Search results for: optimal guidance law
86 Cultural Competence in Palliative Care
Authors: Mariia Karizhenskaia, Tanvi Nandani, Ali Tafazoli Moghadam
Abstract:
Hospice palliative care (HPC) is one of the most complicated philosophies of care in which physical, social/cultural, and spiritual aspects of human life are intermingled with an undeniably significant role in every aspect. Among these dimensions of care, culture possesses an outstanding position in the process and goal determination of HPC. This study shows the importance of cultural elements in the establishment of effective and optimized structures of HPC in the Canadian healthcare environment. Our systematic search included Medline, Google Scholar, and St. Lawrence College Library, considering original, peer-reviewed research papers published from 1998 to 2023 to identify recent national literature connecting culture and palliative care delivery. The most frequently presented feature among the articles is the role of culture in the efficiency of the HPC. It has been shown frequently that including the culturespecific parameters of each nation in this system of care is vital for its success. On the other hand, ignorance about the exclusive cultural trends in a specific location has been accompanied by significant failure rates. Accordingly, implementing a culture-wise adaptable approach is mandatory for multicultural societies. The following outcome of research studies in this field underscores the importance of culture-oriented education for healthcare staff. Thus, all the practitioners involved in HPC will recognize the importance of traditions, religions, and social habits for processing the care requirements. Cultural competency training is a telling sample of the establishment of this strategy in health care that has come to the aid of HPC in recent years. Another complexity of the culturized HPC nowadays is the long-standing issue of racialization. Systematic and subconscious deprivation of minorities has always been an adversity of advanced levels of care. The last part of the constellation of our research outcomes is comprised of the ethical considerations of culturally driven HPC. This part is the most sophisticated aspect of our topic because almost all the analyses, arguments, and justifications are subjective. While there was no standard measure for ethical elements in clinical studies with palliative interventions, many research teams endorsed applying ethical principles for all the involved patients. Notably, interpretations and projections of ethics differ in varying cultural backgrounds. Therefore, healthcare providers should always be aware of the most respectable methodologies of HPC on a case-by-case basis. Cultural training programs have been utilized as one of the main tactics to improve the ability of healthcare providers to address the cultural needs and preferences of diverse patients and families. In this way, most of the involved health care practitioners will be equipped with cultural competence. Considerations for ethical and racial specifications of the clients of this service will boost the effectiveness and fruitfulness of the HPC. Canadian society is a colorful compilation of multiple nationalities; accordingly, healthcare clients are diverse, and this divergence is also translated into HPC patients. This fact justifies the importance of studying all the cultural aspects of HPC to provide optimal care on this enormous land.Keywords: cultural competence, end-of-life care, hospice, palliative care
Procedia PDF Downloads 7385 Optimal Framework of Policy Systems with Innovation: Use of Strategic Design for Evolution of Decisions
Authors: Yuna Lee
Abstract:
In the current policy process, there has been a growing interest in more open approaches that incorporate creativity and innovation based on the forecasting groups composed by the public and experts together into scientific data-driven foresight methods to implement more effective policymaking. Especially, citizen participation as collective intelligence in policymaking with design and deep scale of innovation at the global level has been developed and human-centred design thinking is considered as one of the most promising methods for strategic foresight. Yet, there is a lack of a common theoretical foundation for a comprehensive approach for the current situation of and post-COVID-19 era, and substantial changes in policymaking practice are insignificant and ongoing with trial and error. This project hypothesized that rigorously developed policy systems and tools that support strategic foresight by considering the public understanding could maximize ways to create new possibilities for a preferable future, however, it must involve a better understating of Behavioural Insights, including individual and cultural values, profit motives and needs, and psychological motivations, for implementing holistic and multilateral foresight and creating more positive possibilities. To what extent is the policymaking system theoretically possible that incorporates the holistic and comprehensive foresight and policy process implementation, assuming that theory and practice, in reality, are different and not connected? What components and environmental conditions should be included in the strategic foresight system to enhance the capacity of decision from policymakers to predict alternative futures, or detect uncertainties of the future more accurately? And, compared to the required environmental condition, what are the environmental vulnerabilities of the current policymaking system? In this light, this research contemplates the question of how effectively policymaking practices have been implemented through the synthesis of scientific, technology-oriented innovation with the strategic design for tackling complex societal challenges and devising more significant insights to make society greener and more liveable. Here, this study conceptualizes the notions of a new collaborative way of strategic foresight that aims to maximize mutual benefits between policy actors and citizens through the cooperation stemming from evolutionary game theory. This study applies mixed methodology, including interviews of policy experts, with the case in which digital transformation and strategic design provided future-oriented solutions or directions to cities’ sustainable development goals and society-wide urgent challenges such as COVID-19. As a result, artistic and sensual interpreting capabilities through strategic design promote a concrete form of ideas toward a stable connection from the present to the future and enhance the understanding and active cooperation among decision-makers, stakeholders, and citizens. Ultimately, an improved theoretical foundation proposed in this study is expected to help strategically respond to the highly interconnected future changes of the post-COVID-19 world.Keywords: policymaking, strategic design, sustainable innovation, evolution of cooperation
Procedia PDF Downloads 19484 Optimization of Perfusion Distribution in Custom Vascular Stent-Grafts Through Patient-Specific CFD Models
Authors: Scott M. Black, Craig Maclean, Pauline Hall Barrientos, Konstantinos Ritos, Asimina Kazakidi
Abstract:
Aortic aneurysms and dissections are leading causes of death in cardiovascular disease. Both inevitably lead to hemodynamic instability without surgical intervention in the form of vascular stent-graft deployment. An accurate description of the aortic geometry and blood flow in patient-specific cases is vital for treatment planning and long-term success of such grafts, as they must generate physiological branch perfusion and in-stent hemodynamics. The aim of this study was to create patient-specific computational fluid dynamics (CFD) models through a multi-modality, multi-dimensional approach with boundary condition optimization to predict branch flow rates and in-stent hemodynamics in custom stent-graft configurations. Three-dimensional (3D) thoracoabdominal aortae were reconstructed from four-dimensional flow-magnetic resonance imaging (4D Flow-MRI) and computed tomography (CT) medical images. The former employed a novel approach to generate and enhance vessel lumen contrast via through-plane velocity at discrete, user defined cardiac time steps post-hoc. To produce patient-specific boundary conditions (BCs), the aortic geometry was reduced to a one-dimensional (1D) model. Thereafter, a zero-dimensional (0D) 3-Element Windkessel model (3EWM) was coupled to each terminal branch to represent the distal vasculature. In this coupled 0D-1D model, the 3EWM parameters were optimized to yield branch flow waveforms which are representative of the 4D Flow-MRI-derived in-vivo data. Thereafter, a 0D-3D CFD model was created, utilizing the optimized 3EWM BCs and a 4D Flow-MRI-obtained inlet velocity profile. A sensitivity analysis on the effects of stent-graft configuration and BC parameters was then undertaken using multiple stent-graft configurations and a range of distal vasculature conditions. 4D Flow-MRI granted unparalleled visualization of blood flow throughout the cardiac cycle in both the pre- and postsurgical states. Segmentation and reconstruction of healthy and stented regions from retrospective 4D Flow-MRI images also generated 3D models with geometries which were successfully validated against their CT-derived counterparts. 0D-1D coupling efficiently captured branch flow and pressure waveforms, while 0D-3D models also enabled 3D flow visualization and quantification of clinically relevant hemodynamic parameters for in-stent thrombosis and graft limb occlusion. It was apparent that changes in 3EWM BC parameters had a pronounced effect on perfusion distribution and near-wall hemodynamics. Results show that the 3EWM parameters could be iteratively changed to simulate a range of graft limb diameters and distal vasculature conditions for a given stent-graft to determine the optimal configuration prior to surgery. To conclude, this study outlined a methodology to aid in the prediction post-surgical branch perfusion and in-stent hemodynamics in patient specific cases for the implementation of custom stent-grafts.Keywords: 4D flow-MRI, computational fluid dynamics, vascular stent-grafts, windkessel
Procedia PDF Downloads 17883 Physical Activity and Nutrition Intervention for Singaporean Women Aged 50 Years and Above: A Study Protocol for a Community Based Randomised Controlled Trial
Authors: Elaine Yee Sing Wong, Jonine Jancey, Andy H. Lee, Anthony P. James
Abstract:
Singapore has a rapidly aging population, where the majority of older women aged 50 years and above, are physically inactive and have unhealthy dietary habits, placing them at ‘high risk’ of non-communicable diseases. Given the multiplicity of less than optimal dietary habits and high levels of physical inactivity among Singaporean women, it is imperative to develop appropriate lifestyle interventions at recreational centres to enhance both their physical and nutritional knowledge, as well as provide them with the opportunity to develop skills to support behaviour change. To the best of our knowledge, this proposed study is the first physical activity and nutrition cluster randomised controlled trial conducted in Singapore for older women. Findings from this study may provide insights and recommendations for policy makers and key stakeholders to create new healthy living, recreational centres with supportive environments. This 6-month community-based cluster randomised controlled trial will involve the implementation and evaluation of physical activity and nutrition program for community dwelling Singaporean women, who currently attend recreational centres to promote social leisure activities in their local neighbourhood. The intervention will include dietary education and counselling sessions, physical activity classes, and telephone contact by certified fitness instructors and qualified nutritionists. Social Cognitive Theory with Motivational Interviewing will inform the development of strategies to support health behaviour change. Sixty recreational centres located in Singapore will be randomly selected from five major geographical districts and randomly allocated to the intervention (n=30) or control (n=30) cluster. A sample of 600 (intervention n=300; control n=300) women aged 50 years and above will then be recruited from these recreational centres. The control clusters will only undergo pre and post data collection and will not receive the intervention. It is hypothesised that by the end of the intervention, the intervention group participants (n = 300) compared to the control group (n = 300), will show significant improvements in the following variables: lipid profile, body mass index, physical activity and dietary behaviour, anthropometry, mental and physical health. Data collection will be examined and compared via the Statistical Package for the Social Science version 23. Descriptive and summary statistics will be used to quantify participants’ characteristics and outcome variables. Multi-variable mixed regression analyses will be used to confirm the effects of the proposed health intervention, taking into account the repeated measures and the clustering of the observations. The research protocol was approved by the Curtin University Human Research Ethics Committee (approval number: HRE2016-0366). The study has been registered with the Australian and New Zealand Clinical Trial Registry (12617001022358).Keywords: community based, healthy aging, intervention, nutrition, older women, physical activity
Procedia PDF Downloads 17682 Bridging Minds, Building Success Beyond Metrics: Uncovering Human Influence on Project Performance: Case Study of University of Salford
Authors: David Oyewumi Oyekunle, David Preston, Florence Ibeh
Abstract:
The paper provides an overview of the impacts of the human dimension in project management and team management on projects, which is increasingly affecting the performance of organizations. Recognizing its crucial significance, the research focuses on analyzing the psychological and interpersonal dynamics within project teams. This research is highly significant in the dynamic field of project management, as it addresses important gaps and offers vital insights that align with the constantly changing demands of the profession. A case study was conducted at the University of Salford to examine how human activity affects project management and performance. The study employed a mixed methodology to gain a deeper understanding of the real-world experiences of the subjects and project teams. Data analysis procedures to address the research objectives included the deductive approach, which involves testing a clear hypothesis or theory, as well as descriptive analysis and visualization. The survey comprised a sample size of 40 participants out of 110 project management professionals, including staff and final students in the Salford Business School, using a purposeful sampling method. To mitigate bias, the study ensured diversity in the sample by including both staff and final students. A smaller sample size allowed for more in-depth analysis and a focused exploration of the research objective. Conflicts, for example, are intricate occurrences shaped by a multitude of psychological stimuli and social interactions and may have either a deterrent perspective or a positive perspective on project performance and project management productivity. The study identified conflict elements, including culture, environment, personality, attitude, individual project knowledge, team relationships, leadership, and team dynamics among team members, as crucial human activities to minimize conflict. The findings are highly significant in the dynamic field of project management, as they address important gaps and offer vital insights that align with the constantly changing demands of the profession. It provided project professionals with valuable insights that can help them create a collaborative and high-performing project environment. Uncovering human influence on project performance, effective communication, optimal team synergy, and a keen understanding of project scope are necessary for the management of projects to attain exceptional performance and efficiency. For the research to achieve the aims of this study, it was acknowledged that the productive dynamics of teams and strong group cohesiveness are crucial for effectively managing conflicts in a beneficial and forward-thinking manner. Addressing the identified human influence will contribute to a more sustainable project management approach and offer opportunities for exploration and potential contributions to both academia and practical project management.Keywords: human dimension, project management, team dynamics, conflict resolution
Procedia PDF Downloads 10481 Multi-Criteria Geographic Information System Analysis of the Costs and Environmental Impacts of Improved Overland Tourist Access to Kaieteur National Park, Guyana
Authors: Mark R. Leipnik, Dahlia Durga, Linda Johnson-Bhola
Abstract:
Kaieteur is the most iconic National Park in the rainforest-clad nation of Guyana in South America. However, the magnificent 226-meter-high waterfall at its center is virtually inaccessible by surface transportation, and the occasional charter flights to the small airstrip in the park are too expensive for many tourists and residents. Thus, the largest waterfall in all of Amazonia, where the Potaro River plunges over a single free drop twice as high as Victoria Falls, remains preserved in splendid isolation inside a 57,000-hectare National Park established by the British in 1929, in the deepest recesses of a remote jungle canyon. Kaieteur Falls are largely unseen firsthand, but images of the falls are depicted on the Guyanese twenty dollar note, in every Guyanese tourist promotion, and on many items in the national capital of Georgetown. Georgetown is only 223-241 kilometers away from the falls. The lack of a single mileage figure demonstrates there is no single overland route. Any journey, except by air, involves changes of vehicles, a ferry ride, and a boat ride up a jungle river. It also entails hiking for many hours to view the falls. Surface access from Georgetown (or any city) is thus a 3-5 day-long adventure; even in the dry season, during the two wet seasons, travel is a particularly sticky proposition. This journey was made overland by the paper's co-author Dahlia Durga. This paper focuses on potential ways to improve overland tourist access to Kaieteur National Park from Georgetown. This is primarily a GIS-based analysis, using multiple criteria to determine the least cost means of creating all-weather road access to the area near the base of the falls while minimizing distance and elevation changes. Critically, it also involves minimizing the number of new bridges required to be built while utilizing the one existing ferry crossings of a major river. Cost estimates are based on data from road and bridge construction engineers operating currently in the interior of Guyana. The paper contains original maps generated with ArcGIS of the potential routes for such an overland connection, including the one deemed optimal. Other factors, such as the impact on endangered species habitats and Indigenous populations, are considered. This proposed infrastructure development is taking place at a time when Guyana is undergoing the largest boom in its history due to revenues from offshore oil and gas development. Thus, better access to the most important tourist attraction in the country is likely to happen eventually in some manner. But the questions of the most environmentally sustainable and least costly alternatives for such access remain. This paper addresses those questions and others related to access to this magnificent natural treasure and the tradeoffs such access will have on the preservation of the currently pristine natural environment of Kaieteur Falls.Keywords: nature tourism, GIS, Amazonia, national parks
Procedia PDF Downloads 16380 Application of Discrete-Event Simulation in Health Technology Assessment: A Cost-Effectiveness Analysis of Alzheimer’s Disease Treatment Using Real-World Evidence in Thailand
Authors: Khachen Kongpakwattana, Nathorn Chaiyakunapruk
Abstract:
Background: Decision-analytic models for Alzheimer’s disease (AD) have been advanced to discrete-event simulation (DES), in which individual-level modelling of disease progression across continuous severity spectra and incorporation of key parameters such as treatment persistence into the model become feasible. This study aimed to apply the DES to perform a cost-effectiveness analysis of treatment for AD in Thailand. Methods: A dataset of Thai patients with AD, representing unique demographic and clinical characteristics, was bootstrapped to generate a baseline cohort of patients. Each patient was cloned and assigned to donepezil, galantamine, rivastigmine, memantine or no treatment. Throughout the simulation period, the model randomly assigned each patient to discrete events including hospital visits, treatment discontinuation and death. Correlated changes in cognitive and behavioral status over time were developed using patient-level data. Treatment effects were obtained from the most recent network meta-analysis. Treatment persistence, mortality and predictive equations for functional status, costs (Thai baht (THB) in 2017) and quality-adjusted life year (QALY) were derived from country-specific real-world data. The time horizon was 10 years, with a discount rate of 3% per annum. Cost-effectiveness was evaluated based on the willingness-to-pay (WTP) threshold of 160,000 THB/QALY gained (4,994 US$/QALY gained) in Thailand. Results: Under a societal perspective, only was the prescription of donepezil to AD patients with all disease-severity levels found to be cost-effective. Compared to untreated patients, although the patients receiving donepezil incurred a discounted additional costs of 2,161 THB, they experienced a discounted gain in QALY of 0.021, resulting in an incremental cost-effectiveness ratio (ICER) of 138,524 THB/QALY (4,062 US$/QALY). Besides, providing early treatment with donepezil to mild AD patients further reduced the ICER to 61,652 THB/QALY (1,808 US$/QALY). However, the dominance of donepezil appeared to wane when delayed treatment was given to a subgroup of moderate and severe AD patients [ICER: 284,388 THB/QALY (8,340 US$/QALY)]. Introduction of a treatment stopping rule when the Mini-Mental State Exam (MMSE) score goes below 10 to a mild AD cohort did not deteriorate the cost-effectiveness of donepezil at the current treatment persistence level. On the other hand, none of the AD medications was cost-effective when being considered under a healthcare perspective. Conclusions: The DES greatly enhances real-world representativeness of decision-analytic models for AD. Under a societal perspective, treatment with donepezil improves patient’s quality of life and is considered cost-effective when used to treat AD patients with all disease-severity levels in Thailand. The optimal treatment benefits are observed when donepezil is prescribed since the early course of AD. With healthcare budget constraints in Thailand, the implementation of donepezil coverage may be most likely possible when being considered starting with mild AD patients, along with the stopping rule introduced.Keywords: Alzheimer's disease, cost-effectiveness analysis, discrete event simulation, health technology assessment
