japanese Lower House election of 2014 and the UK general election of 2015. During these elections a sample of candidates, totalling 150 candidates, from the three biggest parties in each country were selected and their new media output, specifically candidate websites, Twitter and Facebook output subjected to content analysis. The analysis examines how candidates are using new media to both become more functionally, through fundraising and volunteer mobilisation and politically, through the promotion of personal/local policies, independent from the national party. In order to validate the results of content analysis this paper will also present evidence from interviews carried out with 17 candidates that stood in the 2014 Japanese Lower House election or 2015 UK general election. With a combination of statistical analysis and interviews, several conclusions can be made about the use of New Media at constituency level. The findings show not just a clear difference in the way candidates from each country are using New Media but also differences within countries based upon the particular circumstances of each constituency. While it has not yet replaced traditional methods of fundraising and activist mobilisation, New Media is also becoming increasingly important in campaign organisation and the general consensus amongst candidates is that its importance will continue to grow along as politics in both countries becomes more diffuse.Keywords: political campaigns, elections, new media, political communication
Procedia PDF Downloads 231265 Linguistic Analysis of Borderline Personality Disorder: Using Language to Predict Maladaptive Thoughts and Behaviours
Authors: Charlotte Entwistle, Ryan Boyd
Abstract:
Recent developments in information retrieval techniques and natural language processing have allowed for greater exploration of psychological and social processes. Linguistic analysis methods for understanding behaviour have provided useful insights within the field of mental health. One area within mental health that has received little attention though, is borderline personality disorder (BPD). BPD is a common mental health disorder characterised by instability of interpersonal relationships, self-image and affect. It also manifests through maladaptive behaviours, such as impulsivity and self-harm. Examination of language patterns associated with BPD could allow for a greater understanding of the disorder and its links to maladaptive thoughts and behaviours. Language analysis methods could also be used in a predictive way, such as by identifying indicators of BPD or predicting maladaptive thoughts, emotions and behaviours. Additionally, associations that are uncovered between language and maladaptive thoughts and behaviours could then be applied at a more general level. This study explores linguistic characteristics of BPD, and their links to maladaptive thoughts and behaviours, through the analysis of social media data. Data were collected from a large corpus of posts from the publicly available social media platform Reddit, namely, from the ‘r/BPD’ subreddit whereby people identify as having BPD. Data were collected using the Python Reddit API Wrapper and included all users which had posted within the BPD subreddit. All posts were manually inspected to ensure that they were not posted by someone who clearly did not have BPD, such as people posting about a loved one with BPD. These users were then tracked across all other subreddits of which they had posted in and data from these subreddits were also collected. Additionally, data were collected from a random control group of Reddit users. Disorder-relevant behaviours, such as self-harming or aggression-related behaviours, outlined within Reddit posts were coded to by expert raters. All posts and comments were aggregated by user and split by subreddit. Language data were then analysed using the Linguistic Inquiry and Word Count (LIWC) 2015 software. LIWC is a text analysis program that identifies and categorises words based on linguistic and paralinguistic dimensions, psychological constructs and personal concern categories. Statistical analyses of linguistic features could then be conducted. Findings revealed distinct linguistic features associated with BPD, based on Reddit posts, which differentiated these users from a control group. Language patterns were also found to be associated with the occurrence of maladaptive thoughts and behaviours. Thus, this study demonstrates that there are indeed linguistic markers of BPD present on social media. It also implies that language could be predictive of maladaptive thoughts and behaviours associated with BPD. These findings are of importance as they suggest potential for clinical interventions to be provided based on the language of people with BPD to try to reduce the likelihood of maladaptive thoughts and behaviours occurring. For example, by social media tracking or engaging people with BPD in expressive writing therapy. Overall, this study has provided a greater understanding of the disorder and how it manifests through language and behaviour.Keywords: behaviour analysis, borderline personality disorder, natural language processing, social media data
