Search results for: trend of production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8952

Search results for: trend of production

5202 Comparative Evaluation of EBT3 Film Dosimetry Using Flat Bad Scanner, Densitometer and Spectrophotometer Methods and Its Applications in Radiotherapy

Authors: K. Khaerunnisa, D. Ryangga, S. A. Pawiro

Abstract:

Over the past few decades, film dosimetry has become a tool which is used in various radiotherapy modalities, either for clinical quality assurance (QA) or dose verification. The response of the film to irradiation is usually expressed in optical density (OD) or net optical density (netOD). While the film's response to radiation is not linear, then the use of film as a dosimeter must go through a calibration process. This study aimed to compare the function of the calibration curve of various measurement methods with various densitometer, using a flat bad scanner, point densitometer and spectrophotometer. For every response function, a radichromic film calibration curve is generated from each method by performing accuracy, precision and sensitivity analysis. netOD is obtained by measuring changes in the optical density (OD) of the film before irradiation and after irradiation when using a film scanner if it uses ImageJ to extract the pixel value of the film on the red channel of three channels (RGB), calculate the change in OD before and after irradiation when using a point densitometer, and calculate changes in absorbance before and after irradiation when using a spectrophotometer. the results showed that the three calibration methods gave readings with a netOD precision of doses below 3% for the uncertainty value of 1σ (one sigma). while the sensitivity of all three methods has the same trend in responding to film readings against radiation, it has a different magnitude of sensitivity. while the accuracy of the three methods provides readings below 3% for doses above 100 cGy and 200 cGy, but for doses below 100 cGy found above 3% when using point densitometers and spectrophotometers. when all three methods are used for clinical implementation, the results of the study show accuracy and precision below 2% for the use of scanners and spectrophotometers and above 3% for precision and accuracy when using point densitometers.

Keywords: Callibration Methods, Film Dosimetry EBT3, Flat Bad Scanner, Densitomete, Spectrophotometer

Procedia PDF Downloads 118
5201 Overview of Cage Aquaculture Practices, Benefits and Challenges on Africa Waters Bodies

Authors: Mekonen Hailu, Liu Liping

Abstract:

Cage aquaculture is highly preferred due to higher production per unit volume of water, lower costs of investment, and simpler routine farm management procedures compared to pond systems. In the 1980s, cage culture was first used on a trial basis in sub-Saharan Africa. Over the past 20 years, a small number of prosperous freshwater cage culture operations have started to emerge in Egypt, Rwanda, Kenya, Uganda, Tanzania, Ghana, Malawi, Zambia and Zimbabwe. Brackish and marine cage culture also offers a lot of potential, although this subsector hasn't seen any significant commercial growth to date. In 2019, 263 cage aquaculture installations on the African inland waters on 18 water bodies within eight countries with an estimated 20,114 cages were reported. The lakes Victoria, Kariba, Volta, and River Volta, which together account for 82.9% of all cage aquaculture installations regarded as sub-Saharan Africa's principal cage aquaculture regions (Fig 1). Except few small-scale trials with North African catfish (Clarias gariepinus), almost all farms in Sub-Saharan Africa and Egypt grow Nile tilapia (Oreochromis niloticus). More than 247,398 tonnes of fish are produced yearly from ten African countries through cage aquaculture. The expansion of cage culture in Africa provides job opportunities for both skilled and unskilled workers, nutritious food and foreign currency. The escaping non-native strains of tilapia in Lake Volta and the occurrence of a risky Tilapia lake virus (syncytial hepatitis), which has the potential to wipe out entire populations in both wild and farmed Nile tilapia on Lake Victoria, are threats coming with the expansion of cage aquaculture in Africa. In addition, the installations of 138 cage aquacultures were found in contrary to best cage culture practices. To sustain cage aquaculture development and maintain harmony with other water uses, developers must strictly abide by best practices. Hence, the exclusion of protected areas and small lakes (average depth 5 m or less) should be done, as well an Environmental Impact Assessment should be conducted before establishing the cage farms.

Keywords: Africa, cage aquaculture, production, threats

Procedia PDF Downloads 38
5200 Deflagration and Detonation Simulation in Hydrogen-Air Mixtures

Authors: Belyayev P. E., Makeyeva I. R., Mastyuk D. A., Pigasov E. E.

Abstract:

Previously, the phrase ”hydrogen safety” was often used in terms of NPP safety. Due to the rise of interest to “green” and, particularly, hydrogen power engineering, the problem of hydrogen safety at industrial facilities has become ever more urgent. In Russia, the industrial production of hydrogen is meant to be performed by placing a chemical engineering plant near NPP, which supplies the plant with the necessary energy. In this approach, the production of hydrogen involves a wide range of combustible gases, such as methane, carbon monoxide, and hydrogen itself. Considering probable incidents, sudden combustible gas outburst into open space with further ignition is less dangerous by itself than ignition of the combustible mixture in the presence of many pipelines, reactor vessels, and any kind of fitting frames. Even ignition of 2100 cubic meters of the hydrogen-air mixture in open space gives velocity and pressure that are much lesser than velocity and pressure in Chapman-Jouguet condition and do not exceed 80 m/s and 6 kPa accordingly. However, the space blockage, the significant change of channel diameter on the way of flame propagation, and the presence of gas suspension lead to significant deflagration acceleration and to its transition into detonation or quasi-detonation. At the same time, process parameters acquired from the experiments at specific experimental facilities are not general, and their application to different facilities can only have a conventional and qualitative character. Yet, conducting deflagration and detonation experimental investigation for each specific industrial facility project in order to determine safe infrastructure unit placement does not seem feasible due to its high cost and hazard, while the conduction of numerical experiments is significantly cheaper and safer. Hence, the development of a numerical method that allows the description of reacting flows in domains with complex geometry seems promising. The base for this method is the modification of Kuropatenko method for calculating shock waves recently developed by authors, which allows using it in Eulerian coordinates. The current work contains the results of the development process. In addition, the comparison of numerical simulation results and experimental series with flame propagation in shock tubes with orifice plates is presented.