Procedia PDF Downloads 12879 Multi-Objective Optimization of Assembly Manufacturing Factory Setups
Authors: Andreas Lind, Aitor Iriondo Pascual, Dan Hogberg, Lars Hanson
Abstract:
Factory setup lifecycles are most often described and prepared in CAD environments; the preparation is based on experience and inputs from several cross-disciplinary processes. Early in the factory setup preparation, a so-called block layout is created. The intention is to describe a high-level view of the intended factory setup and to claim area reservations and allocations. Factory areas are then blocked, i.e., targeted to be used for specific intended resources and processes, later redefined with detailed factory setup layouts. Each detailed layout is based on the block layout and inputs from cross-disciplinary preparation processes, such as manufacturing sequence, productivity, workers’ workplace requirements, and resource setup preparation. However, this activity is often not carried out with all variables considered simultaneously, which might entail a risk of sub-optimizing the detailed layout based on manual decisions. Therefore, this work aims to realize a digital method for assembly manufacturing layout planning where productivity, area utilization, and ergonomics can be considered simultaneously in a cross-disciplinary manner. The purpose of the digital method is to support engineers in finding optimized designs of detailed layouts for assembly manufacturing factories, thereby facilitating better decisions regarding setups of future factories. Input datasets are company-specific descriptions of required dimensions for specific area reservations, such as defined dimensions of a worker’s workplace, material façades, aisles, and the sequence to realize the product assembly manufacturing process. To test and iteratively develop the digital method, a demonstrator has been developed with an adaptation of existing software that simulates and proposes optimized designs of detailed layouts. Since the method is to consider productivity, ergonomics, area utilization, and constraints from the automatically generated block layout, a multi-objective optimization approach is utilized. In the demonstrator, the input data are sent to the simulation software industrial path solutions (IPS). Based on the input and Lua scripts, the IPS software generates a block layout in compliance with the company’s defined dimensions of area reservations. Communication is then established between the IPS and the software EPP (Ergonomics in Productivity Platform), including intended resource descriptions, assembly manufacturing process, and manikin (digital human) resources. Using multi-objective optimization approaches, the EPP software then calculates layout proposals that are sent iteratively and simulated and rendered in IPS, following the rules and regulations defined in the block layout as well as productivity and ergonomics constraints and objectives. The software demonstrator is promising. The software can handle several parameters to optimize the detailed layout simultaneously and can put forward several proposals. It can optimize multiple parameters or weight the parameters to fine-tune the optimal result of the detailed layout. The intention of the demonstrator is to make the preparation between cross-disciplinary silos transparent and achieve a common preparation of the assembly manufacturing factory setup, thereby facilitating better decisions.Keywords: factory setup, multi-objective, optimization, simulation
Procedia PDF Downloads 14778 Pharmacokinetic Assessment of Antimicrobial Treatment of Acute Exacerbations of Chronic Obstructive Pulmonary Disease in Hospitalized Patients Colonized with Pseudomonas aeruginosa
Authors: Juliette Begin, Juliano Colapelle, Andrea Taratanu, Daniel Thirion, Amelie Marsot, Bryan A. Ross
Abstract:
Chronic obstructive pulmonary disease (COPD), a leading cause of death globally, is characterized by chronic airflow obstruction and acute exacerbations (AECOPDs) that are often triggered by respiratory infections. Pseudomonas aeruginosa (P. aeruginosa), a potentially serious bacterial cause of AECOPDs, is treated with targeted anti-pseudomonal antibiotics. These select few antimicrobials are often used as first-line therapy in patients who are clinically unwell and/or in those suspected of P. aeruginosa-related infection prior to confirmation, potentially contributing to antimicrobial resistance. The present study evaluates prescribing practices in patients with a confirmed sputum history of P. aeruginosa admitted for AECOPD at the McGill University Health Centre (MUHC) and treated with anti-pseudomonal antibiotics. Serum antibiotic concentrations were measured from the same-day peak, trough, and mid-dose blood sampling intervals after reaching steady-state (on or after day 3) and were quantified using ultra-high-performance liquid chromatography (UHPLC). Demographic, clinical, and treatment outcomes were extracted from patient medical charts. Treatment failure was defined by respiratory-related death or mechanical ventilation after ≥3 days of antibiotics; antibiotic therapy extended beyond 2 weeks or a new antibiotic regimen started; or urgent care readmission within 30 days for AECOPD. To date, 9 of 30 planned participants have completed testing: seven received ciprofloxacin, one received meropenem, and one received piperacillin-tazobactam. Due to serum sample batching requirements, the serum ciprofloxacin concentration results for the first 2/8 participants are presented at the time of writing. The first participant had serum levels of 5.45mg/L (T₀), 4.74mg/L (T₅₀), and 4.49mg/L (T₁₀₀), while the second had serum levels of 5mg/L (T₀), 2.6mg/L (T₅₀), and 2.51mg/L (T₁₀₀). Pharmacokinetic parameters Cmax (5.18±0.43mg/L), T₁/₂ (23.56±18.94hours), and AUC (181.9±155.95mg*h/l) were higher than reported monograph values and met target AUC-to-MIC ratio of >125. The patients treated with meropenem and with piperacillin-tazobactam experienced treatment failure. Preliminary results suggest that standard ciprofloxacin dosing in patients experiencing an AECOPD and colonized with P. aeruginosa appears to achieve effective serum concentrations. Final cohort results will inform the pharmacokinetic appropriateness and clinical sufficiency of current AECOPD antimicrobial strategies in P. aeruginosa-colonized patients. This study will guide clinicians in determining the appropriate dosing for AECOPD treatment to achieve therapeutic levels, optimizing outcomes, and minimizing adverse effects. It could also highlight the value of routine antibiotic level monitoring in patients with treatment failure to ensure optimal serum concentrations.Keywords: acute exacerbation, antimicrobial resistance, chronic obstructive pulmonary disease, pharmacokinetics/pharmacodynamics, Pseudomonas aeruginosa
Procedia PDF Downloads 1077 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format
Authors: Maryam Fallahpoor, Biswajeet Pradhan
Abstract:
Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format
Procedia PDF Downloads 8576 Structural Characterization and Hot Deformation Behaviour of Al3Ni2/Al3Ni in-situ Core-shell intermetallic in Al-4Cu-Ni Composite
Authors: Ganesh V., Asit Kumar Khanra
Abstract:
An in-situ powder metallurgy technique was employed to create Ni-Al3Ni/Al3Ni2 core-shell-shaped aluminum-based intermetallic reinforced composites. The impact of Ni addition on the phase composition, microstructure, and mechanical characteristics of the Al-4Cu-xNi (x = 0, 2, 4, 6, 8, 10 wt.%) in relation to various sintering temperatures was investigated. Microstructure evolution was extensively examined using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and transmission electron microscopy (TEM) techniques. Initially, under sintering conditions, the formation of "Single Core-Shell" structures was observed, consisting of Ni as the core with Al3Ni2 intermetallic, whereas samples sintered at 620°C exhibited both "Single Core-Shell" and "Double Core-Shell" structures containing Al3Ni2 and Al3Ni intermetallics formed between the Al matrix and Ni reinforcements. The composite achieved a high compressive yield strength of 198.13 MPa and ultimate strength of 410.68 MPa, with 24% total elongation for the sample containing 10 wt.% Ni. Additionally, there was a substantial increase in hardness, reaching 124.21 HV, which is 2.4 times higher than that of the base aluminum. Nanoindentation studies showed hardness values of 1.54, 4.65, 21.01, 13.16, 5.52, 6.27, and 8.39GPa corresponding to α-Al matrix, Ni, Al3Ni2, Ni and Al3Ni2 interface, Al3Ni, and their respective interfaces. Even at 200°C, it retained 54% of its room temperature strength (90.51 MPa). To investigate the deformation behavior of the composite material, experiments were conducted at deformation temperatures ranging from 300°C to 500°C, with strain rates varying from 0.0001s-1 to 0.1s-1. A sine-hyperbolic constitutive equation was developed to characterize the flow stress of the composite, which exhibited a significantly higher hot deformation activation energy of 231.44 kJ/mol compared to the self-diffusion of pure aluminum. The formation of Al2Cu intermetallics at grain boundaries and Al3Ni2/Al3Ni within the matrix hindered dislocation movement, leading to an increase in activation energy, which might have an adverse effect on high-temperature applications. Two models, the Strain-compensated Arrhenius model and the Artificial Neural Network (ANN) model, were developed to predict the composite's flow behavior. The ANN model outperformed the Strain-compensated Arrhenius model with a lower average absolute relative error of 2.266%, a smaller root means square error of 1.2488 MPa, and a higher correlation coefficient of 0.9997. Processing maps revealed that the optimal hot working conditions for the composite were in the temperature range of 420-500°C and strain rates between 0.0001s-1 and 0.001s-1. The changes in the composite microstructure were successfully correlated with the theory of processing maps, considering temperature and strain rate conditions. The uneven distribution in the shape and size of Core-shell/Al3Ni intermetallic compounds influenced the flow stress curves, leading to Dynamic Recrystallization (DRX), followed by partial Dynamic Recovery (DRV), and ultimately strain hardening. This composite material shows promise for applications in the automobile and aerospace industries.Keywords: core-shell structure, hot deformation, intermetallic compounds, powder metallurgy
Procedia PDF Downloads 1775 Additional Opportunities of Forensic Medical Identification of Dead Bodies of Unkown Persons
Authors: Saule Mussabekova
Abstract:
A number of chemical elements widely presented in the nature is seldom met in people and vice versa. This is a peculiarity of accumulation of elements in the body, and their selective use regardless of widely changed parameters of external environment. Microelemental identification of human hair and particularly dead body is a new step in the development of modern forensic medicine which needs reliable criteria while identifying the person. In the condition of technology-related pressing of large industrial cities for many years and specific for each region multiple-factor toxic effect from many industrial enterprises it’s important to assess actuality and the role of researches of human hair while assessing degree of deposition with specific pollution. Hair is highly sensitive biological indicator and allows to assess ecological situation, to perform regionalism of large territories of geological and chemical methods. Besides, monitoring of concentrations of chemical elements in the regions of Kazakhstan gives opportunity to use these data while performing forensic medical identification of dead bodies of unknown persons. Methods based on identification of chemical composition of hair with further computer processing allowed to compare received data with average values for the sex, age, and to reveal causally significant deviations. It gives an opportunity preliminary to suppose the region of residence of the person, having concentrated actions of policy for search of people who are unaccounted for. It also allows to perform purposeful legal actions for its further identification having created more optimal and strictly individual scheme of personal identity. Hair is the most suitable material for forensic researches as it has such advances as long term storage properties with no time limitations and specific equipment. Besides, quantitative analysis of micro elements is well correlated with level of pollution of the environment, reflects professional diseases and with pinpoint accuracy helps not only to diagnose region of temporary residence of the person but to establish regions of his migration as well. Peculiarities of elemental composition of human hair have been established regardless of age and sex of persons residing on definite territories of Kazakhstan. Data regarding average content of 29 chemical elements in hair of population in different regions of Kazakhstan have been systemized. Coefficients of concentration of studies elements in hair relative to average values around the region have been calculated for each region. Groups of regions with specific spectrum of elements have been emphasized; these elements are accumulated in hair in quantities exceeding average indexes. Our results have showed significant differences in concentrations of chemical elements for studies groups and showed that population of Kazakhstan is exposed to different toxic substances. It depends on emissions to atmosphere from industrial enterprises dominating in each separate region. Performed researches have showed that obtained elemental composition of human hair residing in different regions of Kazakhstan reflects technogenic spectrum of elements.Keywords: analysis of elemental composition of hair, forensic medical research of hair, identification of unknown dead bodies, microelements
Procedia PDF Downloads 14174 Mindmax: Building and Testing a Digital Wellbeing Application for Australian Football Players
Authors: Jo Mitchell, Daniel Johnson
Abstract:
MindMax is a digital community and learning platform built to maximise the wellbeing and resilience of AFL Players and Australian men. The MindMax application engages men, via their existing connection with sport and video games, in a range of wellbeing ideas, stories and actions, because we believe fit minds, kick goals. MindMax is an AFL Players Association led project, supported by a Movember Foundation grant, to improve the mental health of Australian males aged between 16-35 years. The key engagement and delivery strategy for the project was digital technology, sport (AFL) and video games, underpinned by evidenced based wellbeing science. The project commenced April 2015, and the expected completion date is March 2017. This paper describes the conceptual model underpinning product development, including progress, key learnings and challenges, as well as the research agenda. Evaluation of the MindMax project is a multi-pronged approach of qualitative and quantitative methods, including participatory design workshops, online reference groups, longitudinal survey methods, a naturalistic efficacy trial and evaluation of the social and economic return on investment. MindMax is focused on the wellness pathway and maximising our mind's capacity for fitness by sharing and promoting evidence-based actions that support this. A range of these ideas (from ACT, mindfulness and positive psychology) are already being implemented in AFL programs and services, mostly in face-to-face formats, with strong engagement by players. Player's experience features strongly as part of the product content. Wellbeing science is a discipline of psychology that explores what helps individuals and communities to flourish in life. Rather than ask questions about illness and poor functioning, wellbeing scientists and practitioners ask questions about wellness and optimal functioning. While illness and wellness are related, they operate as separate constructs and as such can be influenced through different pathways. The essential idea was to take the evidence-based wellbeing science around building psychological fitness to the places and spaces that men already frequent, namely sport and video games. There are 800 current senior AFL players, 5000+ past players, and 11 million boys and men that are interested in the lives of AFL Players; what they think and do to be their best both on and off field. AFL Players are also keen video gamers – using games as one way to de-stress, connect and build wellbeing. There are 9.5 million active gamers in Australia with 93% of households having a device for playing games. Video games in MindMax will be used as an engagement and learning tool. Gamers (including AFL players) can also share their personal experience of how games help build their mental fitness. Currently available games (i.e., we are not in the game creation business) will also be used to motivate and connect MindMax participants. The MindMax model is built with replication by other sport codes (e.g., Cricket) in mind. It is intended to not only support our current crop of athletes but also the community that surrounds them, so they can maximise their capacity for health and wellbeing.Keywords: Australian football league, digital application, positive psychology, wellbeing
Procedia PDF Downloads 23773 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data
Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann
Abstract:
Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers
Procedia PDF Downloads 20472 Prostheticly Oriented Approach for Determination of Fixture Position for Facial Prostheses Retention in Cases with Atypical and Combined Facial Defects
Authors: K. A.Veselova, N. V.Gromova, I. N.Antonova, I. N. Kalakutskii
Abstract:
There are many diseases and incidents that may result facial defects and deformities: cancer, trauma, burns, congenital anomalies, and autoimmune diseases. In some cases, patient may acquire atypically extensive facial defect, including more than one anatomical region or, by contrast, atypically small defect (e.g. partial auricular defect). The anaplastology gives us opportunity to help patient with facial disfigurement in cases when plastic surgery is contraindicated. Using of implant retention for facial prosthesis is strongly recommended because improves both aesthetic and functional results and makes using of the prosthesis more comfortable. Prostheticly oriented fixture position is extremely important for aesthetic and functional long-term result; however, the optimal site for fixture placement is not clear in cases with atypical configuration of facial defect. The objective of this report is to demonstrate challenges in fixture position determination we have faced with and offer the solution. In this report, four cases of implant-supported facial prosthesis are described. Extra-oral implants with four millimeter length were used in all cases. The decision regarding the quantity of surgical stages was based on anamnesis of disease. Facial prostheses were manufactured according to conventional technique. Clinical and technological difficulties and mistakes are described, and prostheticly oriented approach for determination of fixture position is demonstrated. The case with atypically large combined orbital and nasal defect resulting after arteriovenous malformation is described: the correct positioning of artificial eye was impossible due to wrong position of the fixture (with suprastructure) located in medial aspect of supraorbital rim. The suprastructure was unfixed and this fixture wasn`t used for retention in order to achieve appropriate artificial eye placement and better aesthetic result. In other case with small partial auricular defect (only helix and antihelix were absent) caused by squamoized cell carcinoma T1N0M0 surgical template was used to avoid the difficulties. To achieve the prostheticly oriented fixture position in case of extremely small defect the template was made on preliminary cast using vacuum thermoforming method. Two radiopaque markers were incorporated into template in preferable for fixture placement positions taking into account future prosthesis configuration. The template was put on remaining ear and cone-beam CT was performed to insure, that the amount of bone is enough for implant insertion in preferable position. Before the surgery radiopaque markers were extracted and template was holed for guide drill. Fabrication of implant-retained facial prostheses gives us opportunity to improve aesthetics, retention and patients’ quality of life. But every inaccuracy in planning leads to challenges on surgery and prosthetic stages. Moreover, in cases with atypically small or extended facial defects prostheticly oriented approach for determination of fixture position is strongly required. The approach including surgical template fabrication is effective, easy and cheap way to avoid mistakes and unpredictable result.Keywords: anaplastology, facial prosthesis, implant-retained facial prosthesis., maxillofacil prosthese
Procedia PDF Downloads 11271 Modeling and Energy Analysis of Limestone Decomposition with Microwave Heating
Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira
Abstract:
The energy transition is spurred by structural changes in energy demand, supply, and prices. Microwave technology was first proposed as a faster alternative for cooking food. It was found that food heated instantly when interacting with high-frequency electromagnetic waves. The dielectric properties account for a material’s ability to absorb electromagnetic energy and dissipate this energy in the form of heat. Many energy-intense industries could benefit from electromagnetic heating since many of the raw materials are dielectric at high temperatures. Limestone sedimentary rock is a dielectric material intensively used in the cement industry to produce unslaked lime. A numerical 3D model was implemented in COMSOL Multiphysics to study the limestone continuous processing under microwave heating. The model solves the two-way coupling between the Energy equation and Maxwell’s equations as well as the coupling between heat transfer and chemical interfaces. Complementary, a controller was implemented to optimize the overall heating efficiency and control the numerical model stability. This was done by continuously matching the cavity impedance and predicting the required energy for the system, avoiding energy inefficiencies. This controller was developed in MATLAB and successfully fulfilled all these goals. The limestone load influence on thermal decomposition and overall process efficiency was the main object of this study. The procedure considered the Verification and Validation of the chemical kinetics model separately from the coupled model. The chemical model was found to correctly describe the chosen kinetic equation, and the coupled model successfully solved the equations describing the numerical model. The interaction between flow of material and electric field Poynting vector revealed to influence limestone decomposition, as a result from the low dielectric properties of limestone. The numerical model considered this effect and took advantage from this interaction. The model was demonstrated to be highly unstable when solving non-linear temperature distributions. Limestone has a dielectric loss response that increases with temperature and has low thermal conductivity. For this reason, limestone is prone to produce thermal runaway under electromagnetic heating, as well as numerical model instabilities. Five different scenarios were tested by considering a material fill ratio of 30%, 50%, 65%, 80%, and 100%. Simulating the tube rotation for mixing enhancement was proven to be beneficial and crucial for all loads considered. When uniform temperature distribution is accomplished, the electromagnetic field and material interaction is facilitated. The results pointed out the inefficient development of the electric field within the bed for 30% fill ratio. The thermal efficiency showed the propensity to stabilize around 90%for loads higher than 50%. The process accomplished a maximum microwave efficiency of 75% for the 80% fill ratio, sustaining that the tube has an optimal fill of material. Electric field peak detachment was observed for the case with 100% fill ratio, justifying the lower efficiencies compared to 80%. Microwave technology has been demonstrated to be an important ally for the decarbonization of the cement industry.Keywords: CFD numerical simulations, efficiency optimization, electromagnetic heating, impedance matching, limestone continuous processing