Procedia PDF Downloads 358264 Exploring the Energy Saving Benefits of Solar Power and Hot Water Systems: A Case Study of a Hospital in Central Taiwan
Authors: Ming-Chan Chung, Wen-Ming Huang, Yi-Chu Liu, Li-Hui Yang, Ming-Jyh Chen
Abstract:
introduction: Hospital buildings require considerable energy, including air conditioning, lighting, elevators, heating, and medical equipment. Energy consumption in hospitals is expected to increase significantly due to innovative equipment and continuous development plans. Consequently, the environment and climate will be adversely affected. Hospitals should therefore consider transforming from their traditional role of saving lives to being at the forefront of global efforts to reduce carbon dioxide emissions. As healthcare providers, it is our responsibility to provide a high-quality environment while using as little energy as possible. Purpose / Methods: Compare the energy-saving benefits of solar photovoltaic systems and solar hot water systems. The proportion of electricity consumption effectively reduced after the installation of solar photovoltaic systems. To comprehensively assess the potential benefits of utilizing solar energy for both photovoltaic (PV) and solar thermal applications in hospitals, a solar PV system was installed covering a total area of 28.95 square meters in 2021. Approval was obtained from the Taiwan Power Company to integrate the system into the hospital's electrical infrastructure for self-use. To measure the performance of the system, a dedicated meter was installed to track monthly power generation, which was then converted into area output using an electric energy conversion factor. This research aims to compare the energy efficiency of solar PV systems and solar thermal systems. Results: Using the conversion formula between electrical and thermal energy, we can compare the energy output of solar heating systems and solar photovoltaic systems. The comparative study draws upon data from February 2021 to February 2023, wherein the solar heating system generated an average of 2.54 kWh of energy per panel per day, while the solar photovoltaic system produced 1.17 kWh of energy per panel per day, resulting in a difference of approximately 2.17 times between the two systems. Conclusions: After conducting statistical analysis and comparisons, it was found that solar thermal heating systems offer higher energy and greater benefits than solar photovoltaic systems. Furthermore, an examination of literature data and simulations of the energy and economic benefits of solar thermal water systems and solar-assisted heat pump systems revealed that solar thermal water systems have higher energy density values, shorter recovery periods, and lower power consumption than solar-assisted heat pump systems. Through monitoring and empirical research in this study, it has been concluded that a heat pump-assisted solar thermal water system represents a relatively superior energy-saving and carbon-reducing solution for medical institutions. Not only can this system help reduce overall electricity consumption and the use of fossil fuels, but it can also provide more effective heating solutions.Keywords: sustainable development, energy conservation, carbon reduction, renewable energy, heat pump system
Procedia PDF Downloads 86263 The Different Effects of Mindfulness-Based Relapse Prevention Group Therapy on QEEG Measures in Various Severity Substance Use Disorder Involuntary Clients
Authors: Yu-Chi Liao, Nai-Wen Guo, Chun‑Hung Lee, Yung-Chin Lu, Cheng-Hung Ko
Abstract:
Objective: The incidence of behavioral addictions, especially substance use disorders (SUDs), is gradually be taken seriously with various physical health problems. Mindfulness-based relapse prevention (MBRP) is a treatment option for promoting long-term health behavior change in recent years. MBRP is a structured protocol that integrates formal meditation practices with the cognitive-behavioral approach of relapse prevention treatment by teaching participants not to engage in reappraisal or savoring techniques. However, considering SUDs as a complex brain disease, questionnaires and symptom evaluation are not sufficient to evaluate the effect of MBRP. Neurophysiological biomarkers such as quantitative electroencephalogram (QEEG) may improve accurately represent the curative effects. This study attempted to find out the neurophysiological indicator of MBRP in various severity SUD involuntary clients. Participants and Methods: Thirteen participants (all males) completed 8-week mindfulness-based treatment provided by trained, licensed clinical psychologists. The behavioral data were from the Severity of Dependence Scale (SDS) and Negative Mood Regulation Scale (NMR) before and afterMBRP treatment. The QEEG data were simultaneously recorded with executive attention tasks, called comprehensive nonverbal attention test(CNAT). The two-way repeated-measures (treatment * severity) ANOVA and independent t-test were used for statistical analysis. Results: Thirteen participants regrouped into high substance dependence (HS) and low substance dependence (LS) by SDS cut-off. The HS group showed more SDS total score and lower gamma wave in the Go/No Go task of CNAT at pretest. Both groups showed the main effect that they had a lower frontal theta/beta ratio (TBR) during the simple reaction time task of CNAT. The main effect showed that the delay errors of CNAT were lower after MBRP. There was no other difference in CNAT between groups. However, after MBRP, compared to LS, the HS group have resonant progress in improving SDS and NMR scores. The neurophysiological index, the frontal TBR of the HS during the Go/No Go task of CNATdecreased than that of the LS group. Otherwise, the LS group’s gamma wave was a significant reduction on the Go/No Go task of CNAT. Conclusion: The QEEG data supports the MBRP can restore the prefrontal function of involuntary addicts and lower their errors in executive attention tasks. However, the improvement of MBRPfor the addict with high addiction severity is significantly more than that with low severity, including QEEG’s indicators and negative emotion regulation. Future directions include investigating the reasons for differences in efficacy among different severity of the addiction.Keywords: mindfulness, involuntary clients, QEEG, emotion regulation
Procedia PDF Downloads 148262 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator
Authors: Yildiz Stella Dak, Jale Tezcan
Abstract:
Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection
Procedia PDF Downloads 331261 Benefits of an Oral Association of Glycosaminoglycans and Type II Collagene (Glycosane®) on Mobility in Senior Dogs: A Pet-Owner Survey
Authors: Navarro, Delaup, Lacreusette, Jahier, Destaing, Gard
Abstract:
Background: A complementary feed designed to support joint metabolism and contribute to cartilage integrity in dogs was evaluated through a pet-owner study involving 21 senior dogs experiencing a decrease in mobility. The study aimed to assess the product's benefits, ease of use, and impact on quality of life over a 56-day period. Methods: Privately owned dogs over six years old with reduced mobility and no change in their mobility management within the last three months were recruited. They received a chicken cartilage hydrolysate complementary feed containing a complex of glycosaminoglycans and type II collagen (Glycosane®, MP Labo, France. One capsule per dog up to 40 kg, 2 capsules beyond) once a day for 56 days. Assessments were performed at baseline (D0), and subsequent follow-ups at D7, D28, and D56: revised LOAD (Liverpool Osteoarthritis in Dogs) and CBPI (Canine Brief Pain Inventory) were used to evaluate mobility, pain intensity, and pain interference. Owners also completed a questionnaire on quality of life (QoL), comprising 7 questions on the animal’s well-being (QoL1) and 7 questions on the owner’s well-being (QoL2). Statistical analyses were performed using mixed models for repeated measures. The significance levels were set at p<0.05. Results: (1) Population: 21 dogs were included. The mean age was 10.2 years [6 – 14.5]. (2) Mobility: 71% of owners reported enhanced mobility by D56. Improvements were observed in half of the cases after 21 days of supplementation, with notable changes evident as early as 14 days in 39% of cases. LOAD scores showed significant improvement over time (p=0.0019). (3) Comfort: CBPI severity scores decreased significantly from baseline to D28 and D56 (p=0.0300 and p=0.0271, respectively). CBPI QoL score was also significantly improved at D56 compared to D7 (p=0.0440). (4) Quality of life: The QoL total score improved significantly by D56 compared to baseline (p=0.0089), with a specific improvement of the QoL1 (p=0.0015). (4) Owners' insights: Glycosane® received a high ease-of-use rating (mean score 4.4/5), with excellent compliance (95%). Oral intake was rated at 4.3/5. Willingness to walk (19%), Increased activity, Ability to run and/or jump from short heights and a Happier animal (11%) were among the most cited benefits. Owners noted enhanced comfort (78%) and happiness (79%) in their dogs, with a 60% perception of restored good mobility. Conclusion: The complementary feed demonstrates significant benefits in enhancing mobility and quality of life in senior dogs. Its high ease of administration supports owner compliance and satisfaction. These findings support Glycosane® as a valuable nutritional aid in helping to maintain canine mobility. Further studies with larger cohorts and a controlled group are recommended to validate these results.Keywords: canine mobility, complementary feed, LOAD, CBPI, quality of life, Glycosane
Procedia PDF Downloads 18260 Artificial Neural Network and Satellite Derived Chlorophyll Indices for Estimation of Wheat Chlorophyll Content under Rainfed Condition
Authors: Muhammad Naveed Tahir, Wang Yingkuan, Huang Wenjiang, Raheel Osman
Abstract:
Numerous models used in prediction and decision-making process but most of them are linear in natural environment, and linear models reach their limitations with non-linearity in data. Therefore accurate estimation is difficult. Artificial Neural Networks (ANN) found extensive acceptance to address the modeling of the complex real world for the non-linear environment. ANN’s have more general and flexible functional forms than traditional statistical methods can effectively deal with. The link between information technology and agriculture will become more firm in the near future. Monitoring crop biophysical properties non-destructively can provide a rapid and accurate understanding of its response to various environmental influences. Crop chlorophyll content is an important indicator of crop health and therefore the estimation of crop yield. In recent years, remote sensing has been accepted as a robust tool for site-specific management by detecting crop parameters at both local and large scales. The present research combined the ANN model with satellite-derived chlorophyll indices from LANDSAT 8 imagery for predicting real-time wheat chlorophyll estimation. The cloud-free scenes of LANDSAT 8 were acquired (Feb-March 2016-17) at the same time when ground-truthing campaign was performed for chlorophyll estimation by using SPAD-502. Different vegetation indices were derived from LANDSAT 8 imagery using ERADAS Imagine (v.2014) software for chlorophyll determination. The vegetation indices were including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Absorbed Ratio Index (CARI), Modified Chlorophyll Absorbed Ratio Index (MCARI) and Transformed Chlorophyll Absorbed Ratio index (TCARI). For ANN modeling, MATLAB and SPSS (ANN) tools were used. Multilayer Perceptron (MLP) in MATLAB provided very satisfactory results. For training purpose of MLP 61.7% of the data, for validation purpose 28.3% of data and rest 10% of data were used to evaluate and validate the ANN model results. For error evaluation, sum of squares error and relative error were used. ANN model summery showed that sum of squares error of 10.786, the average overall relative error was .099. The MCARI and NDVI were revealed to be more sensitive indices for assessing wheat chlorophyll content with the highest coefficient of determination R²=0.93 and 0.90 respectively. The results suggested that use of high spatial resolution satellite imagery for the retrieval of crop chlorophyll content by using ANN model provides accurate, reliable assessment of crop health status at a larger scale which can help in managing crop nutrition requirement in real time.Keywords: ANN, chlorophyll content, chlorophyll indices, satellite images, wheat
Procedia PDF Downloads 150259 Management of Dysphagia after Supra Glottic Laryngectomy
Authors: Premalatha B. S., Shenoy A. M.
Abstract:
Background: Rehabilitation of swallowing is as vital as speech in surgically treated head and neck cancer patients to maintain nutritional support, enhance wound healing and improve quality of life. Aspiration following supraglottic laryngectomy is very common, and rehabilitation of the same is crucial which requires involvement of speech therapist in close contact with head and neck surgeon. Objectives: To examine the functions of swallowing outcomes after intensive therapy in supraglottic laryngectomy. Materials: Thirty-nine supra glottic laryngectomees were participated in the study. Of them, 36 subjects were males and 3 were females, in the age range of 32-68 years. Eighteen subjects had undergone standard supra glottis laryngectomy (Group1) for supraglottic lesions where as 21 of them for extended supraglottic laryngectomy (Group 2) for base tongue and lateral pharyngeal wall lesion. Prior to surgery visit by speech pathologist was mandatory to assess the sutability for surgery and rehabilitation. Dysphagia rehabilitation started after decannulation of tracheostoma by focusing on orientation about anatomy, physiological variation before and after surgery, which was tailor made for each individual based on their type and extent of surgery. Supraglottic diet - Soft solid with supraglottic swallow method was advocated to prevent aspiration. The success of intervention was documented as number of sessions taken to swallow different food consistency and also percentage of subjects who achieved satisfactory swallow in terms of number of weeks in both the groups. Results: Statistical data was computed in two ways in both the groups 1) to calculate percentage (%) of subjects who swallowed satisfactorily in the time frame of less than 3 weeks to more than 6 weeks, 2) number of sessions taken to swallow without aspiration as far as food consistency was concerned. The study indicated that in group 1 subjects of standard supraglottic laryngectomy, 61% (n=11) of them were successfully rehabilitated but their swallowing normalcy was delayed by an average 29th post operative day (3-6 weeks). Thirty three percentages (33%) (n=6) of the subjects could swallow satisfactorily without aspiration even before 3 weeks and only 5 % (n=1) of the needed more than 6 weeks to achieve normal swallowing ability. Group 2 subjects of extended SGL only 47 %( n=10) of them could achieved satisfactory swallow by 3-6 weeks and 24% (n=5) of them of them achieved normal swallowing ability before 3 weeks. Around 4% (n=1) needed more than 6 weeks and as high as 24 % (n=5) of them continued to be supplemented with naso gastric feeding even after 8-10 months post operative as they exhibited severe aspiration. As far as type of food consistencies were concerned group 1 subject could able to swallow all types without aspiration much earlier than group 2 subjects. Group 1 needed only 8 swallowing therapy sessions for thickened soft solid and 15 sessions for liquids whereas group 2 required 14 sessions for soft solid and 17 sessions for liquids to achieve swallowing normalcy without aspiration. Conclusion: The study highlights the importance of dysphagia intervention in supraglottic laryngectomees by speech pathologist.Keywords: dysphagia management, supraglotic diet, supraglottic laryngectomy, supraglottic swallow