Keywords: CFD, reacting flow, DDT, gas explosion

Procedia PDF Downloads 73
5199 Bioproduction of L(+)-Lactic Acid and Purification by Ion Exchange Mechanism

Authors: Zelal Polat, Şebnem Harsa, Semra Ülkü

Abstract:

Lactic acid exists in nature optically in two forms, L(+), D(-)-lactic acid, and has been used in food, leather, textile, pharmaceutical and cosmetic industries. Moreover, L(+)-lactic acid constitutes the raw material for the production of poly-L-lactic acid which is used in biomedical applications. Microbially produced lactic acid was aimed to be recovered from the fermentation media efficiently and economically. Among the various downstream operations, ion exchange chromatography is highly selective and yields a low cost product recovery within a short period of time. In this project, Lactobacillus casei NRRL B-441 was used for the production of L(+)-lactic acid from whey by fermentation at pH 5.5 and 37°C that took 12 hours. The product concentration was 50 g/l with 100% L(+)-lactic acid content. Next, the suitable resin was selected due to its high sorption capacity with rapid equilibrium behavior. Dowex marathon WBA, weakly basic anion exchanger in OH form reached the equilibrium in 15 minutes. The batch adsorption experiments were done approximately at pH 7.0 and 30°C and sampling was continued for 20 hours. Furthermore, the effect of temperature and pH was investigated and their influence was found to be unimportant. All the adsorption/desorption experiments were applied to both model lactic acid and biomass free fermentation broth. The ion exchange equilibria of lactic acid and L(+)-lactic acid in fermentation broth on Dowex marathon WBA was explained by Langmuir isotherm. The maximum exchange capacity (qm) for model lactic acid was 0.25 g La/g wet resin and for fermentation broth 0.04 g La/g wet resin. The equilibrium loading and exchange efficiency of L(+)-lactic acid in fermentation broth were reduced as a result of competition by other ionic species. The competing ions inhibit the binding of L(+)-lactic acid to the free sites of ion exchanger. Moreover, column operations were applied to recover adsorbed lactic acid from the ion exchanger. 2.0 M HCl was the suitable eluting agent to recover the bound L(+)-lactic acid with a flowrate of 1 ml/min at ambient temperature. About 95% of bound L(+)-lactic acid was recovered from Dowex marathon WBA. The equilibrium was reached within 15 minutes. The aim of this project was to investigate the purification of L(+)-lactic acid with ion exchange method from fermentation broth. The additional goals were to investigate the end product purity, to obtain new data on the adsorption/desorption behaviours of lactic acid and applicability of the system in industrial usage.

Keywords: fermentation, ion exchange, lactic acid, purification, whey

Procedia PDF Downloads 490
5198 Effect of Fermentation Time on Some Functional Properties of Moringa (Moringa oleifera) Seed Flour

Authors: Ocheme B. Ocheme, Omobolanle O. Oloyede, S. James, Eleojo V. Akpa

Abstract:

The effect of fermentation time on some functional properties of Moringa (Moringa oleifera) seed flour was examined. Fermentation, an effective processing method used to improve nutritional quality of plant foods, tends to affect the characteristics of food components and their behaviour in food systems just like other processing methods. Hence the need for this study. Moringa seeds were fermented naturally by soaking in potable water and allowing it to stand for 12, 24, 48 and 72 hours. At the end of fermentation, the seeds were oven dried at 600C for 12 hours and then milled into flour. Flour obtained from unfermented seeds served as control: hence a total of five flour samples. The functional properties were analyzed using standard methods. Fermentation significantly (p<0.05) increased the water holding capacity of Moringa seed flour from 0.86g/g - 2.31g/g. The highest value was observed after 48 hours of fermentation The same trend was observed for oil absorption capacity with values between 0.87 and 1.91g/g. Flour from unfermented Moringa seeds had a bulk density of 0.60g/cm3 which was significantly (p<0.05) higher than the bulk densities of flours from seeds fermented for 12, 24 and 48. Fermentation significantly (p<0.05) decreased the dispersibility of Moringa seed flours from 36% to 21, 24, 29 and 20% after 12, 24, 48 and 72 hours of fermentation respectively. The flours’ emulsifying capacities increased significantly (p<0.05) with increasing fermentation time with values between 50 – 68%. The flour obtained from seeds fermented for 12 hours had a significantly (p<0.05) higher foaming capacity of 16% while the flour obtained from seeds fermented for 0, 24 and 72 hours had the least foaming capacities of 9%. Flours from seeds fermented for 12 and 48 hours had better functional properties than flours from seeds fermented for 24 and 72 hours.

Keywords: fermentation, flour, functional properties, Moringa

Procedia PDF Downloads 662
5197 Analyzing the Usage of Social Media: A Study on Elderly in Malaysia

Authors: Chan Eang Teng, Tang Mui Joo

Abstract:

In the beginning of the prevalence of social media, it would be an obvious trend that the young adult age group has the highest population among the users on social media. However, apart from the age group of the users are becoming younger and younger, the elderly group has become a new force on social media, and this age group has increased rapidly. On top of that, the influence of social media towards the elderly is becoming more significant and it is even trending among them. This is because basic computer knowledge is not instilled into their life when they were young. This age group tends to be engrossed more than the young as this is something new for them, and they have the mindset that it is a new platform to approach things, and they tend to be more engrossed when they start getting in touch with the social media. Generally, most of the social media has been accepted and accessed by teenagers and young adult, but it is reasonable to believe that the social media is not really accepted among the elderly. Surprisingly, the elderlies are more addicted to the social media than the teenagers. Therefore, this study is to determine and understand the relationship between the elderly and social media, and how they employ social media in their lives. An online survey on 200 elderly aged 45-80 and an interview with a media expert are conducted to answer the main questions in the research paper. Uses and Gratification Approach is employed in theoretical framework. Finding revealed that majority of the respondents use social media to connect with family, friends, and for leisure purposes. The finding concluded that the elderly use social media differently according to their needs and wants which is in par with the highlight of Uses and Gratification theory. Considering the significantly large role social media plays in our culture and daily life today, the finding will shed some light on the effect of social media on the elderly or senior citizens who are usually relegated into a minority group in today’s age where the internet and social media are of great importance to our society and humanity in general. This may also serve to be useful in understanding behavioral patterns and preference in terms of social media usage among the elderly.

Keywords: elderly, Facebook, Malaysia, social media

Procedia PDF Downloads 344
5196 Vibration Transmission across Junctions of Walls and Floors in an Apartment Building: An Experimental Investigation

Authors: Hugo Sampaio Libero, Max de Castro Magalhaes

Abstract:

The perception of sound radiated from a building floor is greatly influenced by the rooms in which it is immersed and by the position of both listener and source. The main question that remains unanswered is related to the influence of the source position on the sound power radiated by a complex wall-floor system in buildings. This research is concerned with the investigation of vibration transmission across walls and floors in buildings. It is primarily based on the determination of vibration reduction index via experimental tests. Knowledge of this parameter may help in predicting noise and vibration propagation in building components. First, the physical mechanisms involving vibration transmission across structural junctions are described. An experimental setup is performed to aid this investigation. The experimental tests have shown that the vibration generation in the walls and floors is directed related to their size and boundary conditions. It is also shown that the vibration source position can affect the overall vibration spectrum significantly. Second, the characteristics of the noise spectra inside the rooms due to an impact source (tapping machine) are also presented. Conclusions are drawn for the general trend of vibration and noise spectrum of the structural components and rooms, respectively. In summary, the aim of this paper is to investigate the vibro-acoustical behavior of building floors and walls under floor impact excitation. The impact excitation was at distinct positions on the slab. The analysis has highlighted the main physical characteristics of the vibration transmission mechanism.