Procedia PDF Downloads 17470 A Clustering-Based Approach for Weblog Data Cleaning
Authors: Amine Ganibardi, Cherif Arab Ali
Abstract:
This paper addresses the data cleaning issue as a part of web usage data preprocessing within the scope of Web Usage Mining. Weblog data recorded by web servers within log files reflect usage activity, i.e., End-users’ clicks and underlying user-agents’ hits. As Web Usage Mining is interested in End-users’ behavior, user-agents’ hits are referred to as noise to be cleaned-off before mining. Filtering hits from clicks is not trivial for two reasons, i.e., a server records requests interlaced in sequential order regardless of their source or type, website resources may be set up as requestable interchangeably by end-users and user-agents. The current methods are content-centric based on filtering heuristics of relevant/irrelevant items in terms of some cleaning attributes, i.e., website’s resources filetype extensions, website’s resources pointed by hyperlinks/URIs, http methods, user-agents, etc. These methods need exhaustive extra-weblog data and prior knowledge on the relevant and/or irrelevant items to be assumed as clicks or hits within the filtering heuristics. Such methods are not appropriate for dynamic/responsive Web for three reasons, i.e., resources may be set up to as clickable by end-users regardless of their type, website’s resources are indexed by frame names without filetype extensions, web contents are generated and cancelled differently from an end-user to another. In order to overcome these constraints, a clustering-based cleaning method centered on the logging structure is proposed. This method focuses on the statistical properties of the logging structure at the requested and referring resources attributes levels. It is insensitive to logging content and does not need extra-weblog data. The used statistical property takes on the structure of the generated logging feature by webpage requests in terms of clicks and hits. Since a webpage consists of its single URI and several components, these feature results in a single click to multiple hits ratio in terms of the requested and referring resources. Thus, the clustering-based method is meant to identify two clusters based on the application of the appropriate distance to the frequency matrix of the requested and referring resources levels. As the ratio clicks to hits is single to multiple, the clicks’ cluster is the smallest one in requests number. Hierarchical Agglomerative Clustering based on a pairwise distance (Gower) and average linkage has been applied to four logfiles of dynamic/responsive websites whose click to hits ratio range from 1/2 to 1/15. The optimal clustering set on the basis of average linkage and maximum inter-cluster inertia results always in two clusters. The evaluation of the smallest cluster referred to as clicks cluster under the terms of confusion matrix indicators results in 97% of true positive rate. The content-centric cleaning methods, i.e., conventional and advanced cleaning, resulted in a lower rate 91%. Thus, the proposed clustering-based cleaning outperforms the content-centric methods within dynamic and responsive web design without the need of any extra-weblog. Such an improvement in cleaning quality is likely to refine dependent analysis.Keywords: clustering approach, data cleaning, data preprocessing, weblog data, web usage data
Procedia PDF Downloads 16869 Sorbitol Galactoside Synthesis Using β-Galactosidase Immobilized on Functionalized Silica Nanoparticles
Authors: Milica Carević, Katarina Banjanac, Marija ĆOrović, Ana Milivojević, Nevena Prlainović, Aleksandar Marinković, Dejan Bezbradica
Abstract:
Nowadays, considering the growing awareness of functional food beneficial effects on human health, due attention is dedicated to the research in the field of obtaining new prominent products exhibiting improved physiological and physicochemical characteristics. Therefore, different approaches to valuable bioactive compounds synthesis have been proposed. β-Galactosidase, for example, although mainly utilized as hydrolytic enzyme, proved to be a promising tool for these purposes. Namely, under the particular conditions, such as high lactose concentration, elevated temperatures and low water activities, reaction of galactose moiety transfer to free hydroxyl group of the alternative acceptor (e.g. different sugars, alcohols or aromatic compounds) can generate a wide range of potentially interesting products. Up to now, galacto-oligosaccharides and lactulose have attracted the most attention due to their inherent prebiotic properties. The goal of this study was to obtain a novel product sorbitol galactoside, using the similar reaction mechanism, namely transgalactosylation reaction catalyzed by β-galactosidase from Aspergillus oryzae. By using sugar alcohol (sorbitol) as alternative acceptor, a diverse mixture of potential prebiotics is produced, enabling its more favorable functional features. Nevertheless, an introduction of alternative acceptor into the reaction mixture contributed to the complexity of reaction scheme, since several potential reaction pathways were introduced. Therefore, the thorough optimization using response surface method (RSM), in order to get an insight into different parameter (lactose concentration, sorbitol to lactose molar ratio, enzyme concentration, NaCl concentration and reaction time) influences, as well as their mutual interactions on product yield and productivity, was performed. In view of product yield maximization, the obtained model predicted optimal lactose concentration 500 mM, the molar ratio of sobitol to lactose 9, enzyme concentration 0.76 mg/ml, concentration of NaCl 0.8M, and the reaction time 7h. From the aspect of productivity, the optimum substrate molar ratio was found to be 1, while the values for other factors coincide. In order to additionally, improve enzyme efficiency and enable its reuse and potential continual application, immobilization of β-galactosidase onto tailored silica nanoparticles was performed. These non-porous fumed silica nanoparticles (FNS)were chosen on the basis of their biocompatibility and non-toxicity, as well as their advantageous mechanical and hydrodinamical properties. However, in order to achieve better compatibility between enzymes and the carrier, modifications of the silica surface using amino functional organosilane (3-aminopropyltrimethoxysilane, APTMS) were made. Obtained support with amino functional groups (AFNS) enabled high enzyme loadings and, more importantly, extremely high expressed activities, approximately 230 mg proteins/g and 2100 IU/g, respectively. Moreover, this immobilized preparation showed high affinity towards sorbitol galactoside synthesis. Therefore, the findings of this study could provided a valuable contribution to the efficient production of physiologically active galactosides in immobilized enzyme reactors.Keywords: β-galactosidase, immobilization, silica nanoparticles, transgalactosylation
Procedia PDF Downloads 30068 Wind Resource Classification and Feasibility of Distributed Generation for Rural Community Utilization in North Central Nigeria
Authors: O. D. Ohijeagbon, Oluseyi O. Ajayi, M. Ogbonnaya, Ahmeh Attabo
Abstract:
This study analyzed the electricity generation potential from wind at seven sites spread across seven states of the North-Central region of Nigeria. Twenty-one years (1987 to 2007) wind speed data at a height of 10m were assessed from the Nigeria Meteorological Department, Oshodi. The data were subjected to different statistical tests and also compared with the two-parameter Weibull probability density function. The outcome shows that the monthly average wind speeds ranged between 2.2 m/s in November for Bida and 10.1 m/s in December for Jos. The yearly average ranged between 2.1m/s in 1987 for Bida and 11.8 m/s in 2002 for Jos. Also, the power density for each site was determined to range between 29.66 W/m2 for Bida and 864.96 W/m2 for Jos, Two parameters (k and c) of the Weibull distribution were found to range between 2.3 in Lokoja and 6.5 in Jos for k, while c ranged between 2.9 in Bida and 9.9m/s in Jos. These outcomes points to the fact that wind speeds at Jos, Minna, Ilorin, Makurdi and Abuja are compatible with the cut-in speeds of modern wind turbines and hence, may be economically feasible for wind-to-electricity at and above the height of 10 m. The study further assessed the potential and economic viability of standalone wind generation systems for off-grid rural communities located in each of the studied sites. A specific electric load profile was developed to suite hypothetic communities, each consisting of 200 homes, a school and a community health center. Assessment of the design that will optimally meet the daily load demand with a loss of load probability (LOLP) of 0.01 was performed, considering 2 stand-alone applications of wind and diesel. The diesel standalone system (DSS) was taken as the basis of comparison since the experimental locations have no connection to a distribution network. The HOMER® software optimizing tool was utilized to determine the optimal combination of system components that will yield the lowest life cycle cost. Sequel to the analysis for rural community utilization, a Distributed Generation (DG) analysis that considered the possibility of generating wind power in the MW range in order to take advantage of Nigeria’s tariff regime for embedded generation was carried out for each site. The DG design incorporated each community of 200 homes, freely catered for and offset from the excess electrical energy generated above the minimum requirement for sales to a nearby distribution grid. Wind DG systems were found suitable and viable in producing environmentally friendly energy in terms of life cycle cost and levelised value of producing energy at Jos ($0.14/kWh), Minna ($0.12/kWh), Ilorin ($0.09/kWh), Makurdi ($0.09/kWh), and Abuja ($0.04/kWh) at a particluar turbine hub height. These outputs reveal the value retrievable from the project after breakeven point as a function of energy consumed Based on the results, the study demonstrated that including renewable energy in the rural development plan will enhance fast upgrade of the rural communities.Keywords: wind speed, wind power, distributed generation, cost per kilowatt-hour, clean energy, North-Central Nigeria
Procedia PDF Downloads 51267 The Impact of an Improved Strategic Partnership Programme on Organisational Performance and Growth of Firms in the Internet Protocol Television and Hybrid Fibre-Coaxial Broadband Industry
Authors: Collen T. Masilo, Brane Semolic, Pieter Steyn