Procedia PDF Downloads 234258 Improving Exchange Rate Forecasting Accuracy Using Ensemble Learning Techniques: A Comparative Study
Authors: Gokcen Ogruk-Maz, Sinan Yildirim
Abstract:
Introduction: Exchange rate forecasting is pivotal for informed financial decision-making, encompassing risk management, investment strategies, and international trade planning. However, traditional forecasting models often fail to capture the complexity and volatility of currency markets. This study explores the potential of ensemble learning techniques such as Random Forest, Gradient Boosting, and AdaBoost to enhance the accuracy and robustness of exchange rate predictions. Research Objectives The primary objective is to evaluate the performance of ensemble methods in comparison to traditional econometric models such as Uncovered Interest Rate Parity, Purchasing Power Parity, and Monetary Models. By integrating advanced machine learning techniques with fundamental macroeconomic indicators, this research seeks to identify optimal approaches for predicting exchange rate movements across major currency pairs. Methodology: Using historical exchange rate data and economic indicators such as interest rates, inflation, money supply, and GDP, the study develops forecasting models leveraging ensemble techniques. Comparative analysis is performed against traditional models and hybrid approaches incorporating Facebook Prophet, Artificial Neural Networks, and XGBoost. The models are evaluated using statistical metrics like Mean Squared Error, Theil Ratio, and Diebold-Mariano tests across five currency pairs (JPY to USD, AUD to USD, CAD to USD, GBP to USD, and NZD to USD). Preliminary Results: Results indicate that ensemble learning models consistently outperform traditional methods in predictive accuracy. XGBoost shows the strongest performance among the techniques evaluated, achieving significant improvements in forecast precision with consistently low p-values and Theil Ratios. Hybrid models integrating macroeconomic fundamentals into machine learning frameworks further enhance predictive accuracy. Discussion: The findings show the potential of ensemble methods to address the limitations of traditional models by capturing non-linear relationships and complex dynamics in exchange rate movements. While Random Forest and Gradient Boosting are effective, the superior performance of XGBoost suggests that its capacity for handling sparse and irregular data offers a distinct advantage in financial forecasting. Conclusion and Implications: This research demonstrates that ensemble learning techniques, particularly when combined with traditional macroeconomic fundamentals, provide a robust framework for improving exchange rate forecasting. The study offers actionable insights for financial practitioners and policymakers, emphasizing the value of integrating machine learning approaches into predictive modeling for monetary economics.Keywords: exchange rate forecasting, ensemble learning, financial modeling, machine learning, monetary economics, XGBoost
Procedia PDF Downloads 11257 Comparative Effects of Resveratrol and Energy Restriction on Liver Fat Accumulation and Hepatic Fatty Acid Oxidation
Authors: Iñaki Milton-Laskibar, Leixuri Aguirre, Maria P. Portillo
Abstract:
Introduction: Energy restriction is an effective approach in preventing liver steatosis. However, due to social and economic reasons among others, compliance with this treatment protocol is often very poor, especially in the long term. Resveratrol, a natural polyphenolic compound that belongs to stilbene group, has been widely reported to imitate the effects of energy restriction. Objective: To analyze the effects of resveratrol under normoenergetic feeding conditions and under a mild energy restriction on liver fat accumulation and hepatic fatty acid oxidation. Methods: 36 male six-week-old rats were fed a high-fat high-sucrose diet for 6 weeks in order to induce steatosis. Then, rats were divided into four groups and fed a standard diet for 6 additional weeks: control group (C), resveratrol group (RSV, resveratrol 30 mg/kg/d), restricted group (R, 15 % energy restriction) and combined group (RR, 15 % energy restriction and resveratrol 30 mg/kg/d). Liver triacylglycerols (TG) and total cholesterol contents were measured by using commercial kits. Carnitine palmitoyl transferase 1a (CPT 1a) and citrate synthase (CS) activities