Keywords: vibration transmission, vibration reduction index, impact excitation, experimental tests

Procedia PDF Downloads 79
5195 Production and Valorization of Nano Lignins by Organosolv and Steam Explosion

Authors: V. Girard, I. Ziegler-Devin, H. Chapuis, N. Canilho, L. Marchal-Heussler, N. Brosse

Abstract:

Lignocellulosic biomass is made up of the three polymeric fractions that are cellulose, hemicellulose, and lignin, which are highly entangled. In this project, we are particularly interested in the under-valued lignin polymer, which is mainly used for thermal valorization. Lignin from Macro to Nanosize (LIMINA) project will first focus on the extraction of macro lignin from forestry waste (hardwood and softwood) by the mean of eco-friendly processes (organosolv and steam explosion) and then the valorization of nano lignins produced by using anti-solvent precipitation (UV-blocker, cosmetic, food products).

Keywords: nanolignin, nanoparticles, organosolv, steam explosion

Procedia PDF Downloads 116
5194 Insects and Meteorological Inventories in a Mango-Based Agroforestry System in Bangladesh

Authors: Md. Ruhul Amin, Shakura Namni, Md. Ramiz Uddin Miah, Md. Giashuddin Miah, Mohammad Zakaria, Sang Jae Suh, Yong Jung Kwon

Abstract:

Insect species abundance and diversity associated with meteorological factors during January to June 2013 at a mango-based agroforestry research field in Bangladesh, and the effects of pests and pollinator species on mango are presented in this study. Among the collected and identified insects, nine species belong to 3 orders were found as pollinator, 11 species in 5 orders as pest, and 13 species in 6 orders as predator. The mango hopper, fruit fly and stone weevil appeared as major pest because of their high levels of abundance and infestation. The hoppers caused 100% inflorescence damage followed by fruit fly (51.7% fruit) and stone weevil (31.0% mature fruit). The major pests exerted significantly higher abundance compared to pollinator, predator and minor pests. Hemipteroid insects were most abundant (60%) followed by Diptera (21%), Hymenoptera (10%), Lepidoptera (5%), and Coleoptera (4%). Insect population increased with increasing trend of temperature and humidity, and revealed peak abundance during April-May. The flower visiting insects differed in their landing duration and showed preference to forage with time of a day. Their foraging activity was found to be peaked between 11.00 am to 01.00 pm. The activity of the pollinators led to higher level of fruit set. This study provides baseline information about the phenological patterns of insect abundance in an agroforestry research field which could be an indication to incorporate some aspects of pest management.

Keywords: agroforestry, abundance, abiotic factors, insects, mango

Procedia PDF Downloads 425
5193 Firefighting Means in Food Industries

Authors: Racim Rifaat Ferdjani, Zineddine Chetoui

Abstract:

The goal of our work is to provide a tool that helps control and ensures a global view of the means of firefighting (MLCI) in a food production plant (for example Hamoud Boualem plant). We divided the site into 4 zones, then we identified the firefighting means (MLCI) present in each zone, taking into account their type, weight, location, and fire class as well as their compliance with respect to the regulations in force while assigning them an alphanumeric reference which makes it possible to deduce everything. Thus, the use of a tool in the form of an Excel table was made concrete, and an average compliance rate of 45% was therefore obtained.

Keywords: MLCI, firefighting means, Hamoud, Boualem

Procedia PDF Downloads 110
5192 Experimental Study of Particle Deposition on Leading Edge of Turbine Blade

Authors: Yang Xiao-Jun, Yu Tian-Hao, Hu Ying-Qi

Abstract:

Breathing in foreign objects during the operation of the aircraft engine, impurities in the aircraft fuel and products of incomplete combustion can produce deposits on the surface of the turbine blades. These deposits reduce not only the turbine's operating efficiency but also the life of the turbine blades. Based on the small open wind tunnel, the simulation of deposits on the leading edge of the turbine has been carried out in this work. The effect of film cooling on particulate deposition was investigated. Based on the analysis, the adhesive mechanism for the molten pollutants’ reaching to the turbine surface was simulated by matching the Stokes number, TSP (a dimensionless number characterizing particle phase transition) and Biot number of the test facility and that of the real engine. The thickness distribution and growth trend of the deposits have been observed by high power microscope and infrared camera under different temperature of the main flow, the solidification temperature of the particulate objects, and the blowing ratio. The experimental results from the leading edge particulate deposition demonstrate that the thickness of the deposition increases with time until a quasi-stable thickness is reached, showing a striking effect of the blowing ratio on the deposition. Under different blowing ratios, there exists a large difference in the thickness distribution of the deposition, and the deposition is minimal at the specific blow ratio. In addition, the temperature of main flow and the solidification temperature of the particulate have a great influence on the deposition.

Keywords: deposition, experiment, film cooling, leading edge, paraffin particles

Procedia PDF Downloads 134
5191 Dynamic Simulation of a Hybrid Wind Farm with Wind Turbines and Distributed Compressed Air Energy Storage System

Authors: Eronini Iheanyi Umez-Eronini

Abstract:

Most studies and existing implementations of compressed air energy storage (CAES) coupled with a wind farm to overcome intermittency and variability of wind power are based on bulk or centralized CAES plants. A dynamic model of a hybrid wind farm with wind turbines and distributed CAES, consisting of air storage tanks and compressor and expander trains at each wind turbine station, is developed and simulated in MATLAB. An ad hoc supervisory controller, in which the wind turbines are simply operated under classical power optimizing region control while scheduling power production by the expanders and air storage by the compressors, including modulation of the compressor power levels within a control range, is used to regulate overall farm power production to track minute-scale (3-minutes sampling period) TSO absolute power reference signal, over an eight-hour period. Simulation results for real wind data input with a simple wake field model applied to a hybrid plant composed of ten 5-MW wind turbines in a row and ten compatibly sized and configured Diabatic CAES stations show the plant controller is able to track the power demand signal within an error band size on the order of the electrical power rating of a single expander. This performance suggests that much improved results should be anticipated when the global D-CAES control is combined with power regulation for the individual wind turbines using available approaches for wind farm active power control. For standalone power plant fuel electrical efficiency estimate of up to 60%, the round trip electrical storage efficiency computed for the distributed CAES wherein heat generated by running compressors is utilized in the preheat stage of running high pressure expanders while fuel is introduced and combusted before the low pressure expanders, was comparable to reported round trip storage electrical efficiencies for bulk Adiabatic CAES.