Abstract:
The Internet Protocol Television (IPTV) and Hybrid Fibre-Coaxial (HFC) Broadband industrial sector landscape are rapidly changing and organisations within the industry need to stay competitive by exploring new business models so that they can be able to offer new services and products to customers. The business challenge in this industrial sector is meeting or exceeding high customer expectations across multiple content delivery modes. The increasing challenges in the IPTV and HFC broadband industrial sector encourage service providers to form strategic partnerships with key suppliers, marketing partners, advertisers, and technology partners. The need to form enterprise collaborative networks poses a challenge for any organisation in this sector, in selecting the right strategic partners who will ensure that the organisation’s services and products are marketed in new markets. Partners who will ensure that customers are efficiently supported by meeting and exceeding their expectations. Lastly, selecting cooperation partners who will represent the organisation in a positive manner, and contribute to improving the performance of the organisation. Companies in the IPTV and HFC broadband industrial sector tend to form informal partnerships with suppliers, vendors, system integrators and technology partners. Generally, partnerships are formed without thorough analysis of the real reason a company is forming collaborations, without proper evaluations of prospective partners using specific selection criteria, and with ineffective performance monitoring of partners to ensure that a firm gains real long term benefits from its partners and gains competitive advantage. Similar tendencies are illustrated in the research case study and are based on Skyline Communications, a global leader in end-to-end, multi-vendor network management and operational support systems (OSS) solutions. The organisation’s flagship product is the DataMiner network management platform used by many operators across multiple industries and can be referred to as a smart system that intelligently manages complex technology ecosystems for its customers in the IPTV and HFC broadband industry. The approach of the research is to develop the most efficient business model that can be deployed to improve a strategic partnership programme in order to significantly improve the performance and growth of organisations participating in a collaborative network in the IPTV and HFC broadband industrial sector. This involves proposing and implementing a new strategic partnership model and its main features within the industry which should bring about significant benefits for all involved companies to achieve value add and an optimal growth strategy. The proposed business model has been developed based on the research of existing relationships, value chains and business requirements in this industrial sector and validated in 'Skyline Communications'. The outputs of the business model have been demonstrated and evaluated in the research business case study the IPTV and HFC broadband service provider 'Skyline Communications'.Keywords: growth, partnership, selection criteria, value chain
Procedia PDF Downloads 13266 OASIS: An Alternative Access to Potable Water, Renewable Energy and Organic Food
Authors: Julien G. Chenet, Mario A. Hernandez, U. Leonardo Rodriguez
Abstract:
The tropical areas are places where there is scarcity of access to potable water and where renewable energies need further development. They also display high undernourishment levels, even though they are one of the resources-richest areas in the world. In these areas, it is common to count on great extension of soils, high solar radiation and raw water from rain, groundwater, surface water or even saltwater. Even though resources are available, access to them is limited, and the low-density habitat makes central solutions expensive and investments not worthy. In response to this lack of investment, rural inhabitants use fossil fuels and timber as an energy source and import agrochemical for soils fertilization, which increase GHG emissions. The OASIS project brings an answer to this situation. It supplies renewable energy, potable water and organic food. The first step is the determination of the needs of the communities in terms of energy, water quantity and quality, food requirements and soil characteristics. Second step is the determination of the available resources, such as solar energy, raw water and organic residues on site. The pilot OASIS project is located in the Vichada department, Colombia, and ensures the sustainable use of natural resources to meet the community needs. The department has roughly 70% of indigenous people. They live in a very scattered landscape, with no access to clean water and energy. They use polluted surface water for direct consumption and diesel for energy purposes. OASIS pilot will ensure basic needs for a 400-students education center. In this case, OASIS will provide 20 kW of solar energy potential and 40 liters per student per day. Water will be treated form groundwater, with two qualities. A conventional one with chlorine, and as the indigenous people are not used to chlorine for direct consumption, second train is with reverse osmosis to bring conservable safe water without taste. OASIS offers a solution to supply basic needs, shifting from fossil fuels, timber, to a no-GHG-emission solution. This solution is part of the mitigation strategy against Climate Change for the communities in low-density areas of the tropics. OASIS is a learning center to teach how to convert natural resources into utilizable ones. It is also a meeting point for the community with high pedagogic impact that promotes the efficient and sustainable use of resources. OASIS system is adaptable to any tropical area and competes technically and economically with any conventional solution, that needs transport of energy, treated water and food. It is a fully automatic, replicable and sustainable solution to sort out the issue of access to basic needs in rural areas. OASIS is also a solution to undernourishment, ensuring a responsible use of resources, to prevent long-term pollution of soils and groundwater. It promotes the closure of the nutrient cycle, and the optimal use of the land whilst ensuring food security in depressed low-density regions of the tropics. OASIS is under optimization to Vichada conditions, and will be available to any other tropical area in the following months.Keywords: climate change adaptation and mitigation, rural development, sustainable access to clean and renewable resources, social inclusion
Procedia PDF Downloads 24865 Solid Polymer Electrolyte Membranes Based on Siloxane Matrix
Authors: Natia Jalagonia, Tinatin Kuchukhidze
Abstract:
Polymer electrolytes (PE) play an important part in electrochemical devices such as batteries and fuel cells. To achieve optimal performance, the PE must maintain a high ionic conductivity and mechanical stability at both high and low relative humidity. The polymer electrolyte also needs to have excellent chemical stability for long and robustness. According to the prevailing theory, ionic conduction in polymer electrolytes is facilitated by the large-scale segmental motion of the polymer backbone, and primarily occurs in the amorphous regions of the polymer electrolyte. Crystallinity restricts polymer backbone segmental motion and significantly reduces conductivity. Consequently, polymer electrolytes with high conductivity at room temperature have been sought through polymers which have highly flexible backbones and have largely amorphous morphology. The interest in polymer electrolytes was increased also by potential applications of solid polymer electrolytes in high energy density solid state batteries, gas sensors and electrochromic windows. Conductivity of 10-3 S/cm is commonly regarded as a necessary minimum value for practical applications in batteries. At present, polyethylene oxide (PEO)-based systems are most thoroughly investigated, reaching room temperature conductivities of 10-7 S/cm in some cross-linked salt in polymer systems based on amorphous PEO-polypropylene oxide copolymers.. It is widely accepted that amorphous polymers with low glass transition temperatures Tg and a high segmental mobility are important prerequisites for high ionic conductivities. Another necessary condition for high ionic conductivity is a high salt solubility in the polymer, which is most often achieved by donors such as ether oxygen or imide groups on the main chain or on the side groups of the PE. It is well established also that lithium ion coordination takes place predominantly in the amorphous domain, and that the segmental mobility of the polymer is an important factor in determining the ionic mobility. Great attention was pointed to PEO-based amorphous electrolyte obtained by synthesis of comb-like polymers, by attaching short ethylene oxide unit sequences to an existing amorphous polymer backbone. The aim of presented work is to obtain of solid polymer electrolyte membranes using PMHS as a matrix. For this purpose the hydrosilylation reactions of α,ω-bis(trimethylsiloxy)methyl¬hydrosiloxane with allyl triethylene-glycol mo¬nomethyl ether and vinyltriethoxysilane at 1:28:7 ratio of initial com¬pounds in the presence of Karstedt’s catalyst, platinum hydrochloric acid (0.1 M solution in THF) and platinum on the carbon catalyst in 50% solution of anhydrous toluene have been studied. The synthesized olygomers are vitreous liquid products, which are well soluble in organic solvents with specific viscosity ηsp ≈ 0.05 - 0.06. The synthesized olygomers were analysed with FTIR, 1H, 13C, 29Si NMR spectroscopy. Synthesized polysiloxanes were investigated with wide-angle X-ray, gel-permeation chromatography, and DSC analyses. Via sol-gel processes of doped with lithium trifluoromethylsulfonate (triflate) or lithium bis¬(trifluoromethylsulfonyl)¬imide polymer systems solid polymer electrolyte membranes have been obtained. The dependence of ionic conductivity as a function of temperature and salt concentration was investigated and the activation energies of conductivity for all obtained compounds are calculatedKeywords: synthesis, PMHS, membrane, electrolyte
Procedia PDF Downloads 25664 Quantum Chemical Prediction of Standard Formation Enthalpies of Uranyl Nitrates and Its Degradation Products
Authors: Mohamad Saab, Florent Real, Francois Virot, Laurent Cantrel, Valerie Vallet
Abstract:
All spent nuclear fuel reprocessing plants use the PUREX process (Plutonium Uranium Refining by Extraction), which is a liquid-liquid extraction method. The organic extracting solvent is a mixture of tri-n-butyl phosphate (TBP) and hydrocarbon solvent such as hydrogenated tetra-propylene (TPH). By chemical complexation, uranium and plutonium (from spent fuel dissolved in nitric acid solution), are separated from fission products and minor actinides. During a normal extraction operation, uranium is extracted in the organic phase as the UO₂(NO₃)₂(TBP)₂ complex. The TBP solvent can form an explosive mixture called red oil when it comes in contact with nitric acid. The formation of this unstable organic phase originates from the reaction between TBP and its degradation products on the one hand, and nitric acid, its derivatives and heavy metal nitrate complexes on the other hand. The decomposition of the red oil can lead to violent explosive thermal runaway. These hazards are at the origin of several accidents such as the two in the United States in 1953 and 1975 (Savannah River) and, more recently, the one in Russia in 1993 (Tomsk). This raises the question of the exothermicity of reactions that involve TBP and all other degradation products, and calls for a better knowledge of the underlying chemical phenomena. A simulation tool (Alambic) is currently being developed at IRSN that integrates thermal and kinetic functions related to the deterioration of uranyl nitrates in organic and aqueous phases, but not of the n-butyl phosphate. To include them in the modeling scheme, there is an urgent need to obtain the thermodynamic and kinetic functions governing the deterioration processes in liquid phase. However, little is known about the thermodynamic properties, like standard enthalpies of formation, of the n-butyl phosphate molecules and of the UO₂(NO₃)₂(TBP)₂ UO₂(NO₃)₂(HDBP)(TBP) and UO₂(NO₃)₂(HDBP)₂ complexes. In this work, we propose to estimate the thermodynamic properties with Quantum Methods (QM). Thus, in the first part of our project, we focused on the mono, di, and tri-butyl complexes. Quantum chemical calculations have been performed to study several reactions leading to the formation of mono-(H₂MBP), di-(HDBP), and TBP in gas and liquid phases. In the gas phase, the optimal structures of all species were optimized using the B3LYP density functional. Triple-ζ def2-TZVP basis sets were used for all atoms. All geometries were optimized in the gas-phase, and the corresponding harmonic frequencies were used without scaling to compute the vibrational partition functions at 298.15 K and 0.1 Mpa. Accurate single point energies were calculated using the efficient localized LCCSD(T) method to the complete basis set limit. Whenever species in the liquid phase are considered, solvent effects are included with the COSMO-RS continuum model. The standard enthalpies of formation of TBP, HDBP, and H2MBP are finally predicted with an uncertainty of about 15 kJ mol⁻¹. In the second part of this project, we have investigated the fundamental properties of three organic species that mostly contribute to the thermal runaway: UO₂(NO₃)₂(TBP)₂, UO₂(NO₃)₂(HDBP)(TBP), and UO₂(NO₃)₂(HDBP)₂ using the same quantum chemical methods that were used for TBP and its derivatives in both the gas and the liquid phase. We will discuss the structures and thermodynamic properties of all these species.Keywords: PUREX process, red oils, quantum chemical methods, hydrolysis
Procedia PDF Downloads 18763 Towards Automatic Calibration of In-Line Machine Processes
Authors: David F. Nettleton, Elodie Bugnicourt, Christian Wasiak, Alejandro Rosales
Abstract:
In this presentation, preliminary results are given for the modeling and calibration of two different industrial winding MIMO (Multiple Input Multiple Output) processes using machine learning techniques. In contrast to previous approaches which have typically used ‘black-box’ linear statistical methods together with a definition of the mechanical behavior of the process, we use non-linear machine learning algorithms together with a ‘white-box’ rule induction technique to create a supervised model of the fitting error between the expected and real force measures. The final objective is to build a precise model of the winding process in order to control de-tension of the material being wound in the first case, and the friction of the material passing through the die, in the second case. Case 1, Tension Control of a Winding Process. A plastic web is unwound from a first reel, goes over a traction reel and is rewound on a third reel. The objectives are: (i) to train a model to predict the web tension and (ii) calibration to find the input values which result in a given tension. Case 2, Friction Force Control of a Micro-Pullwinding Process. A core+resin passes through a first die, then two winding units wind an outer layer around the core, and a final pass through a second die. The objectives are: (i) to train a model to predict the friction on die2; (ii) calibration to find the input values which result in a given friction on die2. Different machine learning approaches are tested to build models, Kernel Ridge Regression, Support Vector Regression (with a Radial Basis Function Kernel) and MPART (Rule Induction with continuous value as output). As a previous step, the MPART rule induction algorithm was used to build an explicative model of the error (the difference between expected and real friction on die2). The modeling of the error behavior using explicative rules is used to help improve the overall process model. Once the models are built, the inputs are calibrated by generating Gaussian random numbers for each input (taking into account its mean and standard deviation) and comparing the output to a target (desired) output until a closest fit is found. The results of empirical testing show that a high precision is obtained for the trained models and for the calibration process. The learning step is the slowest part of the process (max. 5 minutes for this data), but this can be done offline just once. The calibration step is much faster and in under one minute obtained a precision error of less than 1x10-3 for both outputs. To summarize, in the present work two processes have been modeled and calibrated. A fast processing time and high precision has been achieved, which can be further improved by using heuristics to guide the Gaussian calibration. Error behavior has been modeled to help improve the overall process understanding. This has relevance for the quick optimal set up of many different industrial processes which use a pull-winding type process to manufacture fibre reinforced plastic parts. Acknowledgements to the Openmind project which is funded by Horizon 2020 European Union funding for Research & Innovation, Grant Agreement number 680820Keywords: data model, machine learning, industrial winding, calibration
Procedia PDF Downloads 24062 Fuzzy Time Series- Markov Chain Method for Corn and Soybean Price Forecasting in North Carolina Markets
Authors: Selin Guney, Andres Riquelme
Abstract:
Among the main purposes of optimal and efficient forecasts of agricultural commodity prices is to guide the firms to advance the economic decision making process such as planning business operations and marketing decisions. Governments are also the beneficiaries and suppliers of agricultural price forecasts. They use this information to establish a proper agricultural policy, and hence, the forecasts affect social welfare and systematic errors in forecasts could lead to a misallocation of scarce resources. Various empirical approaches have been applied to forecast commodity prices that have used different methodologies. Most commonly-used approaches to forecast commodity sectors depend on classical time series models that assume values of the response variables are precise which is quite often not true in reality. Recently, this literature has mostly evolved to a consideration of fuzzy time series models that provide more flexibility in terms of the classical time series models assumptions such as stationarity, and large sample size requirement. Besides, fuzzy modeling approach allows decision making with estimated values under incomplete information or uncertainty. A number of fuzzy time series models have been developed and implemented over the last decades; however, most of them are not appropriate for forecasting repeated and nonconsecutive transitions in the data. The modeling scheme used in this paper eliminates this problem by introducing Markov modeling approach that takes into account both the repeated and nonconsecutive transitions. Also, the determination of length of interval is crucial in terms of the accuracy of forecasts. The problem of determining the length of interval arbitrarily is overcome and a methodology to determine the proper length of interval based on the distribution or mean of the first differences of series to improve forecast accuracy is proposed. The specific purpose of this paper is to propose and investigate the potential of a new forecasting model that integrates methodologies for determining the proper length of interval based on the distribution or mean of the first differences of series and Fuzzy Time Series- Markov Chain model. Moreover, the accuracy of the forecasting performance of proposed integrated model is compared to different univariate time series models and the superiority of proposed method over competing methods in respect of modelling and forecasting on the basis of forecast evaluation criteria is demonstrated. The application is to daily corn and soybean prices observed at three commercially important North Carolina markets; Candor, Cofield and Roaring River for corn and Fayetteville, Cofield and Greenville City for soybeans respectively. One main conclusion from this paper is that using fuzzy logic improves the forecast performance and accuracy; the effectiveness and potential benefits of the proposed model is confirmed with small selection criteria value such MAPE. The paper concludes with a discussion of the implications of integrating fuzzy logic and nonarbitrary determination of length of interval for the reliability and accuracy of price forecasts. The empirical results represent a significant contribution to our understanding of the applicability of fuzzy modeling in commodity price forecasts.Keywords: commodity, forecast, fuzzy, Markov
Procedia PDF Downloads 21661 Protected Cultivation of Horticultural Crops: Increases Productivity per Unit of Area and Time
Authors: Deepak Loura
Abstract:
The most contemporary method of producing horticulture crops both qualitatively and quantitatively is protected cultivation, or greenhouse cultivation, which has gained widespread acceptance in recent decades. Protected farming, commonly referred to as controlled environment agriculture (CEA), is extremely productive, land- and water-wise, as well as environmentally friendly. The technology entails growing horticulture crops in a controlled environment where variables such as temperature, humidity, light, soil, water, fertilizer, etc. are adjusted to achieve optimal output and enable a consistent supply of them even during the off-season. Over the past ten years, protected cultivation of high-value crops and cut flowers has demonstrated remarkable potential. More and more agricultural and horticultural crop production systems are moving to protected environments as a result of the growing demand for high-quality products by global markets. By covering the crop, it is possible to control the macro- and microenvironments, enhancing plant performance and allowing for longer production times, earlier harvests, and higher yields of higher quality. These shielding features alter the environment of the plant while also offering protection from wind, rain, and insects. Protected farming opens up hitherto unexplored opportunities in agriculture as the liberalised economy and improved agricultural technologies advance. Typically, the revenues from fruit, vegetable, and flower crops are 4 to 8 times higher than those from other crops. If any of these high-value crops are cultivated in protected environments like greenhouses, net houses, tunnels, etc., this profit can be multiplied. Vegetable and cut flower post-harvest losses are extremely high (20–0%), however sheltered growing techniques and year-round cropping can greatly minimize post-harvest losses and enhance yield by 5–10 times. Seasonality and weather have a big impact on the production of vegetables and flowers. The variety of their products results in significant price and quality changes for vegetables. For the application of current technology in crop production, achieving a balance between year-round availability of vegetables and flowers with minimal environmental impact and remaining competitive is a significant problem. The future of agriculture will be protected since population growth is reducing the amount of land that may be held. Protected agriculture is a particularly profitable endeavor for tiny landholdings. Small greenhouses, net houses, nurseries, and low tunnel greenhouses can all be built by farmers to increase their income. Protected agriculture is also aided by the rise in biotic and abiotic stress factors. As a result of the greater productivity levels, these technologies are not only opening up opportunities for producers with larger landholdings, but also for those with smaller holdings. Protected cultivation can be thought of as a kind of precise, forward-thinking, parallel agriculture that covers almost all aspects of farming and is rather subject to additional inspection for technical applicability to circumstances, farmer economics, and market economics.Keywords: protected cultivation, horticulture, greenhouse, vegetable, controlled environment agriculture