were measured spectrophotometrically. TFAM (mitochondrial transcription factor A) and peroxisome proliferator-activator receptor alpha (PPARα) protein contents, as well as the ratio acetylated peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)/Total PGC1α were analyzed by Western blot. Statistical analysis was performed by using one way ANOVA and Newman-Keuls as post-hoc test. Results: No differences were observed among the four groups regarding liver weight and cholesterol content, but the three treated groups showed reduced TG when compared to the control group, being the restricted groups the ones showing the lowest values (with no differences between them). Higher CPT 1a and CS activities were observed in the groups supplemented with resveratrol (RSV and RR), with no difference between them. The acetylated PGC1α /total PGC1α ratio was lower in the treated groups (RSV, R and RR) than in the control group, with no differences among them. As far as TFAM protein expression is concerned, only the RR group reached a higher value. Finally, no changes were observed in PPARα protein expression. Conclusions: Resveratrol administration is an effective intervention for liver triacylglycerol content reduction, but a mild energy restriction is even more effective. The mechanisms of action of these two strategies are different. Thus resveratrol, but not energy restriction, seems to act by increasing fatty acid oxidation, although mitochondriogenesis seems not to be induced. When both treatments (resveratrol administration and a mild energy restriction) were combined, no additive or synergic effects were appreciated. Acknowledgements: MINECO-FEDER (AGL2015-65719-R), Basque Government (IT-572-13), University of the Basque Country (ELDUNANOTEK UFI11/32), Institut of Health Carlos III (CIBERobn). Iñaki Milton is a fellowship from the Basque Government.Keywords: energy restriction, fat, liver, oxidation, resveratrol
Procedia PDF Downloads 216256 Peripheral Neuropathy after Locoregional Anesthesia
Authors: Dalila Chaid, Bennameur Fedilli, Mohammed Amine Bellelou
Abstract:
The study focuses on the experience of lower-limb amputees, who face both physical and psychological challenges due to their disability. Chronic neuropathic pain and various types of limb pain are common in these patients. They often require orthopaedic interventions for issues such as dressings, infection, ulceration, and bone-related problems. Research Aim: The aim of this study is to determine the most suitable anaesthetic technique for lower-limb amputees, which can provide them with the greatest comfort and prolonged analgesia. The study also aims to demonstrate the effectiveness and cost-effectiveness of ultrasound-guided local regional anaesthesia (LRA) in this patient population. Methodology: The study is an observational analytical study conducted over a period of eight years, from 2010 to 2018. It includes a total of 955 cases of revisions performed on lower limb stumps. The parameters analyzed in this study include the effectiveness of the block and the use of sedation, the duration of the block, the post-operative visual analog scale (VAS) scores, and patient comfort. Findings: The study findings highlight the benefits of ultrasound-guided LRA in providing comfort by optimizing post-operative analgesia, which can contribute to psychological and bodily repair in lower-limb amputees. Additionally, the study emphasizes the use of alpha2 agonist adjuvants with sedative and analgesic properties, long-acting local anaesthetics, and larger volumes for better outcomes. Theoretical Importance: This study contributes to the existing knowledge by emphasizing the importance of choosing an appropriate anaesthetic technique for lower-limb amputees. It highlights the potential of ultrasound-guided LRA and the use of specific adjuvants and local anaesthetics in improving post-operative analgesia and overall patient outcomes. Data Collection and Analysis Procedures: Data for this study were collected through the analysis of medical records and relevant documentation related to the 955 cases included in the study. The effectiveness of the anaesthetic technique, duration of the block, post-operative pain scores, and patient comfort were analyzed using statistical methods. Question Addressed: The study addresses the question of which anaesthetic technique would be most suitable for lower-limb amputees to provide them with optimal comfort and prolonged analgesia. Conclusion: The study concludes that ultrasound-guided LRA, along with the use of alpha2 agonist adjuvants, long-acting local anaesthetics, and larger volumes, can be an effective approach in providing comfort and improving post-operative analgesia for lower-limb amputees. This technique can potentially contribute to the psychological and bodily repair of these patients. The findings of this study have implications for clinical practice in the management of lower-limb amputees, highlighting the importance of personalized anaesthetic approaches for better outcomes.Keywords: neuropathic pain, ultrasound-guided peripheral nerve block, DN4 quiz, EMG
Procedia PDF Downloads 82