Keywords: hybrid wind farm, distributed CAES, diabatic CAES, active power control, dynamic modeling and simulation

Procedia PDF Downloads 59
5190 Pose-Dependency of Machine Tool Structures: Appearance, Consequences, and Challenges for Lightweight Large-Scale Machines

Authors: S. Apprich, F. Wulle, A. Lechler, A. Pott, A. Verl

Abstract:

Large-scale machine tools for the manufacturing of large work pieces, e.g. blades, casings or gears for wind turbines, feature pose-dependent dynamic behavior. Small structural damping coefficients lead to long decay times for structural vibrations that have negative impacts on the production process. Typically, these vibrations are handled by increasing the stiffness of the structure by adding mass. That is counterproductive to the needs of sustainable manufacturing as it leads to higher resource consumption both in material and in energy. Recent research activities have led to higher resource efficiency by radical mass reduction that rely on control-integrated active vibration avoidance and damping methods. These control methods depend on information describing the dynamic behavior of the controlled machine tools in order to tune the avoidance or reduction method parameters according to the current state of the machine. The paper presents the appearance, consequences and challenges of the pose-dependent dynamic behavior of lightweight large-scale machine tool structures in production. The paper starts with the theoretical introduction of the challenges of lightweight machine tool structures resulting from reduced stiffness. The statement of the pose-dependent dynamic behavior is corroborated by the results of the experimental modal analysis of a lightweight test structure. Afterwards, the consequences of the pose-dependent dynamic behavior of lightweight machine tool structures for the use of active control and vibration reduction methods are explained. Based on the state of the art on pose-dependent dynamic machine tool models and the modal investigation of an FE-model of the lightweight test structure, the criteria for a pose-dependent model for use in vibration reduction are derived. The description of the approach for a general pose-dependent model of the dynamic behavior of large lightweight machine tools that provides the necessary input to the aforementioned vibration avoidance and reduction methods to properly tackle machine vibrations is the outlook of the paper.

Keywords: dynamic behavior, lightweight, machine tool, pose-dependency

Procedia PDF Downloads 441
5189 Little Girls and Big Stories: A Thematic Analysis of Gender Representations in Selected Asian Room to Read Storybooks

Authors: Cheeno Marlo Sayuno

Abstract:

Room to Read is an international nonprofit organization aimed at empowering young readers through literature and literacy education. In particular, the organization is focused on girls’ education in schools and bettering their social status through crafting stories and making sure that these stories are accessible to them. In 2019, Room to Read visited the Philippines and partnered with Philippine children’s literature publishers Adarna House, Lampara Books, Anvil Publishing, and OMF-Hiyas with the goal of producing contextualized stories that Filipino children can read. The result is a set of 20 storybooks developed by Filipino writers and illustrators, the author of this paper included. The project led to narratives of experiences in storybook production from conceptualization to publication, towards translations and reimagining in online repository, storytelling, and audiobook formats. During the production process, we were particularly reminded of gender representations, child’s rights, and telling stories that can empower the children in vulnerable communities, who are the beneficiaries of the project. The storybooks, along with many others produced in Asia and the world, are available online through the literacycloud.org website of Room to Read. In this study, the goal is to survey the stories produced in Asia and look at how gender is represented in the storybooks. By analyzing both the texts and the illustrations of the storybooks produced across Asian countries, themes of portrayals of young boys and girls, their characteristics and narratives, and how they are empowered in the stories are identified, with the goal of mapping how Room to Read is able to address the problem of access to literacy among young girls and ensuring them that they can do anything, the way they are portrayed in the stories. The paper hopes to determine how gender is represented in Asian storybooks produced by the international nonprofit organization Room to Read. Thematic textual analysis was used as methodology, where the storybooks are analyzed qualitatively to identify arising themes of gender representation. This study will shed light on the importance of responsible portrayal of gender in storybooks and how it can impact and empower children. The results of the study can also aid writers and illustrators in developing gender-sensitive storybooks.

Keywords: room to read, asian storybooks, young girls, thematic analysis, child empowerment, literacy, education

Procedia PDF Downloads 63
5188 Synthesis of Ultra-Small Platinum, Palladium and Gold Nanoparticles by Electrochemically Active Biofilms and Their Enhanced Catalytic Activities

Authors: Elaf Ahmed, Shahid Rasul, Ohoud Alharbi, Peng Wang

Abstract:

Ultra-Small Nanoparticles of metals (USNPs) have attracted the attention from the perspective of both basic and developmental science in a wide range of fields. These NPs exhibit electrical, optical, magnetic, and catalytic phenomena. In addition, they are considered effective catalysts because of their enormously large surface area. Many chemical methods of synthesising USNPs are reported. However, the drawback of these methods is the use of different capping agents and ligands in the process of the production such as Polyvinylpyrrolidone, Thiol and Ethylene Glycol. In this research ultra-small nanoparticles of gold, palladium and platinum metal have been successfully produced using electrochemically active biofilm (EAB) after optimising the pH of the media. The production of ultra-small nanoparticles has been conducted in a reactor using a simple two steps method. Initially biofilm was grown on the surface of a carbon paper for 7 days using Shewanella Loihica bacteria. Then, biofilm was employed to synthesise platinum, palladium and gold nanoparticles in water using sodium lactate as electron donor without using any toxic chemicals at mild operating conditions. Electrochemically active biofilm oxidise the electron donor and produces electrons in the solution. Since these electrons are a strong reducing agent, they can reduce metal precursors quite effectively and quickly. The As-synthesized ultra-small nanoparticles have a size range between (2-7nm) and showed excellent catalytic activity on the degradation of methyl orange. The growth of metal USNPs is strongly related to the condition of the EAB. Where using low pH for the synthesis was not successful due to the fact that it might affect and destroy the bacterial cells. However, increasing the pH to 7 and 9, led to the successful formation of USNPs. By changing the pH value, we noticed a change in the size range of the produced NPs. The EAB seems to act as a Nano factory for the synthesis of metal nanoparticles by offering a green, sustainable and toxic free synthetic route without the use of any capping agents or ligands and depending only on their respiration pathway.

Keywords: electrochemically active biofilm, electron donor, shewanella loihica, ultra-small nanoparticles

Procedia PDF Downloads 180
5187 Determination of Various Properties of Biodiesel Produced from Different Feedstocks

Authors: Faisal Anwar, Dawar Zaidi, Shubham Dixit, Nafees Ahmedii

Abstract:

This paper analyzes the various properties of biodiesel such as pour point, cloud point, viscosity, calorific value, etc produced from different feedstocks. The aim of the work is to analyze change in these properties after converting feedstocks to biodiesel and then comparring it with ASTM 6751-02 standards to check whether they are suitable for diesel engines or not. The conversion of feedstocks is carried out by a process called transesterification. This conversion is carried out to reduce viscosity, pour point, etc. It has been observed that there is some remarkable change in the properties of oil after conversion.