Procedia PDF Downloads 7560 Protocol for Dynamic Load Distributed Low Latency Web-Based Augmented Reality and Virtual Reality
Authors: Rohit T. P., Sahil Athrij, Sasi Gopalan
Abstract:
Currently, the content entertainment industry is dominated by mobile devices. As the trends slowly shift towards Augmented/Virtual Reality applications the computational demands on these devices are increasing exponentially and we are already reaching the limits of hardware optimizations. This paper proposes a software solution to this problem. By leveraging the capabilities of cloud computing we can offload the work from mobile devices to dedicated rendering servers that are way more powerful. But this introduces the problem of latency. This paper introduces a protocol that can achieve high-performance low latency Augmented/Virtual Reality experience. There are two parts to the protocol, 1) In-flight compression The main cause of latency in the system is the time required to transmit the camera frame from client to server. The round trip time is directly proportional to the amount of data transmitted. This can therefore be reduced by compressing the frames before sending. Using some standard compression algorithms like JPEG can result in minor size reduction only. Since the images to be compressed are consecutive camera frames there won't be a lot of changes between two consecutive images. So inter-frame compression is preferred. Inter-frame compression can be implemented efficiently using WebGL but the implementation of WebGL limits the precision of floating point numbers to 16bit in most devices. This can introduce noise to the image due to rounding errors, which will add up eventually. This can be solved using an improved interframe compression algorithm. The algorithm detects changes between frames and reuses unchanged pixels from the previous frame. This eliminates the need for floating point subtraction thereby cutting down on noise. The change detection is also improved drastically by taking the weighted average difference of pixels instead of the absolute difference. The kernel weights for this comparison can be fine-tuned to match the type of image to be compressed. 2) Dynamic Load distribution Conventional cloud computing architectures work by offloading as much work as possible to the servers, but this approach can cause a hit on bandwidth and server costs. The most optimal solution is obtained when the device utilizes 100% of its resources and the rest is done by the server. The protocol balances the load between the server and the client by doing a fraction of the computing on the device depending on the power of the device and network conditions. The protocol will be responsible for dynamically partitioning the tasks. Special flags will be used to communicate the workload fraction between the client and the server and will be updated in a constant interval of time ( or frames ). The whole of the protocol is designed so that it can be client agnostic. Flags are available to the client for resetting the frame, indicating latency, switching mode, etc. The server can react to client-side changes on the fly and adapt accordingly by switching to different pipelines. The server is designed to effectively spread the load and thereby scale horizontally. This is achieved by isolating client connections into different processes.Keywords: 2D kernelling, augmented reality, cloud computing, dynamic load distribution, immersive experience, mobile computing, motion tracking, protocols, real-time systems, web-based augmented reality application
Procedia PDF Downloads 7259 Post-bladder Catheter Infection
Authors: Mahla Azimi
Abstract:
Introduction: Post-bladder catheter infection is a common and significant healthcare-associated infection that affects individuals with indwelling urinary catheters. These infections can lead to various complications, including urinary tract infections (UTIs), bacteremia, sepsis, and increased morbidity and mortality rates. This article aims to provide a comprehensive review of post-bladder catheter infections, including their causes, risk factors, clinical presentation, diagnosis, treatment options, and preventive measures. Causes and Risk Factors: Post-bladder catheter infections primarily occur due to the colonization of microorganisms on the surface of the urinary catheter. The most common pathogens involved are Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterococcus species. Several risk factors contribute to the development of these infections, such as prolonged catheterization duration, improper insertion technique, poor hygiene practices during catheter care, compromised immune system function in patients with underlying conditions or immunosuppressive therapy. Clinical Presentation: Patients with post-bladder catheter infections may present with symptoms such as fever, chills, malaise, suprapubic pain or tenderness, and cloudy or foul-smelling urine. In severe cases or when left untreated for an extended period of time, patients may develop more severe symptoms like hematuria or signs of systemic infection. Diagnosis: The diagnosis of post-bladder catheter infection involves a combination of clinical evaluation and laboratory investigations. Urinalysis is crucial in identifying pyuria (presence of white blood cells) and bacteriuria (presence of bacteria). A urine culture is performed to identify the causative organism(s) and determine its antibiotic susceptibility profile. Treatment Options: Prompt initiation of appropriate antibiotic therapy is essential in managing post-bladder catheter infections. Empirical treatment should cover common pathogens until culture results are available. The choice of antibiotics should be guided by local antibiogram data to ensure optimal therapy. In some cases, catheter removal may be necessary, especially if the infection is recurrent or associated with severe complications. Preventive Measures: Prevention plays a vital role in reducing the incidence of post-bladder catheter infections. Strategies include proper hand hygiene, aseptic technique during catheter insertion and care, regular catheter maintenance, and timely removal of unnecessary catheters. Healthcare professionals should also promote patient education regarding self-care practices and signs of infection. Conclusion: Post-bladder catheter infections are a significant healthcare concern that can lead to severe complications and increased healthcare costs. Early recognition, appropriate diagnosis, and prompt treatment are crucial in managing these infections effectively. Implementing preventive measures can significantly reduce the incidence of post-bladder catheter infections and improve patient outcomes. Further research is needed to explore novel strategies for prevention and management in this field.Keywords: post-bladder catheter infection, urinary tract infection, bacteriuria, indwelling urinary catheters, prevention
Procedia PDF Downloads 8058 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method
Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez
Abstract:
Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics
Procedia PDF Downloads 9257 Selective Immobilization of Fructosyltransferase onto Glutaraldehyde Modified Support and Its Application in the Production of Fructo-Oligosaccharides
Authors: Milica B. Veljković, Milica B. Simović, Marija M. Ćorović, Ana D. Milivojević, Anja I. Petrov, Katarina M. Banjanac, Dejan I. Bezbradica
Abstract:
In recent decades, the scientific community has recognized the growing importance of prebiotics, and therefore, numerous studies are focused on their economic production due to their low presence in natural resources. It has been confirmed that prebiotics is a source of energy for probiotics in the gastrointestinal tract (GIT) and enable their proliferation, consequently leading to the normal functioning of the intestinal microbiota. Also, products of their fermentation are short-chain fatty acids (SCFA), which play a key role in maintaining and improving the health not only of the GIT but also of the whole organism. Among several confirmed prebiotics, fructooligosaccharides (FOS) are considered interesting candidates for use in a wide range of products in the food industry. They are characterized as low-calorie and non-cariogenic substances that represent an adequate sugar substitute and can be considered suitable for use in products intended for diabetics. The subject of this research will be the production of FOS by transforming sucrose using a fructosyltransferase (FTase) present in commercial preparation Pectinex® Ultra SP-L, with special emphasis on the development of adequate FTase immobilization method that would enable selective isolation of the enzyme responsible for the synthesis of FOS from the complex enzymatic mixture. This would lead to considerable enzyme purification and allow its direct incorporation into different sucrose-based products without the fear that the action of the other hydrolytic enzymes may adversely affect the products' functional characteristics. Accordingly, the possibility of selective immobilization of the enzyme using support with primary amino groups, Purolite® A109, which was previously activated and modified using glutaraldehyde (GA), was investigated. In the initial phase of the research, the effects of individual immobilization parameters such as pH, enzyme concentration, and immobilization time were investigated to optimize the process using support chemically activated with 15% and 0.5% GA to form dimers and monomers, respectively. It was determined that highly active immobilized preparations (371.8 IU/g of support - dimer and 213.8 IU/g of support – monomer) were achieved under acidic conditions (pH 4) provided that an enzyme concentration was 50 mg/g of support after 7 h and 3 h, respectively. Bearing in mind the obtained results of the expressed activity, it is noticeable that the formation of dimers showed higher reactivity compared to the form of monomers. Also, in the case of support modification using 15% GA, the value of the ratio of FTase and pectinase (as dominant enzyme mixture component) activity immobilization yields was 16.45, indicating the high feasibility of selective immobilization of FTase on modified polystyrene resin. After obtaining immobilized preparations of satisfactory features, they were tested in a reaction of FOS synthesis under determined optimal conditions. The maximum FOS yields of approximately 50% of total carbohydrates in the reaction mixture were recorded after 21 h. Finally, it can be concluded that the examined immobilization method yielded highly active, stable and, more importantly, refined enzyme preparation that can be further utilized on a larger scale for the development of continual processes for FOS synthesis, as well as for modification of different sucrose-based mediums.Keywords: chemical modification, fructooligosaccharides, glutaraldehyde, immobilization of fructosyltransferase
Procedia PDF Downloads 184