Keywords: biodiesel, ethyl ester, free fatty acid, production

Procedia PDF Downloads 347
5186 Unlocking Green Hydrogen Potential: A Machine Learning-Based Assessment

Authors: Said Alshukri, Mazhar Hussain Malik

Abstract:

Green hydrogen is hydrogen produced using renewable energy sources. In the last few years, Oman aimed to reduce its dependency on fossil fuels. Recently, the hydrogen economy has become a global trend, and many countries have started to investigate the feasibility of implementing this sector. Oman created an alliance to establish the policy and rules for this sector. With motivation coming from both global and local interest in green hydrogen, this paper investigates the potential of producing hydrogen from wind and solar energies in three different locations in Oman, namely Duqm, Salalah, and Sohar. By using machine learning-based software “WEKA” and local metrological data, the project was designed to figure out which location has the highest wind and solar energy potential. First, various supervised models were tested to obtain their prediction accuracy, and it was found that the Random Forest (RF) model has the best prediction performance. The RF model was applied to 2021 metrological data for each location, and the results indicated that Duqm has the highest wind and solar energy potential. The system of one wind turbine in Duqm can produce 8335 MWh/year, which could be utilized in the water electrolysis process to produce 88847 kg of hydrogen mass, while a solar system consisting of 2820 solar cells is estimated to produce 1666.223 MWh/ year which is capable of producing 177591 kg of hydrogen mass.

Keywords: green hydrogen, machine learning, wind and solar energies, WEKA, supervised models, random forest

Procedia PDF Downloads 60
5185 Secularization of Europe and the Rise of Nationalism

Authors: Sterling C. DeVerter

Abstract:

In recent decades, there has been continually growing concern amongst scholars and political leaders towards the global resurgence of nationalism, particularly in Europe, the United States, and China. However, very few studies have attempted to empirically examine the relationship between religion and nationalism at the level of the individual, and none are known to have done so quantitatively. Building on Tajfel's and Turner's (1978) Social Identity Theory (SIT), and Anderson (1991) and Marx (2003), this study will employ SIT and regression analysis to compare the sources and patterns of nationalistic sentiment among European respondents in eight countries to the average levels of self-reported religiosity, religious participation, age, education, and income levels. Survey reports from the International Social Survey Programme were the primary quantitative data sources. It was hypothesized that the increase in nationalism across Europe follows this same evolution as first identified by Anderson, and is positively correlated to the reduction in reported religiosity. However, this study failed to reject the null, there was no substantial ( < .035) correlation between nationalistic sentiment and any of the measures of religiosity, nor were there any substantial correlations between nationalistic sentiment and either of the three control variables ( < .008). Across all countries examined, it was discovered that inclusionary nationalism has slightly declined (-5.08%), while exclusionary nationalism had increased substantially (+17.25%). The combined trend reflected an overall rise in nationalism across the time period and a forecast that suggests the current levels are also elevated. The primary implications include the demand to readdress the notion of religion and nationalism, and the correlation between the two, as well as the current nationalism trends in terms of support or non-support for future political and social movements.

Keywords: European Union, secularization, nationalism, social identity theory

Procedia PDF Downloads 110
5184 Identification of Fluorinated Methylsiloxanes in Environmental Matrices Near a Manufacturing Plant in Eastern China

Authors: Liqin Zhi, Lin Xu, Wenxia Wei, Yaqi Cai

Abstract:

Recently, replacing some of the methyl groups in polydimethylsiloxanes with other functional groups has been extensively explored to obtain modified polymethylsiloxanes with special properties that enable new industrial applications. Fluorinated polysiloxanes, one type of these modified polysiloxanes, are based on a siloxane backbone with fluorinated groups attached to the side chains of polysiloxanes. As a commercially significant material, poly[methyl(trifluoropropyl)siloxane] (PMTFPS) has sufficient fluorine content to be useful as a fuel-and oil-resistant elastomer, which combines both the chemical and solvent resistance of fluorocarbons and the wide temperature range applicability of organosilicones. PMTFPS products can be used in many applications in which resistance to fuel, oils and hydrocarbon solvents is required, including use as lubricants in bearings, sealants, and elastomers for aerospace and automotive fuel systems. Fluorinated methylsiloxanes, a type of modified methylsiloxane, include tris(trifluoropropyl)trimethylcyclotrisiloxane (D3F) and tetrakis(trifluoropropyl)tetramethylcyclotetrasiloxane (D4F), both of which contain trifluoropropyl groups in the side chains of cyclic methylsiloxanes. D3F, as an important monomer in the manufacture of PMTFPS, is often present as an impurity in PMTFPS. In addition, the synthesis of PMTFPS from D3F could form other fluorinated methylsiloxanes with low molecular weights (such as D4F). The yearly demand and production volumes of D3F increased rapidly all over world. Fluorinated methylsiloxanes might be released into the environment via different pathways during the production and application of PMTFPS. However, there is a lack of data concerning the emission, environmental occurrence and potential environmental impacts of fluorinated methylsiloxanes. Here, we report fluorinated methylsiloxanes (D3F and D4F) in surface water and sediment samples collected near a fluorinated methylsiloxane manufacturing plant in Weihai, China. The concentrations of D3F and D4F in surface water ranged from 3.29 to 291 ng/L and from 7.02 to 168 ng/L, respectively. The concentrations of D3F and D4F in sediment ranged from 11.8 to 5478 ng/g and from 17.2 to 6277 ng/g, respectively. In simulation experiment, the half-lives of D3F and D4F at different pH values (5.2, 6.4, 7.2, 8.3 and 9.2) varied from 80.6 to 154 h and from 267 to 533 h respectively. CF₃(CH₂)₂MeSi(OH)₂ was identified as one of the main hydrolysis products of fluorinated methylsiloxanes. It was also detected in the river samples at concentrations of 72.1-182.9 ng/L. In addition, the slow rearrangement of D3F (spiked concentration = 500 ng/L) to D4F (concentration = 11.0-22.7 ng/L) was also found during 336h hydrolysis experiment.

Keywords: fluorinated methylsiloxanes, environmental matrices, hydrolysis, sediment

Procedia PDF Downloads 106
5183 Efficiently Dispersed MnOx on Mesoporous 3D Cubic Support for Cyclohexene Epoxidation

Authors: G. Imran, A. Pandurangan

Abstract:

Epoxides constitute important intermediates for the production of fine and bulk chemicals as well as valuable building blocks for the synthesis of a variety of bioactive molecules. Manganese oxides are used as selective catalyst for various redox type reactions and also effectively used in the field of catalytic disposal of pollutants. Non-toxic, cost efficient factor and more over existence of wide range of oxidation state (+2 to +7) makes catalyst more interesting for both academic research and industrial applications. However, the serious drawback lying is the lower surface area. Exceedingly dispersed manganese oxide grafted over mesoporous solid material KIT-6 through ALD (Atomic Layer Deposition) technique effectively catalyze cyclohexene with H2O2 (30% in water) to corresponding epoxides. Highly selective epoxide >99% with 55.7% conversion of cyclohexene was achieved using huge dispersed active sites of MnOx species containing catalysts. Various weight percent such as (1, 3, 5, 7 & 10 wt %) of manganese (II) acetylacetonate complex was employed as Mn source to post-graft via active silanol groups of KIT-6 and are designated as (Mn-G-KIT-6). XRD, N2 sorption, HR-TEM, DRS-UV-VIS, EPR and H2-TPR were employed for structural and textural properties. Immense Mn species of about 95% proportion on silica matrix obtained was evident from ICP-OES.The resulting materials exhibited Type IV adsorption isotherms indiacting mesopore in nanorange. Si-KIT-6 and Mn-G-KIT-6 materials exhibited surface area of 519-289 m2/g and with decrease in pore volume of 0.96-0.49 cm3/g with pore diameter ranging 7.9- 7.2 with increase in wt%. DRS-UV-VIS spectroscopy and EPR studies reveal that manganese coexists as Mn2+/3+ species as extra-framework sites and frame-work sites that result in dispersion on surface of silica matrix of KIT-6 and incorporated manganese sites with silanol groups along with small sized MnO cluster, evident from HR-TEM which increase with Mn content. Conventional production of epoxides by the intramolecular etherification of chlorohydrins formed by the reaction of alkenes with hypochlorous acid is the major drawbacks obtained recently. The most efficient synthesis of oxiranes (epoxides) is obtained by mesoporous catalysts (Mn-G-KIT-6) are presented here and discussed.

Keywords: ALD, epoxidation, mesoporous, MnOx

Procedia PDF Downloads 171
5182 Studies on the Effect of Bio-Methanated Distillery Spentwash on Soil Properties and Crop Yields

Authors: S. K. Gali

Abstract:

Spentwash, An effluent of distillery is an environmental pollutant because of its high load of pollutants (pH: 2-4; BOD>40,000 mg/l, COD>100,000mg/l and TDS >70,000mg/l). But However, after subjecting it to primary treatment (bio-methanation), Its pollutant load gets drastically reduced (pH: 7.5-8.5, BOD<10,000 mg/l) and could be disposed off safely as a source of organic matter and plant nutrients for crop production. With the consent of State Pollution Control Board, the distilleries in Karnataka are taking up ‘one time controlled land application’ of bio-methanated spentwash in farmers’ fields. A monitoring study was undertaken in Belgaum district of Karnataka State with an objective of studying the effect of land application of bio-methanated spent wash of a distillery on soil properties and crop growth. The treated spentwash was applied uniformly to the fallow dry lands in different farmers’ fields during summer, 2012 at recommended rate (based on nitrogen requirement of crops). The application was made at least a fortnight before sowing/planting operations. The analysis of soils collected before land application of spentwash and after harvest of crops revealed that there was no adverse effect of applied spentwash on soil characteristics. A slight build up in soluble salts was observed but, however all the soils recorded EC of less than 2.0 dSm-1. An increase in soil organic carbon (SOC) and available nitrogen (N) by about 10 to 30 % was observed in the spentwash applied soils. The presence of good amount of biodegradable organics in the treated spentwash (BOD of 6550 mg/l) contributed for increase in SOC and N. A substantial build up in available potassium (K) status (50 to 200%) was observed due to spentwash application. This was attributed to the high K content in spentwash (6950 mg/l). The growth of crops in the spentwash applied fields was higher and farmers could get nearly 10 to 20 per cent higher yields, especially in sugarcane and corn. The analysis of ground water samples showed that the quality of water was not affected due to land application of treated spentwash. Apart from realizing higher crop yields, the farmers were able to save money on N and K fertilisers as the applied spentwash met the crop requirement. Hence, it could be concluded that the bio-methanated distillery spentwash can be gainfully utilized in crop production without polluting the environment.

Keywords: bio-methanation, pollutant, potassium status, soil organic carbon

Procedia PDF Downloads 378
5181 Control of Listeria monocytogenes ATCC7644 in Fresh Tomato and Carrot with Zinc Oxide Nanoparticles

Authors: Oluwatosin A. Ijabadeniyi, Faith Semwayo

Abstract:

Preference for consumption of fresh and minimally processed fruits and vegetables continues to be on the upward trend however food-borne outbreaks related to them have also been on the increase. In this study the effect of zinc oxide nanoparticles on controlling Listeria monocytogenes ATCC 7644 in tomatoes and carrots during storage was investigated. Nutrient broth was inoculated with Listeria monocytogenes ATCC 7644 and thereafter inoculated with 0.3mg/ml nano-zinc oxide solution and 1.2mg/ml nano-zinc oxide solution and 200ppm chlorine was used as a control. Whole tomatoes and carrots were also inoculated with Listeria monocytogenes ATCC 7644 after which they were dipped into zinc oxide nanoparticle solutions and chlorine solutions. 1.2 mg/ml had a 2.40 log reduction; 0.3mg/ml nano-zinc oxide solution had a log reduction of 2.15 in the broth solution. There was however a 4.89 log and 4.46 reduction by 200 ppm chlorine in tomato and carrot respectively. Control with 0.3 mg/ml zinc oxide nanoparticles resulted in a log reduction of 5.19 in tomato and 3.66 in carrots. 1.2 mg/ml nanozinc oxide solution resulted in a 5.53 log reduction in tomato and a 4.44 log reduction in carrots. A combination of 50ppm Chlorine and 0.3 mg/ml nanozinc oxide was also used and resulted in log reductions of 5.76 and 4.84 respectively in tomatoes and carrots. Treatments were more effective in tomatoes than in carrots and the combination of 50ppm Chlorine and 0.3 mg/ml ZnO resulted in the highest log reductions in both vegetables. Statistical analysis however showed that there was no significant difference between treatments with Chlorine and nanoparticle solutions. This study therefore indicates that zinc oxide nanoparticles have the potential for use as a control agent in the fresh produce industry.

Keywords: Listeria monocytogenes, nanoparticles, tomato, carrot

Procedia PDF Downloads 488
5180 Sorghum Resilience and Sustainability under Limiting and Non-limiting Conditions of Water and Nitrogen

Authors: Muhammad Tanveer Altaf, Mehmet Bedir, Waqas Liaqat, Gönül Cömertpay, Volkan Çatalkaya, Celaluddin Barutçular, Nergiz Çoban, Ibrahim Cerit, Muhammad Azhar Nadeem, Tolga Karaköy, Faheem Shehzad Baloch

Abstract:

Food production needs to be almost double by 2050 in order to feed around 9 billion people around the Globe. Plant production mostly relies on fertilizers, which also have one of the main roles in environmental pollution. In addition to this, climatic conditions are unpredictable, and the earth is expected to face severe drought conditions in the future. Therefore, water and fertilizers, especially nitrogen are considered as main constraints for future food security. To face these challenges, developing integrative approaches for germplasm characterization and selecting the resilient genotypes performing under limiting conditions is very crucial for effective breeding to meet the food requirement under climatic change scenarios. This study is part of the European Research Area Network (ERANET) project for the characterization of the diversity panel of 172 sorghum accessions and six hybrids as control cultivars under limiting (+N/-H2O, -N/+H2O) and non-limiting conditions (+N+H2O). This study was planned to characterize the sorghum diversity in relation to resource Use Efficiency (RUE), with special attention on harnessing the interaction between genotype and environment (GxE) from a physiological and agronomic perspective. Experiments were conducted at Adana, a Mediterranean climate, with augmented design, and data on various agronomic and physiological parameters were recorded. Plentiful diversity was observed in the sorghum diversity panel and significant variations were seen among the limiting water and nitrogen conditions in comparison with the control experiment. Potential genotypes with the best performance are identified under limiting conditions. Whole genome resequencing was performed for whole germplasm under investigation for diversity analysis. GWAS analysis will be performed using genotypic and phenotypic data and linked markers will be identified. The results of this study will show the adaptation and improvement of sorghum under climate change conditions for future food security.

Keywords: germplasm, sorghum, drought, nitrogen, resources use efficiency, sequencing

Procedia PDF Downloads 62
5179 Peculiarities of the Clinical Course of the Osteoarthritis in Shift-Workers: Analysis of Clinical Data and Questionnaries

Authors: Oksana Mykytyuk

Abstract:

Chronic desynchronosis is an important factor of progression of osteoarthritis in shift workers. 80 patients with primary osteoarthritis (female:male ratio = 3:1, average age: 57.6 years, average disease duration: 6.4 years, radiological stage: II-III) were examined, 42% reported systematic night shift-work for more than two years. Full clinical examination was performed, all patients filled in SF-36, WOMAC questonnaries, marked visual analog scales for estimation of pain intensity and general well-being. Patients who had been exposed to night work had significantly worse clinical course of osteoarthritis marked by more (27.5%, p < 0.05) extensive pain syndrome, especially at night hours, (10.00 pm-2.00 am period) and estimated life quality as poorer comparing those working at day time. Osteoarthritis initiation occurred at earlier age in them comparing those who worked in non-shifted regimen. They showed a trend to generalized affliction of bigger quantity of joint groups, higher frequency of synovitis as well. Shift-workers administered higher doses of non-steroid anti-inflammatory drugs (NSAIDs) and estimated their effect as lower (39.6% average daily relief vs 62.5% in non-shift workers after 10 days of regular application of therapy). Frequency of chronic NSAID-induced gastropathy was 25% higher among night-workers. Shift-workers are predisposed to worse course of osteoarthritis with marked clinical symptoms, requiring higher doses on NSAIDs and with inclination towards bigger frequency of complication. That should be kept in mind while developing individual treatment and secondary prophylaxis strategy.

Keywords: desynchronosis, osteoarthritis, questionnaries, shift-work

Procedia PDF Downloads 115
5178 Detection and Molecular Identification of Bacteria Forming Polyhydroxyalkanoate and Polyhydroxybutyrate Isolated from Soil in Saudi Arabia

Authors: Ali Bahkali, Rayan Yousef Booq, Mohammad Khiyami

Abstract:

Soil samples were collected from five different regions in the Kingdom of Saudi Arabia. Microbiological methods included dilution methods and pour plates to isolate and purify bacteria soil. The ability of isolates to develop biopolymer was investigated on petri dishes containing elements and substance concentrations stimulating developing biopolymer. Fluorescent stains, Nile red and Nile blue were used to stain the bacterial cells developing biopolymers. In addition, Sudan black was used to detect biopolymers in bacterial cells. The isolates which developed biopolymers were identified based on their gene sequence of 1 6sRNA and their ability to grow and synthesize PHAs on mineral medium supplemented with 1% dates molasses as the only carbon source under nitrogen limitation. During the study 293 bacterial isolates were isolated and detected. Through the initial survey on the petri dishes, 84 isolates showed the ability to develop biopolymers. These bacterial colonies developed a pink color due to accumulation of the biopolymers in the cells. Twenty-three isolates were able to grow on dates molasses, three strains of which showed the ability to accumulate biopolymers. These strains included Bacillus sp., Ralstonia sp. and Microbacterium sp. They were detected by Nile blue A stain with fluorescence microscopy (OLYMPUS IX 51). Among the isolated strains Ralstonia sp. was selected after its ability to grow on molasses dates in the presence of a limited nitrogen source was detected. The optimum conditions for formation of biopolymers by isolated strains were investigated. Conditions studied included, best incubation duration (2 days), temperature (30°C) and pH (7-8). The maximum PHB production was raised by 1% (v1v) when using concentrations of dates molasses 1, 2, 3, 4 and 5% in MSM. The best inoculated with 1% old inoculum (1= OD). The ideal extraction method of PHA and PHB proved to be 0.4% sodium hypochlorite solution, producing a quantity of polymer 98.79% of the cell's dry weight. The maximum PHB production was 1.79 g/L recorded by Ralstonia sp. after 48 h, while it was 1.40 g/L produced by R.eutropha ATCC 17697 after 48 h.

Keywords: bacteria forming polyhydroxyalkanoate, detection, molecular, Saudi Arabia

Procedia PDF Downloads 329
5177 An Investigation into the Gaps in Green Building Education and Training Offerings in Nigeria

Authors: Adebayo A. Abimbola, Anifowose O. Joseph, Olanrewaju S. Taiwo

Abstract:

Green building (GB) practices have the potential to save energy, save money, and improve the quality of human habitat. They can also contribute to water conservation, more efficient use of raw materials, and ecosystem health around the globe. The Intergovernmental Panel on Climate Change (IPCC) singled out the building sector as having the most cost-effective opportunities for reducing carbon emissions—in fact, many building-related opportunities are cost-neutral, or even cost-positive, to the building owner. These benefits have made green building practices the fastest-growing trend in the building industry, but they still represent only a fraction of new construction, and the enormous stock of existing buildings has barely been touched at all. To effectively deliver the kind of (GB) that can become a force for positive change at global, regional and local scales, all workforce sectors need new skills that are both technical and interpersonal in nature. A prominent bottleneck is seen to be education and training. This paper investigates the major gaps in current GB education and training offerings in Nigeria. A questionnaire survey was developed to capture the perception of construction professionals and academics in relevant professions regarding the significance of the identified gaps as it affects GB education and training. Based on Likert scale ranking, research result shows that perception of training in specific technical fields and financial benefits and evaluation are identified as the top gaps in GB training and education offerings. The paper concludes with suggestions and actions that can enhance capabilities of the GB workforce in Nigeria.

Keywords: education and training, gaps, green building, workforce

Procedia PDF Downloads 298
5176 Latest Finding about Copper Sulfide Biomineralization and General Features of Metal Sulfide Biominerals

Authors: Yeseul Park

Abstract:

Biopolymers produced by organisms highly contribute to the production of metal sulfides, both in extracellular and intracellular biomineralization. We discovered a new type of intracellular biomineral composed of copper sulfide in the periplasm of a sulfate-reducing bacterium. We suggest that the structural features of biomineral composed of 1-2 nm subgrains are based on biopolymer-based capping agents and an organic compartment. We further compare with other types of metal sulfide biominerals.

Keywords: biomineralization, copper sulfide, metal sulfide, biopolymer, capping agent

Procedia PDF Downloads 100
5175 The Role of Moroccan Salafist Radicalism in Creating Threat to Spain’s Security

Authors: Stanislaw Kosmynka

Abstract:

Although the genesis of the activity of fighting salafist radicalism in Spain dates back to the 80’s, the development of extremism of this kind manifested itself only in the next decade. Its first permanently functioning structures in this country in the second half of 90’s of 20th century came from Algieria and Syria. At the same time it should be emphasized that this distinction is in many dimensions conventional, the more so because they consisted also of immigrants from other coutries of Islam, particularly from Morocco. The paper seeks to understand the radical salafist challenge for Spain in the context of some terrorist networks consisted of immigrants from Morocco. On the eve of the new millennium Moroccan jihadists played an increasingly important role. Although the activity of these groups had for many years mainly logistical and propaganda character, the bomb attack carried out on 11 March 2004 in Madrid constituted an expression of open forms of terrorism, directed against the authorities and society of Spain and reflected the narration of representatives of the trend of the global jihad. The people involved in carrying out that act of violence were to a large extent Moroccan immigrants; also in the following years among the cells of radicals in Spain Moroccans stood out many times. That is why the forms and directions of activity of these extremists in Spain, also after 11th March 2004 and in the actual context of the impact of Islamic State, are worth presenting. The paper is focused on threats to the security of Spain and the region and remains connected with the issues of mutual relations of the society of a host country with immigrant communities which to a large degree come from this part of Maghreb.

Keywords: jihadi terrorism, Morocco, radical salafism, security, Spain, terrorist cells, threat

Procedia PDF Downloads 513
5174 Reimaging Archetype of Mosque: A Case Study on Contemporary Mosque Architecture in Bangladesh

Authors: Sabrina Rahman

Abstract:

The Mosque is Islam’s most symbolic structure, as well as the expression of collective identity. From the explicit words of our Prophet, 'The earth has been created for me as a masjid and a place of purity, and whatever man from my Ummah finds himself in need of prayer, let him pray' (anywhere)! it is obvious that a devout Muslim does not require a defined space or structure for divine worship since the whole earth is his prayer house. Yet we see that from time immemorial man throughout the Muslim world has painstakingly erected innumerable mosques. However, mosque design spans time, crosses boundaries, and expresses cultures. It is a cultural manifestation as much as one based on a regional building tradition or a certain interpretation of religion. The trend to express physical signs of religion is not new. Physical forms seem to convey symbolic messages. However, in recent times physical forms of mosque architecture are dominantly demising from mosque architecture projects in Bangladesh. Dome & minaret, the most prominent symbol of the mosque, is replacing by contextual and contemporary improvisation rather than subcontinental mosque architecture practice of early fellows. Thus the recent mosque projects of the last 15 years established the contemporary architectural realm in their design. Contextually, spiritual lighting, the serenity of space, tranquility of outdoor spaces, the texture of materials is widely establishing a new genre of Muslim prayer space. A case study based research will lead to specify its significant factors of modernism. Based on the findings, the paper presents evidence of recent projects as well as a guideline for the future image of contemporary Mosque architecture in Bangladesh.

Keywords: contemporary architecture, modernism, prayer space, symbolism

Procedia PDF Downloads 110
5173 Demand for Care in Primary Health Care in the Governorate of Ariana: Results of a Survey in Ariana Primary Health Care and Comparison with the Last 30 Years

Authors: Chelly Souhir, Harizi Chahida, Hachaichi Aicha, Aissaoui Sihem, Chahed Mohamed Kouni

Abstract:

Introduction: In Tunisia, few studies have attempted to describe the demand for primary care in a standardized and systematic way. The purpose of this study is to describe the main reasons for demand for care in primary health care, through a survey of the Ariana Governorate PHC and to identify their evolutionary trend compared to last 30 years, reported by studies of the same type. Materials and methods: This is a cross-sectional descriptive study which concerns the study of consultants in the first line of the governorate of Ariana and their use of care recorded during 2 days in the same week during the month of May 2016, in each of these PHC. The same data collection sheet was used in all CSBs. The coding of the information was done according to the International Classification of Primary Care (ICPC). The data was entered and analyzed by the EPI Info 7 software. Results: Our study found that the most common ICPC chapters are respiratory (42%) and digestive (13.2%). In 1996 were the respiratory (43.5%) and circulatory (7.8%). In 2000, we found also the respiratory (39,6%) and circulatory (10,9%). In 2002, respiratory (43%) and digestive (10.1%) motives were the most frequent. According to the ICPC, the pathologies in our study were acute angina (19%), acute bronchitis and bronchiolitis (8%). In 1996, it was tonsillitis ( 21.6%) and acute bronchitis (7.2%). For Ben Abdelaziz in 2000, tonsillitis (14.5%) follow by acute bronchitis (8.3%). In 2002, acute angina (15.7%), acute bronchitis and bronchiolitis (11.2%) were the most common. Conclusion: Acute angina and tonsillitis are the most common in all studies conducted in Tunisia.

Keywords: acute angina, classification of primary care, primary health care, tonsillitis, Tunisia

Procedia PDF Downloads 511